blob: 126db73eaac211779c347f691ca3440c7c163b61 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "function_list.h"
#include "test_functions.h"
#include "utility.h"
#include <cstring>
#if defined(__APPLE__)
#include <sys/time.h>
#endif
static int BuildKernel(const char *name, int vectorSize, cl_uint kernel_count,
cl_kernel *k, cl_program *p, bool relaxedMode)
{
const char *c[] = { "__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float",
sizeNames[vectorSize],
"* out, __global float",
sizeNames[vectorSize],
"* in )\n"
"{\n"
" size_t i = get_global_id(0);\n"
" out[i] = ",
name,
"( in[i] );\n"
"}\n" };
const char *c3[] = {
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float* out, __global float* in)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" float3 f0 = vload3( 0, in + 3 * i );\n"
" f0 = ",
name,
"( f0 );\n"
" vstore3( f0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" float3 f0;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (float3)( in[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" f0 = ",
name,
"( f0 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
sizeNames[vectorSize]);
return MakeKernels(kern, (cl_uint)kernSize, testName, kernel_count, k, p,
relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_uint kernel_count;
cl_kernel **kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;
static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernel_count,
info->kernels[i], info->programs + i, info->relaxedMode);
}
// Thread specific data for a worker thread
typedef struct ThreadInfo
{
cl_mem inBuf; // input buffer for the thread
cl_mem outBuf[VECTOR_SIZE_COUNT]; // output buffers for the thread
float maxError; // max error value. Init to 0.
double maxErrorValue; // position of the max error value. Init to 0.
cl_command_queue tQueue; // per thread command queue to improve performance
} ThreadInfo;
typedef struct TestInfo
{
size_t subBufferSize; // Size of the sub-buffer in elements
const Func *f; // A pointer to the function info
cl_program programs[VECTOR_SIZE_COUNT]; // programs for various vector sizes
cl_kernel
*k[VECTOR_SIZE_COUNT]; // arrays of thread-specific kernels for each
// worker thread: k[vector_size][thread_id]
ThreadInfo *
tinfo; // An array of thread specific information for each worker thread
cl_uint threadCount; // Number of worker threads
cl_uint jobCount; // Number of jobs
cl_uint step; // step between each chunk and the next.
cl_uint scale; // stride between individual test values
float ulps; // max_allowed ulps
int ftz; // non-zero if running in flush to zero mode
int isRangeLimited; // 1 if the function is only to be evaluated over a
// range
float half_sin_cos_tan_limit;
bool relaxedMode; // True if test is running in relaxed mode, false
// otherwise.
} TestInfo;
static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data);
int TestFunc_Float_Float(const Func *f, MTdata d, bool relaxedMode)
{
TestInfo test_info;
cl_int error;
size_t i, j;
float maxError = 0.0f;
double maxErrorVal = 0.0;
int skipTestingRelaxed = (relaxedMode && strcmp(f->name, "tan") == 0);
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
// Init test_info
memset(&test_info, 0, sizeof(test_info));
test_info.threadCount = GetThreadCount();
test_info.subBufferSize = BUFFER_SIZE
/ (sizeof(cl_float) * RoundUpToNextPowerOfTwo(test_info.threadCount));
test_info.scale = getTestScale(sizeof(cl_float));
if (gWimpyMode)
{
test_info.subBufferSize = gWimpyBufferSize
/ (sizeof(cl_float)
* RoundUpToNextPowerOfTwo(test_info.threadCount));
