blob: 20b3eb7127b9423c9e90d2a4b91a46ec4bcbea14 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "function_list.h"
#include "test_functions.h"
#include "utility.h"
#include <cstring>
#define CORRECTLY_ROUNDED 0
#define FLUSHED 1
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float",
sizeNames[vectorSize],
"* out, __global float",
sizeNames[vectorSize],
"* in1, __global float",
sizeNames[vectorSize],
"* in2, __global float",
sizeNames[vectorSize],
"* in3 )\n"
"{\n"
" size_t i = get_global_id(0);\n"
" out[i] = ",
name,
"( in1[i], in2[i], in3[i] );\n"
"}\n" };
const char *c3[] = {
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float* out, __global float* in, __global float* in2, "
"__global float* in3)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" float3 f0 = vload3( 0, in + 3 * i );\n"
" float3 f1 = vload3( 0, in2 + 3 * i );\n"
" float3 f2 = vload3( 0, in3 + 3 * i );\n"
" f0 = ",
name,
"( f0, f1, f2 );\n"
" vstore3( f0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" float3 f0;\n"
" float3 f1;\n"
" float3 f2;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (float3)( in[3*i], NAN, NAN ); \n"
" f1 = (float3)( in2[3*i], NAN, NAN ); \n"
" f2 = (float3)( in3[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
" f1 = (float3)( in2[3*i], in2[3*i+1], NAN ); \n"
" f2 = (float3)( in3[3*i], in3[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" f0 = ",
name,
"( f0, f1, f2 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
sizeNames[vectorSize]);
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_kernel *kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;
static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
// A table of more difficult cases to get right
static const float specialValues[] = {
-NAN,
-INFINITY,
-FLT_MAX,
MAKE_HEX_FLOAT(-0x1.000002p64f, -0x1000002L, 40),
MAKE_HEX_FLOAT(-0x1.0p64f, -0x1L, 64),
MAKE_HEX_FLOAT(-0x1.fffffep63f, -0x1fffffeL, 39),
MAKE_HEX_FLOAT(-0x1.000002p63f, -0x1000002L, 39),
MAKE_HEX_FLOAT(-0x1.0p63f, -0x1L, 63),
MAKE_HEX_FLOAT(-0x1.fffffep62f, -0x1fffffeL, 38),
-3.0f,
MAKE_HEX_FLOAT(-0x1.800002p1f, -0x1800002L, -23),
-2.5f,
MAKE_HEX_FLOAT(-0x1.7ffffep1f, -0x17ffffeL, -23),
-2.0f,
MAKE_HEX_FLOAT(-0x1.800002p0f, -0x1800002L, -24),
-1.75f,
-1.5f,
-1.25f,
MAKE_HEX_FLOAT(-0x1.7ffffep0f, -0x17ffffeL, -24),
MAKE_HEX_FLOAT(-0x1.000002p0f, -0x1000002L, -24),
MAKE_HEX_FLOAT(-0x1.003p0f, -0x1003000L, -24),
-MAKE_HEX_FLOAT(0x1.001p0f, 0x1001000L, -24),
-1.0f,
MAKE_HEX_FLOAT(-0x1.fffffep-1f, -0x1fffffeL, -25),
MAKE_HEX_FLOAT(-0x1.000002p-126f, -0x1000002L, -150),
-FLT_MIN,
MAKE_HEX_FLOAT(-0x0.fffffep-126f, -0x0fffffeL, -150),
MAKE_HEX_FLOAT(-0x0.000ffep-126f, -0x0000ffeL, -150),
MAKE_HEX_FLOAT(-0x0.0000fep-126f, -0x00000feL, -150),
MAKE_HEX_FLOAT(-0x0.00000ep-126f, -0x000000eL, -150),
MAKE_HEX_FLOAT(-0x0.00000cp-126f, -0x000000cL, -150),
MAKE_HEX_FLOAT(-0x0.00000ap-126f, -0x000000aL, -150),
MAKE_HEX_FLOAT(-0x0.000008p-126f, -0x0000008L, -150),
MAKE_HEX_FLOAT(-0x0.000006p-126f, -0x0000006L, -150),
MAKE_HEX_FLOAT(-0x0.000004p-126f, -0x0000004L, -150),
