blob: 35559476ba53889e807300e641d58c2350fdcfcf [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "procs.h"
const char *wg_broadcast_1D_kernel_code =
"__kernel void test_wg_broadcast_1D(global float *input, global float *output)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" float result = work_group_broadcast(input[tid], get_group_id(0) % get_local_size(0));\n"
" output[tid] = result;\n"
"}\n";
const char *wg_broadcast_2D_kernel_code =
"__kernel void test_wg_broadcast_2D(global float *input, global float *output)\n"
"{\n"
" size_t tid_x = get_global_id(0);\n"
" size_t tid_y = get_global_id(1);\n"
" size_t x = get_group_id(0) % get_local_size(0);\n"
" size_t y = get_group_id(1) % get_local_size(1);\n"
"\n"
" size_t indx = (tid_y * get_global_size(0)) + tid_x;\n"
" float result = work_group_broadcast(input[indx], x, y);\n"
" output[indx] = result;\n"
"}\n";
const char *wg_broadcast_3D_kernel_code =
"__kernel void test_wg_broadcast_3D(global float *input, global float *output)\n"
"{\n"
" size_t tid_x = get_global_id(0);\n"
" size_t tid_y = get_global_id(1);\n"
" size_t tid_z = get_global_id(2);\n"
" size_t x = get_group_id(0) % get_local_size(0);\n"
" size_t y = get_group_id(1) % get_local_size(1);\n"
" size_t z = get_group_id(2) % get_local_size(2);\n"
"\n"
" size_t indx = (tid_z * get_global_size(1) * get_global_size(0)) + (tid_y * get_global_size(0)) + tid_x;\n"
" float result = work_group_broadcast(input[indx], x, y, z);\n"
" output[indx] = result;\n"
"}\n";
static int
verify_wg_broadcast_1D(float *inptr, float *outptr, size_t n, size_t wg_size)
{
size_t i, j;
size_t group_id;
for (i=0,group_id=0; i<n; i+=wg_size,group_id++)
{
int local_size = (n-i) > wg_size ? wg_size : (n-i);
float broadcast_result = inptr[i + (group_id % local_size)];
for (j=0; j<local_size; j++)
{
if ( broadcast_result != outptr[i+j] )
{
log_info("work_group_broadcast: Error at %u: expected = %f, got = %f\n", i+j, broadcast_result, outptr[i+j]);
return -1;
}
}
}
return 0;
}
static int
verify_wg_broadcast_2D(float *inptr, float *outptr, size_t nx, size_t ny, size_t wg_size_x, size_t wg_size_y)
{
size_t i, j, _i, _j;
size_t group_id_x, group_id_y;
for (i=0,group_id_y=0; i<ny; i+=wg_size_y,group_id_y++)
{
size_t y = group_id_y % wg_size_y;
size_t local_size_y = (ny-i) > wg_size_y ? wg_size_y : (ny-i);
for (_i=0; _i < local_size_y; _i++)
{
for (j=0,group_id_x=0; j<nx; j+=wg_size_x,group_id_x++)
{
size_t x = group_id_x % wg_size_x;
size_t local_size_x = (nx-j) > wg_size_x ? wg_size_x : (nx-j);
float broadcast_result = inptr[(i + y) * nx + (j + x)];
for (_j=0; _j < local_size_x; _j++)
{
size_t indx = (i + _i) * nx + (j + _j);
if ( broadcast_result != outptr[indx] )
{
log_info("work_group_broadcast: Error at (%u, %u): expected = %f, got = %f\n", j+_j, i+_i, broadcast_result, outptr[indx]);
return -1;
}
}
}
}
}
return 0;
}
static int
verify_wg_broadcast_3D(float *inptr, float *outptr, size_t nx, size_t ny, size_t nz, size_t wg_size_x, size_t wg_size_y, size_t wg_size_z)
{
size_t i, j, k, _i, _j, _k;
size_t group_id_x, group_id_y, group_id_z;
for (i=0,group_id_z=0; i<nz; i+=wg_size_z,group_id_z++)
{
size_t z = group_id_z % wg_size_z;
size_t local_size_z = (nz-i) > wg_size_z ? wg_size_z : (nz-i);
for (_i=0; _i < local_size_z; _i++)
{
for (j=0,group_id_y=0; j<ny; j+=wg_size_y,group_id_y++)
{
size_t y = group_id_y % wg_size_y;
size_t local_size_y = (ny-j) > wg_size_y ? wg_size_y : (ny-j);
for (_j=0; _j < local_size_y; _j++)
{
for (k=0,group_id_x=0; k<nx; k+=wg_size_x,group_id_x++)
{
size_t x = group_id_x % wg_size_x;
size_t local_size_x = (nx-k) > wg_size_x ? wg_size_x : (nx-k);
float broadcast_result = inptr[(i + z) * ny * nz + (j + y) * nx + (k + x)];
for (_k=0; _k < local_size_x; _k++)
{
size_t indx = (i + _i) * ny * nx + (j + _j) * nx + (k + _k);
if ( broadcast_result != outptr[indx] )
{
log_info("work_group_broadcast: Error at (%u, %u, %u): expected = %f, got = %f\n", k+_k, j+_j, i+_i, broadcast_result, outptr[indx]);
return -1;
}
}
}
}
}
}
}
return 0;
}
int
test_work_group_broadcast_1D(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[2];
cl_float *input_ptr[1], *p;
cl_float *output_ptr;
cl_program program;
cl_kernel kernel;
void *values[2];
size_t globalsize[1];
size_t wg_size[1];
size_t num_elements;
int err;
int i;
MTdata d;
err = create_single_kernel_helper(context, &program, &kernel, 1,
&wg_broadcast_1D_kernel_code,
"test_wg_broadcast_1D");
if (err)
return -1;
// "wg_size" is limited to that of the first dimension as only a 1DRange is executed.