}
test_info.step = (cl_uint)test_info.subBufferSize * test_info.scale;
if (test_info.step / test_info.subBufferSize != test_info.scale)
{
// there was overflow
test_info.jobCount = 1;
}
else
{
test_info.jobCount = (cl_uint)((1ULL << 32) / test_info.step);
}
test_info.f = f;
test_info.ulps = gIsEmbedded ? f->float_embedded_ulps : f->float_ulps;
test_info.ftz =
f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
test_info.relaxedMode = relaxedMode;
// cl_kernels aren't thread safe, so we make one for each vector size for
// every thread
for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
{
size_t array_size = test_info.threadCount * sizeof(cl_kernel);
test_info.k[i] = (cl_kernel *)malloc(array_size);
if (NULL == test_info.k[i])
{
vlog_error("Error: Unable to allocate storage for kernels!\n");
error = CL_OUT_OF_HOST_MEMORY;
goto exit;
}
memset(test_info.k[i], 0, array_size);
}
test_info.tinfo =
(ThreadInfo *)malloc(test_info.threadCount * sizeof(*test_info.tinfo));
if (NULL == test_info.tinfo)
{
vlog_error(
"Error: Unable to allocate storage for thread specific data.\n");
error = CL_OUT_OF_HOST_MEMORY;
goto exit;
}
memset(test_info.tinfo, 0,
test_info.threadCount * sizeof(*test_info.tinfo));
for (i = 0; i < test_info.threadCount; i++)
{
cl_buffer_region region = {
i * test_info.subBufferSize * sizeof(cl_float),
test_info.subBufferSize * sizeof(cl_float)
};
test_info.tinfo[i].inBuf =
clCreateSubBuffer(gInBuffer, CL_MEM_READ_ONLY,
CL_BUFFER_CREATE_TYPE_REGION, &region, &error);
if (error || NULL == test_info.tinfo[i].inBuf)
{
vlog_error("Error: Unable to create sub-buffer of gInBuffer for "
"region {%zd, %zd}\n",
region.origin, region.size);
goto exit;
}
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
test_info.tinfo[i].outBuf[j] = clCreateSubBuffer(
gOutBuffer[j], CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION,
&region, &error);
if (error || NULL == test_info.tinfo[i].outBuf[j])
{
vlog_error("Error: Unable to create sub-buffer of "
"gOutBuffer[%d] for region {%zd, %zd}\n",
(int)j, region.origin, region.size);
goto exit;
}
}
test_info.tinfo[i].tQueue =
clCreateCommandQueue(gContext, gDevice, 0, &error);
if (NULL == test_info.tinfo[i].tQueue || error)
{
vlog_error("clCreateCommandQueue failed. (%d)\n", error);
goto exit;
}
}
// Check for special cases for unary float
test_info.isRangeLimited = 0;
test_info.half_sin_cos_tan_limit = 0;
if (0 == strcmp(f->name, "half_sin") || 0 == strcmp(f->name, "half_cos"))
{
test_info.isRangeLimited = 1;
test_info.half_sin_cos_tan_limit = 1.0f
+ test_info.ulps
* (FLT_EPSILON / 2.0f); // out of range results from finite
// inputs must be in [-1,1]
}
else if (0 == strcmp(f->name, "half_tan"))
{
test_info.isRangeLimited = 1;
test_info.half_sin_cos_tan_limit =
INFINITY; // out of range resut from finite inputs must be numeric
}
// Init the kernels
{
BuildKernelInfo build_info = {
gMinVectorSizeIndex, test_info.threadCount, test_info.k,
test_info.programs, f->nameInCode, relaxedMode
};
if ((error = ThreadPool_Do(BuildKernelFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
goto exit;
}
// Run the kernels
if (!gSkipCorrectnessTesting || skipTestingRelaxed)
{
error = ThreadPool_Do(Test, test_info.jobCount, &test_info);
// Accumulate the arithmetic errors
for (i = 0; i < test_info.threadCount; i++)
{
if (test_info.tinfo[i].maxError > maxError)
{
maxError = test_info.tinfo[i].maxError;
maxErrorVal = test_info.tinfo[i].maxErrorValue;
}
}
if (error) goto exit;
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("passed");
