blob: 860114fba45e9aa7397669345c664fc325e5c3e4 [file] [log] [blame]
//
// Copyright (c) 2017, 2021 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "test_common.h"
#include <float.h>
// Utility function to clamp down image sizes for certain tests to avoid
// using too much memory.
static size_t reduceImageSizeRange(size_t maxDimSize, RandomSeed& seed) {
size_t DimSize = random_log_in_range(16, (int) maxDimSize/32, seed);
if (DimSize > (size_t) 128)
return 128;
else
return DimSize;
}
static size_t reduceImageDepth(size_t maxDimSize, RandomSeed& seed) {
size_t DimSize = random_log_in_range(8, (int) maxDimSize/32, seed);
if (DimSize > (size_t) 32)
return 32;
else
return DimSize;
}
const char *read3DKernelSourcePattern =
"__kernel void sample_kernel( read_only image3d_t input,%s __global float *xOffsets, __global float *yOffsets, __global float *zOffsets, __global %s4 *results %s)\n"
"{\n"
"%s"
" int tidX = get_global_id(0), tidY = get_global_id(1), tidZ = get_global_id(2);\n"
"%s"
"%s"
" results[offset] = read_image%s( input, imageSampler, coords %s);\n"
"}";
const char *read_write3DKernelSourcePattern =
"__kernel void sample_kernel( read_write image3d_t input,%s __global float *xOffsets, __global float *yOffsets, __global float *zOffsets, __global %s4 *results %s)\n"
"{\n"
"%s"
" int tidX = get_global_id(0), tidY = get_global_id(1), tidZ = get_global_id(2);\n"
"%s"
"%s"
" results[offset] = read_image%s( input, coords %s);\n"
"}";
const char *offset3DKernelSource =
" int offset = tidZ*get_image_width(input)*get_image_height(input) + tidY*get_image_width(input) + tidX;\n";
const char *offset3DLodKernelSource =
" int lod_int = (int)lod;\n"
" int width_lod = (get_image_width(input) >> lod_int) ?(get_image_width(input) >> lod_int): 1;\n"
" int height_lod = (get_image_height(input) >> lod_int) ?(get_image_height(input) >> lod_int): 1;\n"
" int offset = tidZ*width_lod*height_lod + tidY*width_lod + tidX;\n";
const char *int3DCoordKernelSource =
" int4 coords = (int4)( (int) xOffsets[offset], (int) yOffsets[offset], (int) zOffsets[offset], 0 );\n";
const char *float3DUnnormalizedCoordKernelSource =
" float4 coords = (float4)( xOffsets[offset], yOffsets[offset], zOffsets[offset], 0.0f );\n";
static const char *samplerKernelArg = " sampler_t imageSampler,";
int test_read_image_set_3D(cl_device_id device, cl_context context,
cl_command_queue queue,
const cl_image_format *format,
image_sampler_data *imageSampler, bool floatCoords,
ExplicitType outputType)
{
char programSrc[10240];
const char *ptr;
const char *readFormat;
RandomSeed seed( gRandomSeed );
int error;
clProgramWrapper program;
clKernelWrapper kernel;
const char *KernelSourcePattern = NULL;
// Get operating parameters
size_t maxWidth, maxHeight, maxDepth;
cl_ulong maxAllocSize, memSize;
image_descriptor imageInfo = { 0x0 };
imageInfo.format = format;
imageInfo.type = CL_MEM_OBJECT_IMAGE3D;
error = clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_DEPTH, sizeof( maxDepth ), &maxDepth, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
test_error( error, "Unable to get max image 3D size from device" );
if (memSize > (cl_ulong)SIZE_MAX) {
memSize = (cl_ulong)SIZE_MAX;
}
// Determine types
if( outputType == kInt )
readFormat = "i";
else if( outputType == kUInt )
readFormat = "ui";
else // kFloat
readFormat = "f";
// Construct the source
const char *samplerArg = samplerKernelArg;
char samplerVar[ 1024 ] = "";
if( gUseKernelSamplers )
{
get_sampler_kernel_code( imageSampler, samplerVar );
samplerArg = "";
}
// Construct the source
if(gtestTypesToRun & kReadTests)
{
KernelSourcePattern = read3DKernelSourcePattern;
}
else
{
KernelSourcePattern = read_write3DKernelSourcePattern;
}
sprintf( programSrc,
KernelSourcePattern,
samplerArg, get_explicit_type_name( outputType ),
gTestMipmaps? ", float lod": " ",
samplerVar,
gTestMipmaps? offset3DLodKernelSource: offset3DKernelSource,
floatCoords ? float3DUnnormalizedCoordKernelSource : int3DCoordKernelSource,
readFormat,
gTestMipmaps? ",lod":" ");
ptr = programSrc;
error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr,
"sample_kernel");
test_error( error, "Unable to create testing kernel" );
// Run tests
if( gTestSmallImages )