MAKE_HEX_FLOAT(-0x0.000002p-126f, -0x0000002L, -150),
-0.0f,
+NAN,
+INFINITY,
+FLT_MAX,
MAKE_HEX_FLOAT(+0x1.000002p64f, +0x1000002L, 40),
MAKE_HEX_FLOAT(+0x1.0p64f, +0x1L, 64),
MAKE_HEX_FLOAT(+0x1.fffffep63f, +0x1fffffeL, 39),
MAKE_HEX_FLOAT(+0x1.000002p63f, +0x1000002L, 39),
MAKE_HEX_FLOAT(+0x1.0p63f, +0x1L, 63),
MAKE_HEX_FLOAT(+0x1.fffffep62f, +0x1fffffeL, 38),
+3.0f,
MAKE_HEX_FLOAT(+0x1.800002p1f, +0x1800002L, -23),
2.5f,
MAKE_HEX_FLOAT(+0x1.7ffffep1f, +0x17ffffeL, -23),
+2.0f,
MAKE_HEX_FLOAT(+0x1.800002p0f, +0x1800002L, -24),
1.75f,
1.5f,
1.25f,
MAKE_HEX_FLOAT(+0x1.7ffffep0f, +0x17ffffeL, -24),
MAKE_HEX_FLOAT(+0x1.000002p0f, +0x1000002L, -24),
MAKE_HEX_FLOAT(0x1.003p0f, 0x1003000L, -24),
+MAKE_HEX_FLOAT(0x1.001p0f, 0x1001000L, -24),
+1.0f,
MAKE_HEX_FLOAT(+0x1.fffffep-1f, +0x1fffffeL, -25),
MAKE_HEX_FLOAT(0x1.000002p-126f, 0x1000002L, -150),
+FLT_MIN,
MAKE_HEX_FLOAT(+0x0.fffffep-126f, +0x0fffffeL, -150),
MAKE_HEX_FLOAT(+0x0.000ffep-126f, +0x0000ffeL, -150),
MAKE_HEX_FLOAT(+0x0.0000fep-126f, +0x00000feL, -150),
MAKE_HEX_FLOAT(+0x0.00000ep-126f, +0x000000eL, -150),
MAKE_HEX_FLOAT(+0x0.00000cp-126f, +0x000000cL, -150),
MAKE_HEX_FLOAT(+0x0.00000ap-126f, +0x000000aL, -150),
MAKE_HEX_FLOAT(+0x0.000008p-126f, +0x0000008L, -150),
MAKE_HEX_FLOAT(+0x0.000006p-126f, +0x0000006L, -150),
MAKE_HEX_FLOAT(+0x0.000004p-126f, +0x0000004L, -150),
MAKE_HEX_FLOAT(+0x0.000002p-126f, +0x0000002L, -150),
+0.0f,
};
static const size_t specialValuesCount =
sizeof(specialValues) / sizeof(specialValues[0]);
int TestFunc_Float_Float_Float_Float(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
cl_program programs[VECTOR_SIZE_COUNT];
cl_kernel kernels[VECTOR_SIZE_COUNT];
float maxError = 0.0f;
int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
float maxErrorVal = 0.0f;
float maxErrorVal2 = 0.0f;
float maxErrorVal3 = 0.0f;
size_t bufferSize = (gWimpyMode) ? gWimpyBufferSize : BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(float), bufferSize);
cl_uchar overflow[BUFFER_SIZE / sizeof(float)];
float float_ulps;
if (gIsEmbedded)
float_ulps = f->float_embedded_ulps;
else
float_ulps = f->float_ulps;
int skipNanInf = (0 == strcmp("fma", f->nameInCode)) && !gInfNanSupport;
// Init the kernels
{
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if ((error = ThreadPool_Do(BuildKernelFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
return error;
}
for (i = 0; i < (1ULL << 32); i += step)
{
// Init input array
cl_uint *p = (cl_uint *)gIn;
cl_uint *p2 = (cl_uint *)gIn2;
cl_uint *p3 = (cl_uint *)gIn3;
j = 0;
if (i == 0)
{ // test edge cases
float *fp = (float *)gIn;
float *fp2 = (float *)gIn2;
float *fp3 = (float *)gIn3;
uint32_t x, y, z;
x = y = z = 0;
for (; j < bufferSize / sizeof(float); j++)
{
fp[j] = specialValues[x];
fp2[j] = specialValues[y];
fp3[j] = specialValues[z];
if (++x >= specialValuesCount)
{
x = 0;
if (++y >= specialValuesCount)
{
y = 0;
if (++z >= specialValuesCount) break;
}
}
}
if (j == bufferSize / sizeof(float))
vlog_error("Test Error: not all special cases tested!\n");
}