if (skipTestingRelaxed)
{
vlog(" (rlx skip correctness testing)\n");
goto exit;
}
}
if (gMeasureTimes)
{
// Init input array
uint32_t *p = (uint32_t *)gIn;
if (strstr(f->name, "exp") || strstr(f->name, "sin")
|| strstr(f->name, "cos") || strstr(f->name, "tan"))
for (j = 0; j < BUFFER_SIZE / sizeof(float); j++)
((float *)p)[j] = (float)genrand_real1(d);
else if (strstr(f->name, "log"))
for (j = 0; j < BUFFER_SIZE / sizeof(float); j++)
p[j] = genrand_int32(d) & 0x7fffffff;
else
for (j = 0; j < BUFFER_SIZE / sizeof(float); j++)
p[j] = genrand_int32(d);
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
BUFFER_SIZE, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeof(cl_float) * sizeValues[j];
size_t localCount = (BUFFER_SIZE + vectorSize - 1)
/ vectorSize; // BUFFER_SIZE / vectorSize rounded up
if ((error = clSetKernelArg(test_info.k[j][0], 0,
sizeof(gOutBuffer[j]), &gOutBuffer[j])))
{
LogBuildError(test_info.programs[j]);
goto exit;
}
if ((error = clSetKernelArg(test_info.k[j][0], 1, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(test_info.programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (i = 0; i < PERF_LOOP_COUNT; i++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, test_info.k[j][0],
1, NULL, &localCount, NULL,
0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (BUFFER_SIZE / sizeof(float));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s",
f->name, sizeNames[j]);
}
}
if (!gSkipCorrectnessTesting) vlog("\t%8.2f @ %a", maxError, maxErrorVal);
vlog("\n");
exit:
// Release
for (i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
{
clReleaseProgram(test_info.programs[i]);
if (test_info.k[i])
{
for (j = 0; j < test_info.threadCount; j++)
clReleaseKernel(test_info.k[i][j]);
free(test_info.k[i]);
}
}
if (test_info.tinfo)
{
for (i = 0; i < test_info.threadCount; i++)
{
clReleaseMemObject(test_info.tinfo[i].inBuf);
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
clReleaseMemObject(test_info.tinfo[i].outBuf[j]);
clReleaseCommandQueue(test_info.tinfo[i].tQueue);
}
free(test_info.tinfo);
}
return error;
}
static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data)
{
const TestInfo *job = (const TestInfo *)data;
size_t buffer_elements = job->subBufferSize;
size_t buffer_size = buffer_elements * sizeof(cl_float);
cl_uint scale = job->scale;
cl_uint base = job_id * (cl_uint)job->step;
ThreadInfo *tinfo = job->tinfo + thread_id;
fptr func = job->f->func;
const char *fname = job->f->name;
bool relaxedMode = job->relaxedMode;
float ulps = getAllowedUlpError(job->f, relaxedMode);
if (relaxedMode)
{
func = job->f->rfunc;
}
cl_uint j, k;
cl_int error;
int isRangeLimited = job->isRangeLimited;
float half_sin_cos_tan_limit = job->half_sin_cos_tan_limit;
int ftz = job->ftz;
// start the map of the output arrays
cl_event e[VECTOR_SIZE_COUNT];
cl_uint *out[VECTOR_SIZE_COUNT];
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
out[j] = (cl_uint *)clEnqueueMapBuffer(
tinfo->tQueue, tinfo->outBuf[j], CL_FALSE, CL_MAP_WRITE, 0,
buffer_size, 0, NULL, e + j, &error);
if (error || NULL == out[j])
{
vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
error);
return error;
}
}
// Get that moving
if ((error = clFlush(tinfo->tQueue))) vlog("clFlush failed\n");
// Write the new values to the input array
cl_uint *p = (cl_uint *)gIn + thread_id * buffer_elements;
for (j = 0; j < buffer_elements; j++)
{
p[j] = base + j * scale;
if (relaxedMode)
{
float p_j = *(float *)&p[j];
if (strcmp(fname, "sin") == 0
|| strcmp(fname, "cos")
== 0) // the domain of the function is [-pi,pi]