{
for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
{
imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
for( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ )
{
imageInfo.slicePitch = imageInfo.rowPitch * imageInfo.height;
for( imageInfo.depth = 2; imageInfo.depth < 9; imageInfo.depth++ )
{
if (gTestMipmaps)
imageInfo.num_mip_levels = (cl_uint) (2+rand()%(compute_max_mip_levels(imageInfo.width,imageInfo.height,imageInfo.depth) - 1));
if( gDebugTrace )
log_info( " at size %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.depth );
int retCode = test_read_image(
context, queue, kernel, &imageInfo, imageSampler,
floatCoords, outputType, seed);
if( retCode )
return retCode;
}
}
}
}
else if( gTestMaxImages )
{
// Try a specific set of maximum sizes
size_t numbeOfSizes;
size_t sizes[100][3];
get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, maxDepth, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE3D, imageInfo.format, CL_TRUE);
for( size_t idx = 0; idx < numbeOfSizes; idx++ )
{
imageInfo.width = sizes[ idx ][ 0 ];
imageInfo.height = sizes[ idx ][ 1 ];
imageInfo.depth = sizes[ idx ][ 2 ];
imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
if (gTestMipmaps)
imageInfo.num_mip_levels = (cl_uint) (2+rand()%(compute_max_mip_levels(imageInfo.width,imageInfo.height,imageInfo.depth) - 1));
log_info("Testing %d x %d x %d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ], (int)sizes[ idx ][ 2 ]);
if( gDebugTrace )
log_info( " at max size %d,%d,%d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ], (int)sizes[ idx ][ 2 ] );
int retCode =
test_read_image(context, queue, kernel, &imageInfo,
imageSampler, floatCoords, outputType, seed);
if( retCode )
return retCode;
}
}
else if( gTestRounding )
{
size_t typeRange = 1 << ( get_format_type_size( imageInfo.format ) * 8 );
imageInfo.height = typeRange / 256;
imageInfo.width = (size_t)( typeRange / (cl_ulong)imageInfo.height );
imageInfo.depth = 2;
imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
int retCode =
test_read_image(context, queue, kernel, &imageInfo, imageSampler,
floatCoords, outputType, seed);
if( retCode )
return retCode;
}
else
{
for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
{
cl_ulong size;
// Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
// image, the result array, plus offset arrays, will fit in the global ram space
do
{
imageInfo.width = reduceImageSizeRange(maxWidth, seed );
imageInfo.height = reduceImageSizeRange(maxHeight, seed );
imageInfo.depth = reduceImageDepth(maxDepth, seed );
if (gTestMipmaps)
{
//imageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(imageInfo.width, imageInfo.depth, imageInfo.depth), seed);
imageInfo.num_mip_levels = (cl_uint) (2+rand()%(compute_max_mip_levels(imageInfo.width,imageInfo.height,imageInfo.depth) - 1));
//Need to take into account the output buffer size, otherwise we will end up with input buffer that is exceeding MaxAlloc
size = compute_mipmapped_image_size( imageInfo )*4 * get_explicit_type_size( outputType );
imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
imageInfo.slicePitch = imageInfo.rowPitch * imageInfo.height;
}
else
{
imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
imageInfo.slicePitch = imageInfo.rowPitch * imageInfo.height;
if( gEnablePitch )
{
size_t extraWidth = (int)random_log_in_range( 0, 64, seed );
imageInfo.rowPitch += extraWidth * get_pixel_size( imageInfo.format );
size_t extraHeight = (int)random_log_in_range( 0, 64, seed );
imageInfo.slicePitch = imageInfo.rowPitch * (imageInfo.height + extraHeight);
}
size = (cl_ulong)imageInfo.slicePitch * (cl_ulong)imageInfo.depth * 4 * 4;
}
} while( size > maxAllocSize || ( size * 3 ) > memSize );
if( gDebugTrace )
{
log_info( " at size %d,%d,%d (pitch %d,%d) out of %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.depth, (int)imageInfo.rowPitch, (int)imageInfo.slicePitch, (int)maxWidth, (int)maxHeight, (int)maxDepth );
if ( gTestMipmaps )
log_info( " and number of mip levels :%d\n", (int)imageInfo.num_mip_levels );
}
int retCode =
test_read_image(context, queue, kernel, &imageInfo,
imageSampler, floatCoords, outputType, seed);
if( retCode )
return retCode;
}
}
return 0;
}