for (; j < bufferSize / sizeof(float); j++)
{
p[j] = genrand_int32(d);
p2[j] = genrand_int32(d);
p3[j] = genrand_int32(d);
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
bufferSize, gIn2, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0,
bufferSize, gIn3, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error);
return error;
}
// write garbage into output arrays
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
error, j);
goto exit;
}
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_float) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1)
/ vectorSize; // bufferSize / vectorSize rounded up
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2),
&gInBuffer2)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3),
&gInBuffer3)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error =
clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
}
// Get that moving
if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
// Calculate the correctly rounded reference result
float *r = (float *)gOut_Ref;
float *s = (float *)gIn;
float *s2 = (float *)gIn2;
float *s3 = (float *)gIn3;
if (skipNanInf)
{
for (j = 0; j < bufferSize / sizeof(float); j++)
{
feclearexcept(FE_OVERFLOW);
r[j] =
(float)f->func.f_fma(s[j], s2[j], s3[j], CORRECTLY_ROUNDED);
overflow[j] =
FE_OVERFLOW == (FE_OVERFLOW & fetestexcept(FE_OVERFLOW));
}
}
else
{
for (j = 0; j < bufferSize / sizeof(float); j++)
r[j] =
(float)f->func.f_fma(s[j], s2[j], s3[j], CORRECTLY_ROUNDED);
}
// Read the data back
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("ReadArray failed %d\n", error);
goto exit;
}
}
if (gSkipCorrectnessTesting) break;
// Verify data
uint32_t *t = (uint32_t *)gOut_Ref;
for (j = 0; j < bufferSize / sizeof(float); j++)
{
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
uint32_t *q = (uint32_t *)(gOut[k]);
// If we aren't getting the correctly rounded result
if (t[j] != q[j])
{
float err;
int fail;
float test = ((float *)q)[j];
float correct =
f->func.f_fma(s[j], s2[j], s3[j], CORRECTLY_ROUNDED);
// Per section 10 paragraph 6, accept any result if an input
// or output is a infinity or NaN or overflow
if (skipNanInf)
{
if (overflow[j] || IsFloatInfinity(correct)
|| IsFloatNaN(correct) || IsFloatInfinity(s[j])
|| IsFloatNaN(s[j]) || IsFloatInfinity(s2[j])
|| IsFloatNaN(s2[j]) || IsFloatInfinity(s3[j])
|| IsFloatNaN(s3[j]))
continue;
}
err = Ulp_Error(test, correct);
fail = !(fabsf(err) <= float_ulps);
if (fail && ftz)
{
float correct2, err2;
// retry per section 6.5.3.2 with flushing on
if (0.0f == test
&& 0.0f
== f->func.f_fma(s[j], s2[j], s3[j], FLUSHED))
{
fail = 0;
err = 0.0f;
}
// retry per section 6.5.3.3
if (fail && IsFloatSubnormal(s[j]))
{ // look at me,
float err3, correct3;
if (skipNanInf) feclearexcept(FE_OVERFLOW);
correct2 = f->func.f_fma(0.0f, s2[j], s3[j],
CORRECTLY_ROUNDED);
correct3 = f->func.f_fma(-0.0f, s2[j], s3[j],
CORRECTLY_ROUNDED);
if (skipNanInf)
{
if (fetestexcept(FE_OVERFLOW)) continue;
// Note: no double rounding here. Reference
// functions calculate in single precision.
