blob: 2b804e402f48f99abb233ffb402d5950cef50a1f [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <string.h>
#include <errno.h>
#include <memory>
#if ! defined( _WIN32)
#if defined(__APPLE__)
#include <sys/sysctl.h>
#endif
#include <unistd.h>
#define streamDup(fd1) dup(fd1)
#define streamDup2(fd1,fd2) dup2(fd1,fd2)
#endif
#include <limits.h>
#include <time.h>
#include "test_printf.h"
#if defined(_WIN32)
#include <io.h>
#define streamDup(fd1) _dup(fd1)
#define streamDup2(fd1,fd2) _dup2(fd1,fd2)
#endif
#include "harness/testHarness.h"
#include "harness/errorHelpers.h"
#include "harness/kernelHelpers.h"
#include "harness/mt19937.h"
#include "harness/parseParameters.h"
#include <CL/cl_ext.h>
typedef unsigned int uint32_t;
test_status InitCL( cl_device_id device );
//-----------------------------------------
// Static helper functions declaration
//-----------------------------------------
static void printUsage( void );
//Stream helper functions
//Associate stdout stream with the file(gFileName):i.e redirect stdout stream to the specific files (gFileName)
static int acquireOutputStream(int* error);
//Close the file(gFileName) associated with the stdout stream and disassociates it.
static void releaseOutputStream(int fd);
//Get analysis buffer to verify the correctess of printed data
static void getAnalysisBuffer(char* analysisBuffer);
//Kernel builder helper functions
//Check if the test case is for kernel that has argument
static int isKernelArgument(testCase* pTestCase,size_t testId);
//Check if the test case treats %p format for void*
static int isKernelPFormat(testCase* pTestCase,size_t testId);
//-----------------------------------------
// Static functions declarations
//-----------------------------------------
// Make a program that uses printf for the given type/format,
static cl_program makePrintfProgram(cl_kernel *kernel_ptr, const cl_context context,const unsigned int testId,const unsigned int testNum,bool isLongSupport = true,bool is64bAddrSpace = false);
// Creates and execute the printf test for the given device, context, type/format
static int doTest(cl_command_queue queue, cl_context context, const unsigned int testId, const unsigned int testNum, cl_device_id device);
// Check if device supports long
static bool isLongSupported(cl_device_id device_id);
// Check if device address space is 64 bits
static bool is64bAddressSpace(cl_device_id device_id);
//Wait until event status is CL_COMPLETE
int waitForEvent(cl_event* event);
//-----------------------------------------
// Definitions and initializations
//-----------------------------------------
// Tests are broken into the major test which is based on the
// src and cmp type and their corresponding vector types and
// sub tests which is for each individual test. The following
// tracks the subtests
int s_test_cnt = 0;
int s_test_fail = 0;
static cl_context gContext;
static cl_command_queue gQueue;
static int gFd;
static char gFileName[256];
//-----------------------------------------
// Static helper functions definition
//-----------------------------------------
//-----------------------------------------
// getTempFileName
//-----------------------------------------
static int getTempFileName()
{
// Create a unique temporary file to allow parallel executed tests.