err = get_max_allowed_1d_work_group_size_on_device(device, kernel, wg_size);
test_error(err, "get_max_allowed_1d_work_group_size_on_device failed");
num_elements = n_elems;
input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[0])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[1])
{
log_error("clCreateBuffer failed\n");
return -1;
}
p = input_ptr[0];
d = init_genrand( gRandomSeed );
for (i=0; i<num_elements; i++)
{
p[i] = get_random_float((float)(-100000.f * M_PI), (float)(100000.f * M_PI) ,d);
}
free_mtdata(d); d = NULL;
err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements, (void *)input_ptr[0], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
values[0] = streams[0];
values[1] = streams[1];
err = clSetKernelArg(kernel, 0, sizeof streams[0], &streams[0] );
err |= clSetKernelArg(kernel, 1, sizeof streams[1], &streams[1] );
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
return -1;
}
// Line below is troublesome...
globalsize[0] = (size_t)n_elems;
err = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, globalsize, wg_size, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
return -1;
}
cl_uint dead = 0xdeaddead;
memset_pattern4(output_ptr, &dead, sizeof(cl_float)*num_elements);
err = clEnqueueReadBuffer( queue, streams[1], true, 0, sizeof(cl_float)*num_elements, (void *)output_ptr, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueReadBuffer failed\n");
return -1;
}
if (verify_wg_broadcast_1D(input_ptr[0], output_ptr, num_elements, wg_size[0]))
{
log_error("work_group_broadcast_1D test failed\n");
return -1;
}
log_info("work_group_broadcast_1D test passed\n");
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
clReleaseKernel(kernel);
clReleaseProgram(program);
free(input_ptr[0]);
free(output_ptr);
return err;
}
int
test_work_group_broadcast_2D(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[2];
cl_float *input_ptr[1], *p;
cl_float *output_ptr;
cl_program program;
cl_kernel kernel;
void *values[2];
size_t globalsize[2];
size_t localsize[2];
size_t wg_size[1];
size_t num_workgroups;
size_t num_elements;
int err;
int i;
MTdata d;
err = create_single_kernel_helper(context, &program, &kernel, 1,
&wg_broadcast_2D_kernel_code,
"test_wg_broadcast_2D");
if (err)
return -1;
err = clGetKernelWorkGroupInfo( kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), wg_size, NULL);
if (err)
return -1;
if (wg_size[0] >= 256)
{
localsize[0] = localsize[1] = 16;
}
else if (wg_size[0] >=64)
{
localsize[0] = localsize[1] = 8;
}
else if (wg_size[0] >= 16)
{
localsize[0] = localsize[1] = 4;
}
else
{
localsize[0] = localsize[1] = 1;
}
num_workgroups = MAX(n_elems/wg_size[0], 16);
globalsize[0] = num_workgroups * localsize[0];
globalsize[1] = num_workgroups * localsize[1];
num_elements = globalsize[0] * globalsize[1];
input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[0])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[1])
{
log_error("clCreateBuffer failed\n");
return -1;
}
p = input_ptr[0];
d = init_genrand( gRandomSeed );
for (i=0; i<num_elements; i++)
{
p[i] = get_random_float((float)(-100000.f * M_PI), (float)(100000.f * M_PI) ,d);
}
free_mtdata(d); d = NULL;
err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements, (void *)input_ptr[0], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
values[0] = streams[0];
values[1] = streams[1];
err = clSetKernelArg(kernel, 0, sizeof streams[0], &streams[0] );
err |= clSetKernelArg(kernel, 1, sizeof streams[1], &streams[1] );
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
return -1;
}
err = clEnqueueNDRangeKernel( queue, kernel, 2, NULL, globalsize, localsize, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
return -1;
}
cl_uint dead = 0xdeaddead;
memset_pattern4(output_ptr, &dead, sizeof(cl_float)*num_elements);