if (IsFloatInfinity(correct2)
|| IsFloatNaN(correct2)
|| IsFloatInfinity(correct3)
|| IsFloatNaN(correct3))
continue;
}
err2 = Ulp_Error(test, correct2);
err3 = Ulp_Error(test, correct3);
fail = fail
&& ((!(fabsf(err2) <= float_ulps))
&& (!(fabsf(err3) <= float_ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
// retry per section 6.5.3.4
if (0.0f == test
&& (0.0f
== f->func.f_fma(0.0f, s2[j], s3[j],
FLUSHED)
|| 0.0f
== f->func.f_fma(-0.0f, s2[j], s3[j],
FLUSHED)))
{
fail = 0;
err = 0.0f;
}
// try with first two args as zero
if (IsFloatSubnormal(s2[j]))
{ // its fun to have fun,
double correct4, correct5;
float err4, err5;
if (skipNanInf) feclearexcept(FE_OVERFLOW);
correct2 = f->func.f_fma(0.0f, 0.0f, s3[j],
CORRECTLY_ROUNDED);
correct3 = f->func.f_fma(-0.0f, 0.0f, s3[j],
CORRECTLY_ROUNDED);
correct4 = f->func.f_fma(0.0f, -0.0f, s3[j],
CORRECTLY_ROUNDED);
correct5 = f->func.f_fma(-0.0f, -0.0f, s3[j],
CORRECTLY_ROUNDED);
// Per section 10 paragraph 6, accept any result
// if an input or output is a infinity or NaN or
// overflow
if (!gInfNanSupport)
{
if (fetestexcept(FE_OVERFLOW)) continue;
// Note: no double rounding here. Reference
// functions calculate in single precision.
if (IsFloatInfinity(correct2)
|| IsFloatNaN(correct2)
|| IsFloatInfinity(correct3)
|| IsFloatNaN(correct3)
|| IsFloatInfinity(correct4)
|| IsFloatNaN(correct4)
|| IsFloatInfinity(correct5)
|| IsFloatNaN(correct5))
continue;
}
err2 = Ulp_Error(test, correct2);
err3 = Ulp_Error(test, correct3);
err4 = Ulp_Error(test, correct4);
err5 = Ulp_Error(test, correct5);
fail = fail
&& ((!(fabsf(err2) <= float_ulps))
&& (!(fabsf(err3) <= float_ulps))
&& (!(fabsf(err4) <= float_ulps))
&& (!(fabsf(err5) <= float_ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
if (fabsf(err4) < fabsf(err)) err = err4;
if (fabsf(err5) < fabsf(err)) err = err5;
// retry per section 6.5.3.4
if (0.0f == test
&& (0.0f
== f->func.f_fma(0.0f, 0.0f, s3[j],
FLUSHED)
|| 0.0f
== f->func.f_fma(-0.0f, 0.0f, s3[j],
FLUSHED)
|| 0.0f
== f->func.f_fma(0.0f, -0.0f, s3[j],
FLUSHED)
|| 0.0f
== f->func.f_fma(-0.0f, -0.0f,
s3[j], FLUSHED)))
{
fail = 0;
err = 0.0f;
}
if (IsFloatSubnormal(s3[j]))
{
if (test == 0.0f) // 0*0+0 is 0
{
fail = 0;
err = 0.0f;
}
}
}
else if (IsFloatSubnormal(s3[j]))
{
double correct4, correct5;
float err4, err5;
if (skipNanInf) feclearexcept(FE_OVERFLOW);
correct2 = f->func.f_fma(0.0f, s2[j], 0.0f,
CORRECTLY_ROUNDED);
correct3 = f->func.f_fma(-0.0f, s2[j], 0.0f,
CORRECTLY_ROUNDED);
correct4 = f->func.f_fma(0.0f, s2[j], -0.0f,
CORRECTLY_ROUNDED);
correct5 = f->func.f_fma(-0.0f, s2[j], -0.0f,
CORRECTLY_ROUNDED);
// Per section 10 paragraph 6, accept any result
// if an input or output is a infinity or NaN or
// overflow
if (!gInfNanSupport)
{
if (fetestexcept(FE_OVERFLOW)) continue;
// Note: no double rounding here. Reference
// functions calculate in single precision.
