blob: eb6dd5521263d369d6b9bd4f51981686bf5d6ce8 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "../testBase.h"
#include "../common.h"
extern int test_copy_image_generic( cl_context context, cl_command_queue queue, image_descriptor *srcImageInfo, image_descriptor *dstImageInfo,
const size_t sourcePos[], const size_t destPos[], const size_t regionSize[], MTdata d );
static void set_image_dimensions( image_descriptor *imageInfo, size_t width, size_t height, size_t arraySize, size_t rowPadding, size_t slicePadding )
{
size_t pixelSize = get_pixel_size( imageInfo->format );
imageInfo->width = width;
imageInfo->height = height;
imageInfo->arraySize = arraySize;
imageInfo->rowPitch = imageInfo->width * pixelSize + rowPadding;
if (gEnablePitch)
{
do {
rowPadding++;
imageInfo->rowPitch = imageInfo->width * pixelSize + rowPadding;
} while ((imageInfo->rowPitch % pixelSize) != 0);
}
if (arraySize == 0)
{
imageInfo->type = CL_MEM_OBJECT_IMAGE2D;
imageInfo->slicePitch = 0;
}
else
{
imageInfo->type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
imageInfo->slicePitch = imageInfo->rowPitch * (imageInfo->height + slicePadding);
}
}
int test_copy_image_size_2D_2D_array( cl_context context, cl_command_queue queue, image_descriptor *srcImageInfo, image_descriptor *dstImageInfo, MTdata d )
{
size_t sourcePos[ 4 ] = { 0 }, destPos[ 4 ] = { 0 }, regionSize[ 3 ];
int ret = 0, retCode;
image_descriptor *threeImage, *twoImage;
if( srcImageInfo->arraySize > 0 )
{
threeImage = srcImageInfo;
twoImage = dstImageInfo;
}
else
{
threeImage = dstImageInfo;
twoImage = srcImageInfo;
}
size_t twoImage_lod = 0, twoImage_width_lod = twoImage->width, twoImage_row_pitch_lod;
size_t twoImage_height_lod = twoImage->height;
size_t threeImage_lod = 0, threeImage_width_lod = threeImage->width, threeImage_row_pitch_lod, threeImage_slice_pitch_lod;
size_t threeImage_height_lod = threeImage->height;
size_t width_lod, height_lod;
size_t twoImage_max_mip_level,threeImage_max_mip_level;
if( gTestMipmaps )
{
twoImage_max_mip_level = twoImage->num_mip_levels;
threeImage_max_mip_level = threeImage->num_mip_levels;
// Work at random mip levels
twoImage_lod = (size_t)random_in_range( 0, twoImage_max_mip_level ? twoImage_max_mip_level - 1 : 0, d );
threeImage_lod = (size_t)random_in_range( 0, threeImage_max_mip_level ? threeImage_max_mip_level - 1 : 0, d );
twoImage_width_lod = ( twoImage->width >> twoImage_lod )? ( twoImage->width >> twoImage_lod ) : 1;
threeImage_width_lod = ( threeImage->width >> threeImage_lod )? ( threeImage->width >> threeImage_lod ) : 1;
twoImage_height_lod = ( twoImage->height >> twoImage_lod )? ( twoImage->height >> twoImage_lod ) : 1;
threeImage_height_lod = ( threeImage->height >> threeImage_lod )? ( threeImage->height >> threeImage_lod ) : 1;
twoImage_row_pitch_lod = twoImage_width_lod * get_pixel_size( twoImage->format );
threeImage_row_pitch_lod = threeImage_width_lod * get_pixel_size( threeImage->format );
threeImage_slice_pitch_lod = threeImage_height_lod * threeImage_row_pitch_lod;
}
width_lod = ( twoImage_width_lod > threeImage_width_lod ) ? threeImage_width_lod : twoImage_width_lod;
height_lod = ( twoImage_height_lod > threeImage_height_lod ) ? threeImage_height_lod : twoImage_height_lod;
// First, try just a full covering region