err = clEnqueueReadBuffer( queue, streams[1], true, 0, sizeof(cl_float)*num_elements, (void *)output_ptr, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueReadBuffer failed\n");
return -1;
}
if (verify_wg_broadcast_2D(input_ptr[0], output_ptr, globalsize[0], globalsize[1], localsize[0], localsize[1]))
{
log_error("work_group_broadcast_2D test failed\n");
return -1;
}
log_info("work_group_broadcast_2D test passed\n");
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
clReleaseKernel(kernel);
clReleaseProgram(program);
free(input_ptr[0]);
free(output_ptr);
return err;
}
int
test_work_group_broadcast_3D(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[2];
cl_float *input_ptr[1], *p;
cl_float *output_ptr;
cl_program program;
cl_kernel kernel;
void *values[2];
size_t globalsize[3];
size_t localsize[3];
size_t wg_size[1];
size_t num_workgroups;
size_t num_elements;
int err;
int i;
MTdata d;
err = create_single_kernel_helper(context, &program, &kernel, 1,
&wg_broadcast_3D_kernel_code,
"test_wg_broadcast_3D");
if (err)
return -1;
err = clGetKernelWorkGroupInfo( kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), wg_size, NULL);
if (err)
return -1;
if (wg_size[0] >=512)
{
localsize[0] = localsize[1] = localsize[2] = 8;
}
else if (wg_size[0] >= 64)
{
localsize[0] = localsize[1] = localsize[2] = 4;
}
else if (wg_size[0] >= 8)
{
localsize[0] = localsize[1] = localsize[2] = 2;
}
else
{
localsize[0] = localsize[1] = localsize[2] = 1;
}
num_workgroups = MAX(n_elems/wg_size[0], 8);
globalsize[0] = num_workgroups * localsize[0];
globalsize[1] = num_workgroups * localsize[1];
globalsize[2] = num_workgroups * localsize[2];
num_elements = globalsize[0] * globalsize[1] * globalsize[2];
input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[0])
{
log_error("clCreateBuffer failed\n");
return -1;
}
streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, NULL);
if (!streams[1])
{
log_error("clCreateBuffer failed\n");
return -1;
}
p = input_ptr[0];
d = init_genrand( gRandomSeed );
for (i=0; i<num_elements; i++)
{
p[i] = get_random_float((float)(-100000.f * M_PI), (float)(100000.f * M_PI) ,d);
}
free_mtdata(d); d = NULL;
err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements, (void *)input_ptr[0], 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clWriteArray failed\n");
return -1;
}
values[0] = streams[0];
values[1] = streams[1];
err = clSetKernelArg(kernel, 0, sizeof streams[0], &streams[0] );
err |= clSetKernelArg(kernel, 1, sizeof streams[1], &streams[1] );
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
return -1;
}
err = clEnqueueNDRangeKernel( queue, kernel, 3, NULL, globalsize, localsize, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
return -1;
}
cl_uint dead = 0xdeaddead;
memset_pattern4(output_ptr, &dead, sizeof(cl_float)*num_elements);
err = clEnqueueReadBuffer( queue, streams[1], true, 0, sizeof(cl_float)*num_elements, (void *)output_ptr, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueReadBuffer failed\n");
return -1;
}
if (verify_wg_broadcast_3D(input_ptr[0], output_ptr, globalsize[0], globalsize[1], globalsize[2], localsize[0], localsize[1], localsize[2]))
{
log_error("work_group_broadcast_3D test failed\n");
return -1;
}
log_info("work_group_broadcast_3D test passed\n");
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
clReleaseKernel(kernel);
clReleaseProgram(program);
free(input_ptr[0]);
free(output_ptr);
return err;
}
int
test_work_group_broadcast(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
int err;
err = test_work_group_broadcast_1D(device, context, queue, n_elems);
if (err) return err;
err = test_work_group_broadcast_2D(device, context, queue, n_elems);
if (err) return err;
return err;
}