if (IsFloatInfinity(correct2)
|| IsFloatNaN(correct2)
|| IsFloatInfinity(correct3)
|| IsFloatNaN(correct3)
|| IsFloatInfinity(correct4)
|| IsFloatNaN(correct4)
|| IsFloatInfinity(correct5)
|| IsFloatNaN(correct5))
continue;
}
err2 = Ulp_Error(test, correct2);
err3 = Ulp_Error(test, correct3);
err4 = Ulp_Error(test, correct4);
err5 = Ulp_Error(test, correct5);
fail = fail
&& ((!(fabsf(err2) <= float_ulps))
&& (!(fabsf(err3) <= float_ulps))
&& (!(fabsf(err4) <= float_ulps))
&& (!(fabsf(err5) <= float_ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
if (fabsf(err4) < fabsf(err)) err = err4;
if (fabsf(err5) < fabsf(err)) err = err5;
// retry per section 6.5.3.4
if (0.0f == test
&& (0.0f
== f->func.f_fma(0.0f, s2[j], 0.0f,
FLUSHED)
|| 0.0f
== f->func.f_fma(-0.0f, s2[j], 0.0f,
FLUSHED)
|| 0.0f
== f->func.f_fma(0.0f, s2[j], -0.0f,
FLUSHED)
|| 0.0f
== f->func.f_fma(-0.0f, s2[j],
-0.0f, FLUSHED)))
{
fail = 0;
err = 0.0f;
}
}
}
else if (fail && IsFloatSubnormal(s2[j]))
{
double correct2, correct3;
float err2, err3;
if (skipNanInf) feclearexcept(FE_OVERFLOW);
correct2 = f->func.f_fma(s[j], 0.0f, s3[j],
CORRECTLY_ROUNDED);
correct3 = f->func.f_fma(s[j], -0.0f, s3[j],
CORRECTLY_ROUNDED);
if (skipNanInf)
{
if (fetestexcept(FE_OVERFLOW)) continue;
// Note: no double rounding here. Reference
// functions calculate in single precision.
if (IsFloatInfinity(correct2)
|| IsFloatNaN(correct2)
|| IsFloatInfinity(correct3)
|| IsFloatNaN(correct3))
continue;
}
err2 = Ulp_Error(test, correct2);
err3 = Ulp_Error(test, correct3);
fail = fail
&& ((!(fabsf(err2) <= float_ulps))
&& (!(fabsf(err3) <= float_ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
// retry per section 6.5.3.4
if (0.0f == test
&& (0.0f
== f->func.f_fma(s[j], 0.0f, s3[j],
FLUSHED)
|| 0.0f
== f->func.f_fma(s[j], -0.0f, s3[j],
FLUSHED)))
{
fail = 0;
err = 0.0f;
}
// try with second two args as zero
if (IsFloatSubnormal(s3[j]))
{
double correct4, correct5;
float err4, err5;
if (skipNanInf) feclearexcept(FE_OVERFLOW);
correct2 = f->func.f_fma(s[j], 0.0f, 0.0f,
CORRECTLY_ROUNDED);
correct3 = f->func.f_fma(s[j], -0.0f, 0.0f,
CORRECTLY_ROUNDED);
correct4 = f->func.f_fma(s[j], 0.0f, -0.0f,
CORRECTLY_ROUNDED);
correct5 = f->func.f_fma(s[j], -0.0f, -0.0f,
CORRECTLY_ROUNDED);
// Per section 10 paragraph 6, accept any result
// if an input or output is a infinity or NaN or
// overflow
if (!gInfNanSupport)
{
if (fetestexcept(FE_OVERFLOW)) continue;
// Note: no double rounding here. Reference
// functions calculate in single precision.
