blob: 0e3cfe07dae0fbda9025e09749d872a60e602fc6 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "procs.h"
static int
test_step_double(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems);
const char *step_kernel_code =
"__kernel void test_step(__global float *srcA, __global float *srcB, __global float *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step2_kernel_code =
"__kernel void test_step2(__global float2 *srcA, __global float2 *srcB, __global float2 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step4_kernel_code =
"__kernel void test_step4(__global float4 *srcA, __global float4 *srcB, __global float4 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step8_kernel_code =
"__kernel void test_step8(__global float8 *srcA, __global float8 *srcB, __global float8 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step16_kernel_code =
"__kernel void test_step16(__global float16 *srcA, __global float16 *srcB, __global float16 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step3_kernel_code =
"__kernel void test_step3(__global float *srcA, __global float *srcB, __global float *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(step(vload3(tid,srcA), vload3(tid,srcB)),tid,dst);\n"
"}\n";
int
verify_step(float *inptrA, float *inptrB, float *outptr, int n)
{
float r;
int i;
for (i=0; i<n; i++)
{
r = (inptrB[i] < inptrA[i]) ? 0.0f : 1.0f;
if (r != outptr[i])
return -1;
}
return 0;
}
int
test_step(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[3];
cl_float *input_ptr[2], *output_ptr, *p;
cl_program program[kTotalVecCount];
cl_kernel kernel[kTotalVecCount];
void *values[3];
size_t threads[1];
int num_elements;
int err;
int i;
MTdata d;
num_elements = n_elems * 16;
input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
input_ptr[1] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[0])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[1])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[2] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[2])
{
log_error("clCreateBuffer failed\n");
return -1;
}
p = input_ptr[0];
d = init_genrand( gRandomSeed );
for (i=0; i<num_elements; i++)
{
p[i] = get_random_float(-0x40000000, 0x40000000, d);
}
p = input_ptr[1];
for (i=0; i<num_elements; i++)
{
p[i] = get_random_float(-0x40000000, 0x40000000, d);
}
free_mtdata(d); d = NULL;
err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements, (void *)input_ptr[0], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
err = clEnqueueWriteBuffer( queue, streams[1], true, 0, sizeof(cl_float)*num_elements, (void *)input_ptr[1], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
err = create_single_kernel_helper( context, &program[0], &kernel[0], 1, &step_kernel_code, "test_step" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[1], &kernel[1], 1, &step2_kernel_code, "test_step2" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[2], &kernel[2], 1, &step4_kernel_code, "test_step4" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[3], &kernel[3], 1, &step8_kernel_code, "test_step8" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[4], &kernel[4], 1, &step16_kernel_code, "test_step16" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[5], &kernel[5], 1, &step3_kernel_code, "test_step3" );
if (err)
return -1;
values[0] = streams[0];
values[1] = streams[1];
values[2] = streams[2];
for (i=0; i <kTotalVecCount; i++)
{
err = clSetKernelArg(kernel[i], 0, sizeof streams[0], &streams[0] );
err |= clSetKernelArg(kernel[i], 1, sizeof streams[1], &streams[1] );
err |= clSetKernelArg(kernel[i], 2, sizeof streams[2], &streams[2] );
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
return -1;
}
}
threads[0] = (size_t)n_elems;
for (i=0; i<kTotalVecCount; i++)
{
err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
return -1;
}
err = clEnqueueReadBuffer( queue, streams[2], true, 0, sizeof(cl_float)*num_elements, (void *)output_ptr, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueReadBuffer failed\n");
return -1;
}
switch (i)
{
case 0:
err = verify_step(input_ptr[0], input_ptr[1], output_ptr, n_elems);
if (err)
log_error("STEP float test failed\n");
else
log_info("STEP float test passed\n");
break;
case 1:
err = verify_step(input_ptr[0], input_ptr[1], output_ptr, n_elems*2);
if (err)
log_error("STEP float2 test failed\n");
else
log_info("STEP float2 test passed\n");
break;
case 2:
err = verify_step(input_ptr[0], input_ptr[1], output_ptr, n_elems*4);
if (err)
log_error("STEP float4 test failed\n");
else
log_info("STEP float4 test passed\n");
break;
case 3:
err = verify_step(input_ptr[0], input_ptr[1], output_ptr, n_elems*8);
if (err)
log_error("STEP float8 test failed\n");
else
log_info("STEP float8 test passed\n");
break;
case 4:
err = verify_step(input_ptr[0], input_ptr[1], output_ptr, n_elems*16);
if (err)
log_error("STEP float16 test failed\n");
else
log_info("STEP float16 test passed\n");
break;
case 5:
err = verify_step(input_ptr[0], input_ptr[1], output_ptr, n_elems*3);
if (err)
log_error("STEP float3 test failed\n");
else
log_info("STEP float3 test passed\n");
break;
}
if (err)
break;
}
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
clReleaseMemObject(streams[2]);
for (i=0; i<kTotalVecCount; i++)
{
clReleaseKernel(kernel[i]);
clReleaseProgram(program[i]);
}
free(input_ptr[0]);
free(input_ptr[1]);
free(output_ptr);
if( err )
return err;
if( ! is_extension_available( device, "cl_khr_fp64" ))
return 0;
return test_step_double( device, context, queue, n_elems);
}
#pragma mark -
