blob: 2ff575265ea084527a1ec3fec4305107b4951aff [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "function_list.h"
#include "test_functions.h"
#include "utility.h"
#include <cstring>
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float",
sizeNames[vectorSize],
"* out, __global uint",
sizeNames[vectorSize],
"* in )\n"
"{\n"
" size_t i = get_global_id(0);\n"
" out[i] = ",
name,
"( in[i] );\n"
"}\n" };
const char *c3[] = {
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float* out, __global uint* in)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" uint3 u0 = vload3( 0, in + 3 * i );\n"
" float3 f0 = ",
name,
"( u0 );\n"
" vstore3( f0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" uint3 u0;\n"
" float3 f0;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" u0 = (uint3)( in[3*i], 0xdead, 0xdead ); \n"
" break;\n"
" case 0:\n"
" u0 = (uint3)( in[3*i], in[3*i+1], 0xdead ); \n"
" break;\n"
" }\n"
" f0 = ",
name,
"( u0 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
sizeNames[vectorSize]);
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_kernel *kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;
static cl_int BuildKernel_FloatFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
int TestFunc_Float_UInt(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[VECTOR_SIZE_COUNT];
cl_kernel kernels[VECTOR_SIZE_COUNT];
float maxError = 0.0f;
int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
float maxErrorVal = 0.0f;
size_t bufferSize = (gWimpyMode) ? gWimpyBufferSize : BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(float), bufferSize);
int scale = (int)((1ULL << 32) / (16 * bufferSize / sizeof(double)) + 1);
int isRangeLimited = 0;
float half_sin_cos_tan_limit = 0;
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
float float_ulps;
if (gIsEmbedded)
float_ulps = f->float_embedded_ulps;
else
float_ulps = f->float_ulps;
// Init the kernels
{
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if ((error = ThreadPool_Do(BuildKernel_FloatFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
return error;
}
if (0 == strcmp(f->name, "half_sin") || 0 == strcmp(f->name, "half_cos"))
{
isRangeLimited = 1;
half_sin_cos_tan_limit = 1.0f
+ float_ulps
* (FLT_EPSILON / 2.0f); // out of range results from finite
// inputs must be in [-1,1]
}
else if (0 == strcmp(f->name, "half_tan"))
{
isRangeLimited = 1;
half_sin_cos_tan_limit =
INFINITY; // out of range resut from finite inputs must be numeric
}
for (i = 0; i < (1ULL << 32); i += step)
{
// Init input array
uint32_t *p = (uint32_t *)gIn;
if (gWimpyMode)
{
for (j = 0; j < bufferSize / sizeof(float); j++)
p[j] = (uint32_t)i + j * scale;
}
else
{
for (j = 0; j < bufferSize / sizeof(float); j++)
p[j] = (uint32_t)i + j;
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
// write garbage into output arrays
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
error, j);
goto exit;
}
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeValues[j] * sizeof(cl_float);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error =
clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
}
// Get that moving
if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
// Calculate the correctly rounded reference result
float *r = (float *)gOut_Ref;
cl_uint *s = (cl_uint *)gIn;
for (j = 0; j < bufferSize / sizeof(float); j++)
r[j] = (float)f->func.f_u(s[j]);
// Read the data back
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("ReadArray failed %d\n", error);
goto exit;
}
}
if (gSkipCorrectnessTesting) break;
// Verify data
uint32_t *t = (uint32_t *)gOut_Ref;
for (j = 0; j < bufferSize / sizeof(float); j++)
{
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
uint32_t *q = (uint32_t *)(gOut[k]);
// If we aren't getting the correctly rounded result
if (t[j] != q[j])
{
float test = ((float *)q)[j];
double correct = f->func.f_u(s[j]);
float err = Ulp_Error(test, correct);
int fail = !(fabsf(err) <= float_ulps);
// half_sin/cos/tan are only valid between +-2**16, Inf, NaN
if (isRangeLimited
&& fabsf(s[j]) > MAKE_HEX_FLOAT(0x1.0p16f, 0x1L, 16)
&& fabsf(s[j]) < INFINITY)
{
if (fabsf(test) <= half_sin_cos_tan_limit)
{
err = 0;
fail = 0;
}
}
if (fail)
{
if (ftz)
{
// retry per section 6.5.3.2
if (IsFloatResultSubnormal(correct, float_ulps))
{
fail = fail && (test != 0.0f);
if (!fail) err = 0.0f;
}
}
}
if (fabsf(err) > maxError)
{
maxError = fabsf(err);
maxErrorVal = s[j];
}
if (fail)
{
vlog_error(
"\n%s%s: %f ulp error at 0x%8.8x: *%a vs. %a\n",
f->name, sizeNames[k], err, ((uint32_t *)gIn)[j],
((float *)gOut_Ref)[j], test);
error = -1;
goto exit;
}
}
}
}
if (0 == (i & 0x0fffffff))
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step,
bufferSize);
}
else
{
vlog(".");
}
fflush(stdout);
}
}
if (!gSkipCorrectnessTesting)
{
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("passed");
}
if (gMeasureTimes)
{
// Init input array
uint32_t *p = (uint32_t *)gIn;
if (strstr(f->name, "exp") || strstr(f->name, "sin")
|| strstr(f->name, "cos") || strstr(f->name, "tan"))
for (j = 0; j < bufferSize / sizeof(float); j++)
((float *)p)[j] = (float)genrand_real1(d);
else if (strstr(f->name, "log"))
for (j = 0; j < bufferSize / sizeof(float); j++)
p[j] = genrand_int32(d) & 0x7fffffff;
else
for (j = 0; j < bufferSize / sizeof(float); j++)
p[j] = genrand_int32(d);
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeValues[j] * sizeof(cl_float);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (k = 0; k < PERF_LOOP_COUNT; k++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL,
NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (bufferSize / sizeof(float));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s",
f->name, sizeNames[j]);
}
}
if (!gSkipCorrectnessTesting) vlog("\t%8.2f @ %a", maxError, maxErrorVal);
vlog("\n");
exit:
// Release
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}