#if (defined(__linux__) || defined(__APPLE__)) && (!defined( __ANDROID__ ))
sprintf(gFileName, "/tmp/tmpfile.XXXXXX");
int fd = mkstemp(gFileName);
if (fd == -1)
return -1;
close(fd);
#elif defined(_WIN32)
UINT ret = GetTempFileName(".", "tmp", 0, gFileName);
if (ret == 0)
return -1;
#else
MTdata d = init_genrand((cl_uint)time(NULL));
sprintf(gFileName, "tmpfile.%u", genrand_int32(d));
#endif
return 0;
}
//-----------------------------------------
// acquireOutputStream
//-----------------------------------------
static int acquireOutputStream(int* error)
{
int fd = streamDup(fileno(stdout));
*error = 0;
if (!freopen(gFileName, "w", stdout))
{
releaseOutputStream(fd);
*error = -1;
}
return fd;
}
//-----------------------------------------
// releaseOutputStream
//-----------------------------------------
static void releaseOutputStream(int fd)
{
fflush(stdout);
streamDup2(fd,fileno(stdout));
close(fd);
}
//-----------------------------------------
// printfCallBack
//-----------------------------------------
static void CL_CALLBACK printfCallBack(const char *printf_data, size_t len, size_t final, void *user_data)
{
fwrite(printf_data, 1, len, stdout);
}
//-----------------------------------------
// getAnalysisBuffer
//-----------------------------------------
static void getAnalysisBuffer(char* analysisBuffer)
{
FILE *fp;
memset(analysisBuffer,0,ANALYSIS_BUFFER_SIZE);
fp = fopen(gFileName,"r");
if(NULL == fp)
log_error("Failed to open analysis buffer ('%s')\n", strerror(errno));
else
while(fgets(analysisBuffer, ANALYSIS_BUFFER_SIZE, fp) != NULL );
fclose(fp);
}
//-----------------------------------------
// isKernelArgument
//-----------------------------------------
static int isKernelArgument(testCase* pTestCase,size_t testId)
{
return strcmp(pTestCase->_genParameters[testId].addrSpaceArgumentTypeQualifier,"");
}
//-----------------------------------------
// isKernelPFormat
//-----------------------------------------
static int isKernelPFormat(testCase* pTestCase,size_t testId)
{
return strcmp(pTestCase->_genParameters[testId].addrSpacePAdd,"");
}
//-----------------------------------------
// waitForEvent
//-----------------------------------------
int waitForEvent(cl_event* event)
{
cl_int status = clWaitForEvents(1, event);
if(status != CL_SUCCESS)
{
log_error("clWaitForEvents failed");
return status;
}
status = clReleaseEvent(*event);
if(status != CL_SUCCESS)
{
log_error("clReleaseEvent failed. (*event)");
return status;
}
return CL_SUCCESS;
}
//-----------------------------------------
// Static helper functions definition
//-----------------------------------------
//-----------------------------------------
// makePrintfProgram
//-----------------------------------------
static cl_program makePrintfProgram(cl_kernel *kernel_ptr, const cl_context context,const unsigned int testId,const unsigned int testNum,bool isLongSupport,bool is64bAddrSpace)
{
int err,i;
cl_program program;
cl_device_id devID;
char buildLog[ 1024 * 128 ];
char testname[256] = {0};
char addrSpaceArgument[256] = {0};
char addrSpacePAddArgument[256] = {0};
//Program Source code for int,float,octal,hexadecimal,char,string
const char *sourceGen[] = {
"__kernel void ", testname,
"(void)\n",
"{\n"
" printf(\"",
allTestCase[testId]->_genParameters[testNum].genericFormat,
"\\n\",",
allTestCase[testId]->_genParameters[testNum].dataRepresentation,
");",
"}\n"
};
//Program Source code for vector
const char *sourceVec[] = {
"__kernel void ", testname,
"(void)\n",
"{\n",
allTestCase[testId]->_genParameters[testNum].dataType,
allTestCase[testId]->_genParameters[testNum].vectorSize,
" tmp = (",
allTestCase[testId]->_genParameters[testNum].dataType,