sourcePos[ 0 ] = sourcePos[ 1 ] = sourcePos[ 2 ] = sourcePos[ 3 ] = 0;
destPos[ 0 ] = destPos[ 1 ] = destPos[ 2 ] = destPos[ 3 ] = 0;
regionSize[ 0 ] = width_lod;
regionSize[ 1 ] = height_lod;
regionSize[ 2 ] = 1;
if( srcImageInfo->arraySize == 0 )
{
// 2D to 2D array
destPos[ 2 ] = (size_t)random_in_range( 0, (int)dstImageInfo->arraySize - 1, d );
if(gTestMipmaps)
{
sourcePos[ 2 ] = twoImage_lod;
destPos[ 3 ] = threeImage_lod;
regionSize[ 0 ] = width_lod;
regionSize[ 1 ] = height_lod;
}
}
else
{
// 2D array to 2D
sourcePos[ 2 ] = (size_t)random_in_range( 0, (int)srcImageInfo->arraySize - 1, d );
if(gTestMipmaps)
{
sourcePos[ 3 ] = threeImage_lod;
destPos[ 2 ] = twoImage_lod;
regionSize[ 0 ] = width_lod;
regionSize[ 1 ] = height_lod;
}
}
retCode = test_copy_image_generic( context, queue, srcImageInfo, dstImageInfo, sourcePos, destPos, regionSize, d );
if( retCode < 0 )
return retCode;
else
ret += retCode;
// Now try a sampling of different random regions
for( int i = 0; i < 8; i++ )
{
if( gTestMipmaps )
{
// Work at a random mip level
twoImage_lod = (size_t)random_in_range( 0, twoImage_max_mip_level ? twoImage_max_mip_level - 1 : 0, d );
threeImage_lod = (size_t)random_in_range( 0, threeImage_max_mip_level ? threeImage_max_mip_level - 1 : 0, d );
twoImage_width_lod = ( twoImage->width >> twoImage_lod )? ( twoImage->width >> twoImage_lod ) : 1;
threeImage_width_lod = ( threeImage->width >> threeImage_lod )? ( threeImage->width >> threeImage_lod ) : 1;
twoImage_height_lod = ( twoImage->height >> twoImage_lod )? ( twoImage->height >> twoImage_lod ) : 1;
threeImage_height_lod = ( threeImage->height >> threeImage_lod )? ( threeImage->height >> threeImage_lod ) : 1;
width_lod = ( twoImage_width_lod > threeImage_width_lod ) ? threeImage_width_lod : twoImage_width_lod;
height_lod = ( twoImage_height_lod > threeImage_height_lod ) ? threeImage_height_lod : twoImage_height_lod;
}
// Pick a random size
regionSize[ 0 ] = random_in_ranges( 8, srcImageInfo->width, dstImageInfo->width, d );
regionSize[ 1 ] = random_in_ranges( 8, srcImageInfo->height, dstImageInfo->height, d );
if( gTestMipmaps )
{
regionSize[ 0 ] = ( width_lod > 8 ) ? random_in_range( 8, width_lod, d ) : width_lod;
regionSize[ 1 ] = ( height_lod > 8) ? random_in_range( 8, height_lod, d ): height_lod;
}
// Now pick positions within valid ranges
sourcePos[ 0 ] = ( srcImageInfo->width > regionSize[ 0 ] ) ? (size_t)random_in_range( 0, (int)( srcImageInfo->width - regionSize[ 0 ] - 1 ), d ) : 0;
sourcePos[ 1 ] = ( srcImageInfo->height > regionSize[ 1 ] ) ? (size_t)random_in_range( 0, (int)( srcImageInfo->height - regionSize[ 1 ] - 1 ), d ) : 0;
sourcePos[ 2 ] = ( srcImageInfo->arraySize > 0 ) ? (size_t)random_in_range( 0, (int)( srcImageInfo->arraySize - 1 ), d ) : gTestMipmaps ? twoImage_lod : 0;
if (gTestMipmaps)
{
if( srcImageInfo->arraySize > 0 )
{
sourcePos[ 0 ] = ( threeImage_width_lod > regionSize[ 0 ] ) ? (size_t)random_in_range( 0, (int)( threeImage_width_lod - regionSize[ 0 ] - 1 ), d ) : 0;
sourcePos[ 1 ] = ( threeImage_height_lod > regionSize[ 1 ] ) ? (size_t)random_in_range( 0, (int)( threeImage_height_lod - regionSize[ 1 ] - 1 ), d ) : 0;
sourcePos[ 3 ] = threeImage_lod;
}
else
{
sourcePos[ 0 ] = ( twoImage_width_lod > regionSize[ 0 ] ) ? (size_t)random_in_range( 0, (int)( twoImage_width_lod - regionSize[ 0 ] - 1 ), d ) : 0;