{
if (fabs(p_j) > M_PI) ((float *)p)[j] = NAN;
}
if (strcmp(fname, "reciprocal") == 0)
{
const float l_limit = HEX_FLT(+, 1, 0, -, 126);
const float u_limit = HEX_FLT(+, 1, 0, +, 126);
if (fabs(p_j) < l_limit
|| fabs(p_j) > u_limit) // the domain of the function is
// [2^-126,2^126]
((float *)p)[j] = NAN;
}
}
}
if ((error = clEnqueueWriteBuffer(tinfo->tQueue, tinfo->inBuf, CL_FALSE, 0,
buffer_size, p, 0, NULL, NULL)))
{
vlog_error("Error: clEnqueueWriteBuffer failed! err: %d\n", error);
return error;
}
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
// Wait for the map to finish
if ((error = clWaitForEvents(1, e + j)))
{
vlog_error("Error: clWaitForEvents failed! err: %d\n", error);
return error;
}
if ((error = clReleaseEvent(e[j])))
{
vlog_error("Error: clReleaseEvent failed! err: %d\n", error);
return error;
}
// Fill the result buffer with garbage, so that old results don't carry
// over
uint32_t pattern = 0xffffdead;
memset_pattern4(out[j], &pattern, buffer_size);
if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
out[j], 0, NULL, NULL)))
{
vlog_error("Error: clEnqueueMapBuffer failed! err: %d\n", error);
return error;
}
// run the kernel
size_t vectorCount =
(buffer_elements + sizeValues[j] - 1) / sizeValues[j];
cl_kernel kernel = job->k[j][thread_id]; // each worker thread has its
// own copy of the cl_kernel
cl_program program = job->programs[j];
if ((error = clSetKernelArg(kernel, 0, sizeof(tinfo->outBuf[j]),
&tinfo->outBuf[j])))
{
LogBuildError(program);
return error;
}
if ((error = clSetKernelArg(kernel, 1, sizeof(tinfo->inBuf),
&tinfo->inBuf)))
{
LogBuildError(program);
return error;
}
if ((error = clEnqueueNDRangeKernel(tinfo->tQueue, kernel, 1, NULL,
&vectorCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
return error;
}
}
// Get that moving
if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 2 failed\n");
if (gSkipCorrectnessTesting) return CL_SUCCESS;
// Calculate the correctly rounded reference result
float *r = (float *)gOut_Ref + thread_id * buffer_elements;
float *s = (float *)p;
for (j = 0; j < buffer_elements; j++) r[j] = (float)func.f_f(s[j]);
// Read the data back -- no need to wait for the first N-1 buffers. This is
// an in order queue.
for (j = gMinVectorSizeIndex; j + 1 < gMaxVectorSizeIndex; j++)
{
out[j] = (cl_uint *)clEnqueueMapBuffer(
tinfo->tQueue, tinfo->outBuf[j], CL_FALSE, CL_MAP_READ, 0,
buffer_size, 0, NULL, NULL, &error);
if (error || NULL == out[j])
{
vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
error);
return error;
}
}
// Wait for the last buffer
out[j] = (uint32_t *)clEnqueueMapBuffer(tinfo->tQueue, tinfo->outBuf[j],
CL_TRUE, CL_MAP_READ, 0,
buffer_size, 0, NULL, NULL, &error);
if (error || NULL == out[j])
{
vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j, error);
return error;
}
// Verify data
uint32_t *t = (uint32_t *)r;
for (j = 0; j < buffer_elements; j++)
{
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
uint32_t *q = out[k];
// If we aren't getting the correctly rounded result
if (t[j] != q[j])
{
float test = ((float *)q)[j];
double correct = func.f_f(s[j]);
float err = Ulp_Error(test, correct);
float abs_error = Abs_Error(test, correct);
int fail = 0;
int use_abs_error = 0;
// it is possible for the output to not match the reference
// result but for Ulp_Error to be zero, for example -1.#QNAN
// vs. 1.#QNAN. In such cases there is no failure
if (err == 0.0f)
{
fail = 0;
}
else if (relaxedMode)
{
if (strcmp(fname, "sin") == 0 || strcmp(fname, "cos") == 0)
{