allTestCase[testId]->_genParameters[testNum].vectorSize,
")",
allTestCase[testId]->_genParameters[testNum].dataRepresentation,
";",
" printf(\"",
allTestCase[testId]->_genParameters[testNum].vectorFormatFlag,
"v",
allTestCase[testId]->_genParameters[testNum].vectorSize,
allTestCase[testId]->_genParameters[testNum].vectorFormatSpecifier,
"\\n\",",
"tmp);",
"}\n"
};
//Program Source code for address space
const char *sourceAddrSpace[] = {
"__kernel void ", testname,"(",addrSpaceArgument,
")\n{\n",
allTestCase[testId]->_genParameters[testNum].addrSpaceVariableTypeQualifier,
"printf(",
allTestCase[testId]->_genParameters[testNum].genericFormat,
",",
allTestCase[testId]->_genParameters[testNum].addrSpaceParameter,
"); ",
addrSpacePAddArgument,
"\n}\n"
};
//Update testname
sprintf(testname,"%s%d","test",testId);
//Update addrSpaceArgument and addrSpacePAddArgument types, based on FULL_PROFILE/EMBEDDED_PROFILE
if(allTestCase[testId]->_type == TYPE_ADDRESS_SPACE)
{
sprintf(addrSpaceArgument, "%s",allTestCase[testId]->_genParameters[testNum].addrSpaceArgumentTypeQualifier);
sprintf(addrSpacePAddArgument, "%s", allTestCase[testId]->_genParameters[testNum].addrSpacePAdd);
}
if (strlen(addrSpaceArgument) == 0)
sprintf(addrSpaceArgument,"void");
// create program based on its type
if(allTestCase[testId]->_type == TYPE_VECTOR)
{
err = create_single_kernel_helper(
context, &program, kernel_ptr,
sizeof(sourceVec) / sizeof(sourceVec[0]), sourceVec, testname);
}
else if(allTestCase[testId]->_type == TYPE_ADDRESS_SPACE)
{
err = create_single_kernel_helper(context, &program, kernel_ptr,
sizeof(sourceAddrSpace)
/ sizeof(sourceAddrSpace[0]),
sourceAddrSpace, testname);
}
else
{
err = create_single_kernel_helper(
context, &program, kernel_ptr,
sizeof(sourceGen) / sizeof(sourceGen[0]), sourceGen, testname);
}
if (!program || err) {
log_error("create_single_kernel_helper failed\n");
return NULL;
}
return program;
}
//-----------------------------------------
// isLongSupported
//-----------------------------------------
static bool isLongSupported(cl_device_id device_id)
{
size_t tempSize = 0;
cl_int status;
bool extSupport = true;
// Device profile
status = clGetDeviceInfo(
device_id,
CL_DEVICE_PROFILE,
0,
NULL,
&tempSize);
if(status != CL_SUCCESS)
{
log_error("*** clGetDeviceInfo FAILED ***\n\n");
return false;
}
std::unique_ptr<char[]> profileType(new char[tempSize]);
if(profileType == NULL)
{
log_error("Failed to allocate memory(profileType)");
return false;
}
status = clGetDeviceInfo(
device_id,
CL_DEVICE_PROFILE,
sizeof(char) * tempSize,
profileType.get(),
NULL);
if(!strcmp("EMBEDDED_PROFILE",profileType.get()))
{
extSupport = is_extension_available(device_id, "cles_khr_int64");
}
return extSupport;
}
//-----------------------------------------
// is64bAddressSpace
//-----------------------------------------
static bool is64bAddressSpace(cl_device_id device_id)
{
cl_int status;
cl_uint addrSpaceB;
// Device profile
status = clGetDeviceInfo(
device_id,
CL_DEVICE_ADDRESS_BITS,
sizeof(cl_uint),
&addrSpaceB,
NULL);
if(status != CL_SUCCESS)
{
log_error("*** clGetDeviceInfo FAILED ***\n\n");
return false;
}
if(addrSpaceB == 64)
return true;
else
return false;
}
//-----------------------------------------
// doTest
//-----------------------------------------
static int doTest(cl_command_queue queue, cl_context context, const unsigned int testId, const unsigned int testNum, cl_device_id device)
{
if(allTestCase[testId]->_type == TYPE_VECTOR)
{
log_info("%d)testing printf(\"%sv%s%s\",%s)\n",testNum,allTestCase[testId]->_genParameters[testNum].vectorFormatFlag,allTestCase[testId]->_genParameters[testNum].vectorSize,
allTestCase[testId]->_genParameters[testNum].vectorFormatSpecifier,allTestCase[testId]->_genParameters[testNum].dataRepresentation);