const char *step_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_step_double(__global double *srcA, __global double *srcB, __global double *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step2_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_step2_double(__global double2 *srcA, __global double2 *srcB, __global double2 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step4_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_step4_double(__global double4 *srcA, __global double4 *srcB, __global double4 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step8_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_step8_double(__global double8 *srcA, __global double8 *srcB, __global double8 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step16_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_step16_double(__global double16 *srcA, __global double16 *srcB, __global double16 *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = step(srcA[tid], srcB[tid]);\n"
"}\n";
const char *step3_kernel_code_double =
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n"
"__kernel void test_step3_double(__global double *srcA, __global double *srcB, __global double *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(step(vload3(tid,srcA), vload3(tid,srcB)),tid,dst);\n"
"}\n";
int
verify_step_double(double *inptrA, double *inptrB, double *outptr, int n)
{
double r;
int i;
for (i=0; i<n; i++)
{
r = (inptrB[i] < inptrA[i]) ? 0.0 : 1.0;
if (r != outptr[i])
return -1;
}
return 0;
}
static int
test_step_double(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[3];
cl_double *input_ptr[2], *output_ptr, *p;
cl_program program[kTotalVecCount];
cl_kernel kernel[kTotalVecCount];
void *values[3];
size_t threads[1];
int num_elements;
int err;
int i;
MTdata d;
num_elements = n_elems * 16;
input_ptr[0] = (cl_double*)malloc(sizeof(cl_double) * num_elements);
input_ptr[1] = (cl_double*)malloc(sizeof(cl_double) * num_elements);
output_ptr = (cl_double*)malloc(sizeof(cl_double) * num_elements);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_double) * num_elements, NULL, NULL);
if (!streams[0])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_double) * num_elements, NULL, NULL);
if (!streams[1])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[2] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_double) * num_elements, NULL, NULL);
if (!streams[2])
{
log_error("clCreateBuffer failed\n");
return -1;
}
p = input_ptr[0];
d = init_genrand( gRandomSeed );
for (i=0; i<num_elements; i++)
{
p[i] = get_random_double(-0x40000000, 0x40000000, d);
}
p = input_ptr[1];
for (i=0; i<num_elements; i++)
{
p[i] = get_random_double(-0x40000000, 0x40000000, d);
}
free_mtdata(d); d = NULL;
err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_double)*num_elements, (void *)input_ptr[0], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
err = clEnqueueWriteBuffer( queue, streams[1], true, 0, sizeof(cl_double)*num_elements, (void *)input_ptr[1], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
err = create_single_kernel_helper( context, &program[0], &kernel[0], 1, &step_kernel_code_double, "test_step_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[1], &kernel[1], 1, &step2_kernel_code_double, "test_step2_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[2], &kernel[2], 1, &step4_kernel_code_double, "test_step4_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[3], &kernel[3], 1, &step8_kernel_code_double, "test_step8_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[4], &kernel[4], 1, &step16_kernel_code_double, "test_step16_double" );
if (err)
return -1;
err = create_single_kernel_helper( context, &program[5], &kernel[5], 1, &step3_kernel_code_double, "test_step3_double" );
if (err)
return -1;
values[0] = streams[0];
values[1] = streams[1];
values[2] = streams[2];
for (i=0; i < kTotalVecCount; i++)
{
err = clSetKernelArg(kernel[i], 0, sizeof streams[0], &streams[0] );
err |= clSetKernelArg(kernel[i], 1, sizeof streams[1], &streams[1] );
err |= clSetKernelArg(kernel[i], 2, sizeof streams[2], &streams[2] );
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
return -1;
}
}
threads[0] = (size_t)n_elems;
for (i=0; i<kTotalVecCount; i++)
{
err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
return -1;
}
err = clEnqueueReadBuffer( queue, streams[2], true, 0, sizeof(cl_double)*num_elements, (void *)output_ptr, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueReadBuffer failed\n");
return -1;
}
switch (i)
{
case 0:
err = verify_step_double(input_ptr[0], input_ptr[1], output_ptr, n_elems);
if (err)
log_error("STEP double test failed\n");
else
log_info("STEP double test passed\n");
break;
case 1:
err = verify_step_double(input_ptr[0], input_ptr[1], output_ptr, n_elems*2);
if (err)
log_error("STEP double2 test failed\n");
else
log_info("STEP double2 test passed\n");
break;
case 2:
err = verify_step_double(input_ptr[0], input_ptr[1], output_ptr, n_elems*4);
if (err)
log_error("STEP double4 test failed\n");
else
log_info("STEP double4 test passed\n");
break;
case 3:
err = verify_step_double(input_ptr[0], input_ptr[1], output_ptr, n_elems*8);
if (err)
log_error("STEP double8 test failed\n");
else
log_info("STEP double8 test passed\n");
break;
case 4:
err = verify_step_double(input_ptr[0], input_ptr[1], output_ptr, n_elems*16);
if (err)
log_error("STEP double16 test failed\n");
else
log_info("STEP double16 test passed\n");
break;
case 5:
err = verify_step_double(input_ptr[0], input_ptr[1], output_ptr, n_elems*3);
if (err)
log_error("STEP double3 test failed\n");
else
log_info("STEP double3 test passed\n");
break;
}
if (err)
break;
}
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
clReleaseMemObject(streams[2]);
for (i=0; i<kTotalVecCount; i++)
{
clReleaseKernel(kernel[i]);
clReleaseProgram(program[i]);
}
free(input_ptr[0]);
free(input_ptr[1]);
free(output_ptr);
return err;
}