fail = !(fabsf(abs_error) <= ulps);
use_abs_error = 1;
}
if (strcmp(fname, "sinpi") == 0
|| strcmp(fname, "cospi") == 0)
{
if (s[j] >= -1.0 && s[j] <= 1.0)
{
fail = !(fabsf(abs_error) <= ulps);
use_abs_error = 1;
}
}
if (strcmp(fname, "reciprocal") == 0)
{
fail = !(fabsf(err) <= ulps);
}
if (strcmp(fname, "exp") == 0 || strcmp(fname, "exp2") == 0)
{
float exp_error = ulps;
if (!gIsEmbedded)
{
exp_error += floor(fabs(2 * s[j]));
}
fail = !(fabsf(err) <= exp_error);
ulps = exp_error;
}
if (strcmp(fname, "tan") == 0)
{
if (!gFastRelaxedDerived)
{
fail = !(fabsf(err) <= ulps);
}
// Else fast math derived implementation does not
// require ULP verification
}
if (strcmp(fname, "exp10") == 0)
{
if (!gFastRelaxedDerived)
{
fail = !(fabsf(err) <= ulps);
}
// Else fast math derived implementation does not
// require ULP verification
}
if (strcmp(fname, "log") == 0 || strcmp(fname, "log2") == 0
|| strcmp(fname, "log10") == 0)
{
if (s[j] >= 0.5 && s[j] <= 2)
{
fail = !(fabsf(abs_error) <= ulps);
}
else
{
ulps = gIsEmbedded ? job->f->float_embedded_ulps
: job->f->float_ulps;
fail = !(fabsf(err) <= ulps);
}
}
// fast-relaxed implies finite-only
if (IsFloatInfinity(correct) || IsFloatNaN(correct)
|| IsFloatInfinity(s[j]) || IsFloatNaN(s[j]))
{
fail = 0;
err = 0;
}
}
else
{
fail = !(fabsf(err) <= ulps);
}
// half_sin/cos/tan are only valid between +-2**16, Inf, NaN
if (isRangeLimited
&& fabsf(s[j]) > MAKE_HEX_FLOAT(0x1.0p16f, 0x1L, 16)
&& fabsf(s[j]) < INFINITY)
{
if (fabsf(test) <= half_sin_cos_tan_limit)
{
err = 0;
fail = 0;
}
}
if (fail)
{
if (ftz)
{
typedef int (*CheckForSubnormal)(
double, float); // If we are in fast relaxed math,
// we have a different calculation
// for the subnormal threshold.
CheckForSubnormal isFloatResultSubnormalPtr;
if (relaxedMode)
{
isFloatResultSubnormalPtr =
&IsFloatResultSubnormalAbsError;
}
else
{
isFloatResultSubnormalPtr = &IsFloatResultSubnormal;
}
// retry per section 6.5.3.2
if ((*isFloatResultSubnormalPtr)(correct, ulps))
{
fail = fail && (test != 0.0f);
if (!fail) err = 0.0f;
}
// retry per section 6.5.3.3
if (IsFloatSubnormal(s[j]))
{
double correct2 = func.f_f(0.0);
double correct3 = func.f_f(-0.0);
float err2;
float err3;
if (use_abs_error)
{
err2 = Abs_Error(test, correct2);
err3 = Abs_Error(test, correct3);
}
else
{
err2 = Ulp_Error(test, correct2);
err3 = Ulp_Error(test, correct3);
}
fail = fail
&& ((!(fabsf(err2) <= ulps))
&& (!(fabsf(err3) <= ulps)));
if (fabsf(err2) < fabsf(err)) err = err2;
if (fabsf(err3) < fabsf(err)) err = err3;
// retry per section 6.5.3.4
if ((*isFloatResultSubnormalPtr)(correct2, ulps)
|| (*isFloatResultSubnormalPtr)(correct3, ulps))
{
fail = fail && (test != 0.0f);
if (!fail) err = 0.0f;
}
}
}
}
if (fabsf(err) > tinfo->maxError)
{
tinfo->maxError = fabsf(err);
tinfo->maxErrorValue = s[j];
}
if (fail)
{
vlog_error("\nERROR: %s%s: %f ulp error at %a (0x%8.8x): "
"*%a vs. %a\n",
job->f->name, sizeNames[k], err, ((float *)s)[j],
((uint32_t *)s)[j], ((float *)t)[j], test);
return -1;
}
}
}
}
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
out[j], 0, NULL, NULL)))
{
vlog_error("Error: clEnqueueUnmapMemObject %d failed 2! err: %d\n",
j, error);
return error;
}
}
if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 3 failed\n");
if (0 == (base & 0x0fffffff))
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10u scale:%10u buf_elements:%10zd ulps:%5.3f "
"ThreadCount:%2u\n",
base, job->step, job->scale, buffer_elements, job->ulps,
job->threadCount);
}
else
{
vlog(".");
}
fflush(stdout);
}
return CL_SUCCESS;
}