}
else if(allTestCase[testId]->_type == TYPE_ADDRESS_SPACE)
{
if(isKernelArgument(allTestCase[testId], testNum))
{
log_info("%d)testing kernel //argument %s \n printf(%s,%s)\n",testNum,allTestCase[testId]->_genParameters[testNum].addrSpaceArgumentTypeQualifier,
allTestCase[testId]->_genParameters[testNum].genericFormat,allTestCase[testId]->_genParameters[testNum].addrSpaceParameter);
}
else
{
log_info("%d)testing kernel //variable %s \n printf(%s,%s)\n",testNum,allTestCase[testId]->_genParameters[testNum].addrSpaceVariableTypeQualifier,
allTestCase[testId]->_genParameters[testNum].genericFormat,allTestCase[testId]->_genParameters[testNum].addrSpaceParameter);
}
}
else
{
log_info("%d)testing printf(\"%s\",%s)\n",testNum,allTestCase[testId]->_genParameters[testNum].genericFormat,allTestCase[testId]->_genParameters[testNum].dataRepresentation);
}
// Long support for varible type
if(allTestCase[testId]->_type == TYPE_VECTOR && !strcmp(allTestCase[testId]->_genParameters[testNum].dataType,"long") && !isLongSupported(device))
{
log_info( "Long is not supported, test not run.\n" );
return 0;
}
// Long support for address in FULL_PROFILE/EMBEDDED_PROFILE
bool isLongSupport = true;
if(allTestCase[testId]->_type == TYPE_ADDRESS_SPACE && isKernelPFormat(allTestCase[testId],testNum) && !isLongSupported(device))
{
isLongSupport = false;
}
int err;
cl_program program;
cl_kernel kernel;
cl_mem d_out = NULL;
cl_mem d_a = NULL;
char _analysisBuffer[ANALYSIS_BUFFER_SIZE];
cl_uint out32 = 0;
cl_ulong out64 = 0;
int fd = -1;
// Define an index space (global work size) of threads for execution.
size_t globalWorkSize[1];
program = makePrintfProgram(&kernel, context,testId,testNum,isLongSupport,is64bAddressSpace(device));
if (!program || !kernel) {
++s_test_fail;
++s_test_cnt;
return -1;
}
//For address space test if there is kernel argument - set it
if(allTestCase[testId]->_type == TYPE_ADDRESS_SPACE )
{
if(isKernelArgument(allTestCase[testId],testNum))
{
int a = 2;
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
sizeof(int), &a, &err);
if(err!= CL_SUCCESS || d_a == NULL) {
log_error("clCreateBuffer failed\n");
goto exit;
}
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
if(err!= CL_SUCCESS) {
log_error("clSetKernelArg failed\n");
goto exit;
}
}
//For address space test if %p is tested
if(isKernelPFormat(allTestCase[testId],testNum))
{
d_out = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_ulong), NULL, &err);
if(err!= CL_SUCCESS || d_out == NULL) {
log_error("clCreateBuffer failed\n");
goto exit;
}
err = clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_out);
if(err!= CL_SUCCESS) {
log_error("clSetKernelArg failed\n");
goto exit;
}
}
}
fd = acquireOutputStream(&err);
if (err != 0)
{
log_error("Error while redirection stdout to file");
goto exit;
}
globalWorkSize[0] = 1;
cl_event ndrEvt;
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, globalWorkSize, NULL, 0, NULL,&ndrEvt);
if (err != CL_SUCCESS) {
releaseOutputStream(fd);
log_error("\n clEnqueueNDRangeKernel failed errcode:%d\n", err);
++s_test_fail;
goto exit;
}
fflush(stdout);
err = clFlush(queue);
if(err != CL_SUCCESS)
{
releaseOutputStream(fd);
log_error("clFlush failed\n");
goto exit;
}
//Wait until kernel finishes its execution and (thus) the output printed from the kernel
//is immediately printed
err = waitForEvent(&ndrEvt);
releaseOutputStream(fd);
if(err != CL_SUCCESS)
{
log_error("waitforEvent failed\n");
goto exit;
}
fflush(stdout);
if(allTestCase[testId]->_type == TYPE_ADDRESS_SPACE && isKernelPFormat(allTestCase[testId],testNum))
{
// Read the OpenCL output buffer (d_out) to the host output array (out)