if (IsFloatInfinity(correct2)
|| IsFloatNaN(correct2)
|| IsFloatInfinity(correct3)
|| IsFloatNaN(correct3)
|| IsFloatInfinity(correct4)
|| IsFloatNaN(correct4)
|| IsFloatInfinity(correct5)
|| IsFloatNaN(correct5))
continue;
}
err2 = Ulp_Error(test, correct2);
err3 = Ulp_Error(test, correct3);
err4 = Ulp_Error(test, correct4);
err5 = Ulp_Error(test, correct5);
fail = fail
&& ((!(fabsf(err2) <= float_ulps))
&& (!(fabsf(err3) <= float_ulps))
&& (!(fabsf(err4) <= float_ulps))
&& (!(fabsf(err5) <= float_ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
if (fabsf(err4) < fabsf(err)) err = err4;
if (fabsf(err5) < fabsf(err)) err = err5;
// retry per section 6.5.3.4
if (0.0f == test
&& (0.0f
== f->func.f_fma(s[j], 0.0f, 0.0f,
FLUSHED)
|| 0.0f
== f->func.f_fma(s[j], -0.0f, 0.0f,
FLUSHED)
|| 0.0f
== f->func.f_fma(s[j], 0.0f, -0.0f,
FLUSHED)
|| 0.0f
== f->func.f_fma(s[j], -0.0f, -0.0f,
FLUSHED)))
{
fail = 0;
err = 0.0f;
}
}
}
else if (fail && IsFloatSubnormal(s3[j]))
{
double correct2, correct3;
float err2, err3;
if (skipNanInf) feclearexcept(FE_OVERFLOW);
correct2 = f->func.f_fma(s[j], s2[j], 0.0f,
CORRECTLY_ROUNDED);
correct3 = f->func.f_fma(s[j], s2[j], -0.0f,
CORRECTLY_ROUNDED);
if (skipNanInf)
{
if (fetestexcept(FE_OVERFLOW)) continue;
// Note: no double rounding here. Reference
// functions calculate in single precision.
if (IsFloatInfinity(correct2)
|| IsFloatNaN(correct2)
|| IsFloatInfinity(correct3)
|| IsFloatNaN(correct3))
continue;
}
err2 = Ulp_Error(test, correct2);
err3 = Ulp_Error(test, correct3);
fail = fail
&& ((!(fabsf(err2) <= float_ulps))
&& (!(fabsf(err3) <= float_ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
// retry per section 6.5.3.4
if (0.0f == test
&& (0.0f
== f->func.f_fma(s[j], s2[j], 0.0f,
FLUSHED)
|| 0.0f
== f->func.f_fma(s[j], s2[j], -0.0f,
FLUSHED)))
{
fail = 0;
err = 0.0f;
}
}
}
if (fabsf(err) > maxError)
{
maxError = fabsf(err);
maxErrorVal = s[j];
maxErrorVal2 = s2[j];
maxErrorVal3 = s3[j];
}
if (fail)
{
vlog_error(
"\nERROR: %s%s: %f ulp error at {%a, %a, %a} "
"({0x%8.8x, 0x%8.8x, 0x%8.8x}): *%a vs. %a\n",
f->name, sizeNames[k], err, s[j], s2[j], s3[j],
((cl_uint *)s)[j], ((cl_uint *)s2)[j],
((cl_uint *)s3)[j], ((float *)gOut_Ref)[j], test);
error = -1;
goto exit;
}
}
}
}
if (0 == (i & 0x0fffffff))
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10u bufferSize:%10zd \n", i, step,
bufferSize);
}
else
{
vlog(".");
}
fflush(stdout);
}
}
if (!gSkipCorrectnessTesting)
{
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("passed");
}
if (gMeasureTimes)
{
// Init input array
cl_uint *p = (cl_uint *)gIn;
cl_uint *p2 = (cl_uint *)gIn2;
cl_uint *p3 = (cl_uint *)gIn3;
for (j = 0; j < bufferSize / sizeof(float); j++)
{
p[j] = genrand_int32(d);
p2[j] = genrand_int32(d);
p3[j] = genrand_int32(d);
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0,
bufferSize, gIn2, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error);
return error;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0,
bufferSize, gIn3, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_float) * sizeValues[j];
size_t localCount = (bufferSize + vectorSize - 1)
/ vectorSize; // bufferSize / vectorSize rounded up
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2),
&gInBuffer2)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3),
&gInBuffer3)))
{
LogBuildError(programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (k = 0; k < PERF_LOOP_COUNT; k++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL,
NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (bufferSize / sizeof(float));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s",
f->name, sizeNames[j]);
}
}
if (!gSkipCorrectnessTesting)
vlog("\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2,
maxErrorVal3);
vlog("\n");
exit:
// Release
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}