sourcePos[ 1 ] = ( twoImage_height_lod > regionSize[ 1 ] ) ? (size_t)random_in_range( 0, (int)( twoImage_height_lod - regionSize[ 1 ] - 1 ), d ) : 0;
}
}
destPos[ 0 ] = ( dstImageInfo->width > regionSize[ 0 ] ) ? (size_t)random_in_range( 0, (int)( dstImageInfo->width - regionSize[ 0 ] - 1 ), d ) : 0;
destPos[ 1 ] = ( dstImageInfo->height > regionSize[ 1 ] ) ? (size_t)random_in_range( 0, (int)( dstImageInfo->height - regionSize[ 1 ] - 1 ), d ) : 0;
destPos[ 2 ] = ( dstImageInfo->arraySize > 0 ) ? (size_t)random_in_range( 0, (int)( dstImageInfo->arraySize - 1 ), d ) : gTestMipmaps ? twoImage_lod : 0;
if (gTestMipmaps)
{
if( dstImageInfo->arraySize > 0 )
{
destPos[ 0 ] = ( threeImage_width_lod > regionSize[ 0 ] ) ? (size_t)random_in_range( 0, (int)( threeImage_width_lod - regionSize[ 0 ] - 1 ), d ) : 0;
destPos[ 1 ] = ( threeImage_height_lod > regionSize[ 1 ] ) ? (size_t)random_in_range( 0, (int)( threeImage_height_lod - regionSize[ 1 ] - 1 ), d ) : 0;
destPos[ 3 ] = threeImage_lod;
}
else
{
destPos[ 0 ] = ( twoImage_width_lod > regionSize[ 0 ] ) ? (size_t)random_in_range( 0, (int)( twoImage_width_lod - regionSize[ 0 ] - 1 ), d ) : 0;
destPos[ 1 ] = ( twoImage_height_lod > regionSize[ 1 ] ) ? (size_t)random_in_range( 0, (int)( twoImage_height_lod - regionSize[ 1 ] - 1 ), d ) : 0;
}
}
// Go for it!
retCode = test_copy_image_generic( context, queue, srcImageInfo, dstImageInfo, sourcePos, destPos, regionSize, d );
if( retCode < 0 )
return retCode;
else
ret += retCode;
}
return ret;
}
int test_copy_image_set_2D_2D_array( cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, bool reverse = false )
{
size_t maxWidth, maxHeight, maxArraySize;
cl_ulong maxAllocSize, memSize;
image_descriptor srcImageInfo = { 0 };
image_descriptor dstImageInfo = { 0 };
RandomSeed seed( gRandomSeed );
srcImageInfo.format = dstImageInfo.format = format;
int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE, sizeof( maxArraySize ), &maxArraySize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
test_error( error, "Unable to get max image 2D size from device" );
if (memSize > (cl_ulong)SIZE_MAX) {
memSize = (cl_ulong)SIZE_MAX;
}
if( gTestSmallImages )
{
for( dstImageInfo.width = 4; dstImageInfo.width < 17; dstImageInfo.width++ )
{
for( dstImageInfo.height = 4; dstImageInfo.height < 13; dstImageInfo.height++ )
{
for( dstImageInfo.arraySize = 4; dstImageInfo.arraySize < 9; dstImageInfo.arraySize++ )
{
size_t rowPadding = gEnablePitch ? 256 : 0;
size_t slicePadding = gEnablePitch ? 3 : 0;
set_image_dimensions( &dstImageInfo, dstImageInfo.width, dstImageInfo.height, dstImageInfo.arraySize, rowPadding, slicePadding );
set_image_dimensions( &srcImageInfo, dstImageInfo.width, dstImageInfo.height, 0, rowPadding, slicePadding );
if (gTestMipmaps)
{
srcImageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(srcImageInfo.width, srcImageInfo.height, 0), seed);
srcImageInfo.type = CL_MEM_OBJECT_IMAGE2D;
dstImageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(dstImageInfo.width, dstImageInfo.height, 0), seed);
dstImageInfo.type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
srcImageInfo.rowPitch = srcImageInfo.width * get_pixel_size( srcImageInfo.format );
srcImageInfo.slicePitch = 0;
dstImageInfo.rowPitch = dstImageInfo.width * get_pixel_size( dstImageInfo.format );