if(!is64bAddressSpace(device))//32-bit address space
{
clEnqueueReadBuffer(queue, d_out, CL_TRUE, 0, sizeof(cl_int),&out32,
0, NULL, NULL);
}
else //64-bit address space
{
clEnqueueReadBuffer(queue, d_out, CL_TRUE, 0, sizeof(cl_ulong),&out64,
0, NULL, NULL);
}
}
//
//Get the output printed from the kernel to _analysisBuffer
//and verify its correctness
getAnalysisBuffer(_analysisBuffer);
if(!is64bAddressSpace(device)) //32-bit address space
{
if(0 != verifyOutputBuffer(_analysisBuffer,allTestCase[testId],testNum,(cl_ulong) out32))
err = ++s_test_fail;
}
else //64-bit address space
{
if(0 != verifyOutputBuffer(_analysisBuffer,allTestCase[testId],testNum,out64))
err = ++s_test_fail;
}
exit:
if(clReleaseKernel(kernel) != CL_SUCCESS)
log_error("clReleaseKernel failed\n");
if(clReleaseProgram(program) != CL_SUCCESS)
log_error("clReleaseProgram failed\n");
if(d_out)
clReleaseMemObject(d_out);
if(d_a)
clReleaseMemObject(d_a);
++s_test_cnt;
return err;
}
int test_int_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 0, deviceID);
}
int test_int_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 1, deviceID);
}
int test_int_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 2, deviceID);
}
int test_int_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 3, deviceID);
}
int test_int_4(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 4, deviceID);
}
int test_int_5(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 5, deviceID);
}
int test_int_6(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 6, deviceID);
}
int test_int_7(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 7, deviceID);
}
int test_int_8(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_INT, 8, deviceID);
}
int test_float_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 0, deviceID);
}
int test_float_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 1, deviceID);
}
int test_float_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 2, deviceID);
}
int test_float_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 3, deviceID);
}
int test_float_4(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 4, deviceID);
}
int test_float_5(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 5, deviceID);
}
int test_float_6(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 6, deviceID);
}
int test_float_7(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 7, deviceID);
}
int test_float_8(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 8, deviceID);
}
int test_float_9(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 9, deviceID);
}
int test_float_10(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 10, deviceID);
}
int test_float_11(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 11, deviceID);
}
int test_float_12(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 12, deviceID);
}
int test_float_13(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 13, deviceID);
}
int test_float_14(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 14, deviceID);
}
int test_float_15(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 15, deviceID);
}
int test_float_16(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 16, deviceID);
}
int test_float_17(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT, 17, deviceID);
}
int test_float_limits_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT_LIMITS, 0, deviceID);
}
int test_float_limits_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT_LIMITS, 1, deviceID);
}
int test_float_limits_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_FLOAT_LIMITS, 2, deviceID);
}
int test_octal_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_OCTAL, 0, deviceID);
}
int test_octal_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_OCTAL, 1, deviceID);
}
int test_octal_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_OCTAL, 2, deviceID);
}
int test_octal_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_OCTAL, 3, deviceID);
}
int test_unsigned_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_UNSIGNED, 0, deviceID);
}
int test_unsigned_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_UNSIGNED, 1, deviceID);
}
int test_hexadecimal_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_HEXADEC, 0, deviceID);
}
int test_hexadecimal_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_HEXADEC, 1, deviceID);
}
int test_hexadecimal_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_HEXADEC, 2, deviceID);
}
int test_hexadecimal_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_HEXADEC, 3, deviceID);
}
int test_hexadecimal_4(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_HEXADEC, 4, deviceID);
}
int test_char_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_CHAR, 0, deviceID);
}
int test_char_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_CHAR, 1, deviceID);
}
int test_char_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_CHAR, 2, deviceID);
}
int test_string_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_STRING, 0, deviceID);
}
int test_string_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_STRING, 1, deviceID);
}
int test_string_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_STRING, 2, deviceID);
}
int test_vector_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_VECTOR, 0, deviceID);
}
int test_vector_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_VECTOR, 1, deviceID);
}
int test_vector_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_VECTOR, 2, deviceID);
}
int test_vector_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_VECTOR, 3, deviceID);
}
int test_vector_4(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_VECTOR, 4, deviceID);
}
int test_address_space_0(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_ADDRESS_SPACE, 0, deviceID);
}
int test_address_space_1(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_ADDRESS_SPACE, 1, deviceID);
}
int test_address_space_2(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_ADDRESS_SPACE, 2, deviceID);
}
int test_address_space_3(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_ADDRESS_SPACE, 3, deviceID);
}
int test_address_space_4(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
return doTest(gQueue, gContext, TYPE_ADDRESS_SPACE, 4, deviceID);
}
test_definition test_list[] = {
ADD_TEST( int_0 ),
ADD_TEST( int_1 ),
ADD_TEST( int_2 ),
ADD_TEST( int_3 ),
ADD_TEST( int_4 ),
ADD_TEST( int_5 ),
ADD_TEST( int_6 ),
ADD_TEST( int_7 ),
ADD_TEST( int_8 ),
ADD_TEST( float_0 ),
ADD_TEST( float_1 ),
ADD_TEST( float_2 ),
ADD_TEST( float_3 ),
ADD_TEST( float_4 ),
ADD_TEST( float_5 ),
ADD_TEST( float_6 ),
ADD_TEST( float_7 ),
ADD_TEST( float_8 ),
ADD_TEST( float_9 ),
ADD_TEST( float_10 ),
ADD_TEST( float_11 ),
ADD_TEST( float_12 ),
ADD_TEST( float_13 ),
ADD_TEST( float_14 ),
ADD_TEST( float_15 ),
ADD_TEST( float_16 ),
ADD_TEST( float_17 ),
ADD_TEST( float_limits_0 ),
ADD_TEST( float_limits_1 ),
ADD_TEST( float_limits_2 ),
ADD_TEST( octal_0 ),
ADD_TEST( octal_1 ),
ADD_TEST( octal_2 ),
ADD_TEST( octal_3 ),
ADD_TEST( unsigned_0 ),
ADD_TEST( unsigned_1 ),
ADD_TEST( hexadecimal_0 ),
ADD_TEST( hexadecimal_1 ),
ADD_TEST( hexadecimal_2 ),
ADD_TEST( hexadecimal_3 ),
ADD_TEST( hexadecimal_4 ),
ADD_TEST( char_0 ),
ADD_TEST( char_1 ),
ADD_TEST( char_2 ),
ADD_TEST( string_0 ),
ADD_TEST( string_1 ),
ADD_TEST( string_2 ),
ADD_TEST( vector_0 ),
ADD_TEST( vector_1 ),
ADD_TEST( vector_2 ),