dstImageInfo.slicePitch = dstImageInfo.rowPitch * dstImageInfo.height;
}
if( gDebugTrace )
{
if (reverse)
log_info( " at size %d,%d,%d to %d,%d\n", (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize, (int)srcImageInfo.width, (int)srcImageInfo.height );
else
log_info( " at size %d,%d to %d,%d,%d\n", (int)srcImageInfo.width, (int)srcImageInfo.height, (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize );
}
int ret;
if( reverse )
ret = test_copy_image_size_2D_2D_array( context, queue, &dstImageInfo, &srcImageInfo, seed );
else
ret = test_copy_image_size_2D_2D_array( context, queue, &srcImageInfo, &dstImageInfo, seed );
if( ret )
return -1;
}
}
}
}
else if( gTestMaxImages )
{
// Try a specific set of maximum sizes
size_t numberOfSizes2DArray, numberOfSizes2D;
size_t sizes2DArray[100][3], sizes2D[100][3];
// Try to allocate a bit smaller images because we need the 2D ones as well for the copy.
get_max_sizes(&numberOfSizes2DArray, 100, sizes2DArray, maxWidth, maxHeight, 1, maxArraySize, maxAllocSize/2, memSize/2, CL_MEM_OBJECT_IMAGE2D_ARRAY, dstImageInfo.format);
get_max_sizes(&numberOfSizes2D, 100, sizes2D, maxWidth, maxHeight, 1, 1, maxAllocSize/2, memSize/2, CL_MEM_OBJECT_IMAGE2D, dstImageInfo.format);
for( size_t i = 0; i < numberOfSizes2D; i++ )
{
for( size_t j = 0; j < numberOfSizes2DArray; j++ )
{
size_t rowPadding = gEnablePitch ? 256 : 0;
size_t slicePadding = gEnablePitch ? 3 : 0;
set_image_dimensions( &dstImageInfo, sizes2DArray[ j ][ 0 ], sizes2DArray[ j ][ 1 ], sizes2DArray[ j ][ 2 ], rowPadding, slicePadding );
set_image_dimensions( &srcImageInfo, sizes2D[ i ][ 0 ], sizes2D[ i ][ 1 ], 0, rowPadding, slicePadding );
cl_ulong dstSize = get_image_size(&dstImageInfo);
cl_ulong srcSize = get_image_size(&srcImageInfo);
if (gTestMipmaps)
{
srcImageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(srcImageInfo.width, srcImageInfo.height, 0), seed);
srcImageInfo.type = CL_MEM_OBJECT_IMAGE2D;
dstImageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(dstImageInfo.width, dstImageInfo.height, 0), seed);
dstImageInfo.type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
srcImageInfo.rowPitch = srcImageInfo.width * get_pixel_size( srcImageInfo.format );
srcImageInfo.slicePitch = 0;
dstImageInfo.rowPitch = dstImageInfo.width * get_pixel_size( dstImageInfo.format );
dstImageInfo.slicePitch = dstImageInfo.rowPitch * dstImageInfo.height;
dstSize = 4 * compute_mipmapped_image_size( dstImageInfo );
srcSize = 4 * compute_mipmapped_image_size( srcImageInfo );
}
if( dstSize < maxAllocSize && dstSize < ( memSize / 3 ) && srcSize < maxAllocSize && srcSize < ( memSize / 3 ) )
{
if (reverse)
log_info( "Testing %d x %d x %d to %d x %d\n", (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize, (int)srcImageInfo.width, (int)srcImageInfo.height );
else
log_info( "Testing %d x %d to %d x %d x %d\n", (int)srcImageInfo.width, (int)srcImageInfo.height, (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize );
if( gDebugTrace )
{
if (reverse)
log_info( " at max size %d,%d,%d to %d,%d\n", (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize, (int)srcImageInfo.width, (int)srcImageInfo.height );
else
log_info( " at max size %d,%d to %d,%d,%d\n", (int)srcImageInfo.width, (int)srcImageInfo.height, (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize );
}
int ret;
if( reverse )
ret = test_copy_image_size_2D_2D_array( context, queue, &dstImageInfo, &srcImageInfo, seed );
else
ret = test_copy_image_size_2D_2D_array( context, queue, &srcImageInfo, &dstImageInfo, seed );
if( ret )
return -1;
}
else
{
if (reverse)
log_info("Not testing max size %d x %d x %d to %d x %d due to memory constraints.\n",
(int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize, (int)srcImageInfo.width, (int)srcImageInfo.height);
else
log_info("Not testing max size %d x %d to %d x %d x %d due to memory constraints.\n",
(int)srcImageInfo.width, (int)srcImageInfo.height, (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize);
}
}
}
}
else
{
for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
{
cl_ulong srcSize, dstSize;
size_t rowPadding = gEnablePitch ? 256 : 0;
size_t slicePadding = gEnablePitch ? 3 : 0;
// Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
// image, the result array, plus offset arrays, will fit in the global ram space
do
{
dstImageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
dstImageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed );
dstImageInfo.arraySize = (size_t)random_log_in_range( 16, (int)maxArraySize / 32, seed );
srcImageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
srcImageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed );
if (gTestMipmaps)
{
srcImageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(srcImageInfo.width, srcImageInfo.height, 0), seed);
srcImageInfo.type = CL_MEM_OBJECT_IMAGE2D;
dstImageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(dstImageInfo.width, dstImageInfo.height, 0), seed);
dstImageInfo.type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
srcImageInfo.rowPitch = srcImageInfo.width * get_pixel_size( srcImageInfo.format );
srcImageInfo.slicePitch = 0;
dstImageInfo.rowPitch = dstImageInfo.width * get_pixel_size( dstImageInfo.format );
dstImageInfo.slicePitch = dstImageInfo.rowPitch * dstImageInfo.height;
srcSize = 4 * compute_mipmapped_image_size( srcImageInfo );
dstSize = 4 * compute_mipmapped_image_size( dstImageInfo );
}
else
{
set_image_dimensions( &srcImageInfo, srcImageInfo.width, srcImageInfo.height, 0, rowPadding, slicePadding );
set_image_dimensions( &dstImageInfo, dstImageInfo.width, dstImageInfo.height, dstImageInfo.arraySize, rowPadding, slicePadding );
srcSize = (cl_ulong)srcImageInfo.rowPitch * (cl_ulong)srcImageInfo.height * 4;
dstSize = (cl_ulong)dstImageInfo.slicePitch * (cl_ulong)dstImageInfo.arraySize * 4;
}
} while( srcSize > maxAllocSize || ( srcSize * 3 ) > memSize || dstSize > maxAllocSize || ( dstSize * 3 ) > memSize);
if( gDebugTrace )
{
if (reverse)
log_info( " at size %d,%d,%d to %d,%d\n", (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize, (int)srcImageInfo.width, (int)srcImageInfo.height );
else
log_info( " at size %d,%d to %d,%d,%d\n", (int)srcImageInfo.width, (int)srcImageInfo.height, (int)dstImageInfo.width, (int)dstImageInfo.height, (int)dstImageInfo.arraySize );
}
int ret;
if( reverse )
ret = test_copy_image_size_2D_2D_array( context, queue, &dstImageInfo, &srcImageInfo, seed );
else
ret = test_copy_image_size_2D_2D_array( context, queue, &srcImageInfo, &dstImageInfo, seed );
if( ret )
return -1;
}
}
return 0;
}