ADD_TEST( vector_3 ),
ADD_TEST( vector_4 ),
ADD_TEST( address_space_0 ),
ADD_TEST( address_space_1 ),
ADD_TEST( address_space_2 ),
ADD_TEST( address_space_3 ),
ADD_TEST( address_space_4 ),
};
const int test_num = ARRAY_SIZE( test_list );
//-----------------------------------------
// main
//-----------------------------------------
int main(int argc, const char* argv[])
{
argc = parseCustomParam(argc, argv);
if (argc == -1)
{
return -1;
}
const char ** argList = (const char **)calloc( argc, sizeof( char*) );
if( NULL == argList )
{
log_error( "Failed to allocate memory for argList array.\n" );
return 1;
}
argList[0] = argv[0];
size_t argCount = 1;
for (int i=1; i < argc; ++i) {
const char *arg = argv[i];
if (arg == NULL)
break;
if (arg[0] == '-')
{
arg++;
while(*arg != '\0')
{
switch(*arg) {
case 'h':
printUsage();
return 0;
default:
log_error( " <-- unknown flag: %c (0x%2.2x)\n)", *arg, *arg );
printUsage();
return 0;
}
arg++;
}
}
else {
argList[argCount] = arg;
argCount++;
}
}
if (getTempFileName() == -1)
{
log_error("getTempFileName failed\n");
return -1;
}
int err = runTestHarnessWithCheck( argCount, argList, test_num, test_list, true, 0, InitCL );
if(gQueue)
{
int error = clFinish(gQueue);
if (error) {
log_error("clFinish failed: %d\n", error);
}
}
if(clReleaseCommandQueue(gQueue)!=CL_SUCCESS)
log_error("clReleaseCommandQueue\n");
if(clReleaseContext(gContext)!= CL_SUCCESS)
log_error("clReleaseContext\n");
free(argList);
remove(gFileName);
return err;
}
//-----------------------------------------
// printUsage
//-----------------------------------------
static void printUsage( void )
{
log_info("test_printf: <optional: testnames> \n");
log_info("\tdefault is to run the full test on the default device\n");
log_info("\n");
for( int i = 0; i < test_num; i++ )
{
log_info( "\t%s\n", test_list[i].name );
}
}
test_status InitCL( cl_device_id device )
{
uint32_t device_frequency = 0;
uint32_t compute_devices = 0;
int err;
gFd = acquireOutputStream(&err);
if (err != 0)
{
log_error("Error while redirection stdout to file");
return TEST_FAIL;
}
size_t config_size = sizeof( device_frequency );
#if MULTITHREAD
if( (err = clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, config_size, &compute_devices, NULL )) )
#endif
compute_devices = 1;
config_size = sizeof(device_frequency);
if((err = clGetDeviceInfo(device, CL_DEVICE_MAX_CLOCK_FREQUENCY, config_size, &device_frequency, NULL )))
device_frequency = 1;
releaseOutputStream(gFd);
log_info( "\nCompute Device info:\n" );
log_info( "\tProcessing with %d devices\n", compute_devices );
log_info( "\tDevice Frequency: %d MHz\n", device_frequency );
printDeviceHeader( device );
PrintArch();
auto version = get_device_cl_version(device);
auto expected_min_version = Version(1, 2);
if (version < expected_min_version)
{
version_expected_info("Test", "OpenCL",
expected_min_version.to_string().c_str(),
version.to_string().c_str());
return TEST_SKIP;
}
log_info( "Test binary built %s %s\n", __DATE__, __TIME__ );
gFd = acquireOutputStream(&err);
if (err != 0)
{
log_error("Error while redirection stdout to file");
return TEST_FAIL;
}
cl_context_properties printf_properties[] = {
CL_PRINTF_CALLBACK_ARM, (cl_context_properties)printfCallBack,
CL_PRINTF_BUFFERSIZE_ARM, ANALYSIS_BUFFER_SIZE, 0
};
cl_context_properties* props = NULL;
if(is_extension_available(device, "cl_arm_printf"))
{
props = printf_properties;
}
gContext = clCreateContext(props, 1, &device, notify_callback, NULL, NULL);
checkNull(gContext, "clCreateContext");
gQueue = clCreateCommandQueue(gContext, device, 0, NULL);
checkNull(gQueue, "clCreateCommandQueue");
releaseOutputStream(gFd);
// Generate reference results
generateRef(device);
return TEST_PASS;
}