blob: b40bf1f6515f45bbc7c046272231081b79e7e5f2 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "procs.h"
const char *binary_fn_code_pattern =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s%s *x, __global %s%s *y, __global %s%s *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = %s(x[tid], y[tid]);\n"
"}\n";
const char *binary_fn_code_pattern_v3 =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s *x, __global %s *y, __global %s *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(%s(vload3(tid,x), vload3(tid,y) ), tid, dst);\n"
"}\n";
const char *binary_fn_code_pattern_v3_scalar =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s *x, __global %s *y, __global %s *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(%s(vload3(tid,x), y[tid] ), tid, dst);\n"
"}\n";
int test_binary_fn( cl_device_id device, cl_context context, cl_command_queue queue, int n_elems,
const char *fnName, bool vectorSecondParam,
binary_verify_float_fn floatVerifyFn, binary_verify_double_fn doubleVerifyFn )
{
cl_mem streams[6];
cl_float *input_ptr[2], *output_ptr;
cl_double *input_ptr_double[2], *output_ptr_double=NULL;
cl_program *program;
cl_kernel *kernel;
size_t threads[1];
int num_elements;
int err;
int i, j;
MTdata d;
program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount*2);
kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount*2);
num_elements = n_elems * (1 << (kTotalVecCount-1));
int test_double = 0;
if(is_extension_available( device, "cl_khr_fp64" ))
{
log_info("Testing doubles.\n");
test_double = 1;
}
for( i = 0; i < 2; i++ )
{
input_ptr[i] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
if (test_double) input_ptr_double[i] = (cl_double*)malloc(sizeof(cl_double) * num_elements);
}
output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
if (test_double) output_ptr_double = (cl_double*)malloc(sizeof(cl_double) * num_elements);
for( i = 0; i < 3; i++ )
{
streams[i] =
clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * num_elements, NULL, &err);
test_error( err, "clCreateBuffer failed");
}
if (test_double)
for( i = 3; i < 6; i++ )
{
streams[i] =
clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_double) * num_elements, NULL, &err);
test_error(err, "clCreateBuffer failed");
}
d = init_genrand( gRandomSeed );
for( j = 0; j < num_elements; j++ )
{
input_ptr[0][j] = get_random_float(-0x20000000, 0x20000000, d);
input_ptr[1][j] = get_random_float(-0x20000000, 0x20000000, d);
if (test_double)
{
input_ptr_double[0][j] = get_random_double(-0x20000000, 0x20000000, d);
input_ptr_double[1][j] = get_random_double(-0x20000000, 0x20000000, d);
}
}
free_mtdata(d); d = NULL;
for( i = 0; i < 2; i++ )
{
err = clEnqueueWriteBuffer( queue, streams[ i ], CL_TRUE, 0, sizeof( cl_float ) * num_elements, input_ptr[ i ], 0, NULL, NULL );
test_error( err, "Unable to write input buffer" );
if (test_double)
{
err = clEnqueueWriteBuffer( queue, streams[ 3 + i ], CL_TRUE, 0, sizeof( cl_double ) * num_elements, input_ptr_double[ i ], 0, NULL, NULL );
test_error( err, "Unable to write input buffer" );
}
}
for( i = 0; i < kTotalVecCount; i++ )
{
char programSrc[ 10240 ];
char vecSizeNames[][ 3 ] = { "", "2", "4", "8", "16", "3" };
if(i >= kVectorSizeCount) {
// do vec3 print
if(vectorSecondParam) {
sprintf( programSrc,binary_fn_code_pattern_v3, "", "float", "float", "float", fnName );
} else {
sprintf( programSrc,binary_fn_code_pattern_v3_scalar, "", "float", "float", "float", fnName );
}
} else {
// do regular
sprintf( programSrc, binary_fn_code_pattern, "", "float", vecSizeNames[ i ], "float", vectorSecondParam ? vecSizeNames[ i ] : "", "float", vecSizeNames[ i ], fnName );
}
const char *ptr = programSrc;
err = create_single_kernel_helper( context, &program[ i ], &kernel[ i ], 1, &ptr, "test_fn" );
test_error( err, "Unable to create kernel" );
if (test_double)
{
if(i >= kVectorSizeCount) {
if(vectorSecondParam) {
sprintf( programSrc, binary_fn_code_pattern_v3, "#pragma OPENCL EXTENSION cl_khr_fp64 : enable",
"double", "double", "double", fnName );
} else {
sprintf( programSrc, binary_fn_code_pattern_v3_scalar, "#pragma OPENCL EXTENSION cl_khr_fp64 : enable",
"double", "double", "double", fnName );
}
} else {
sprintf( programSrc, binary_fn_code_pattern, "#pragma OPENCL EXTENSION cl_khr_fp64 : enable",
"double", vecSizeNames[ i ], "double", vectorSecondParam ? vecSizeNames[ i ] : "", "double", vecSizeNames[ i ], fnName );
}
ptr = programSrc;
err = create_single_kernel_helper( context, &program[ kTotalVecCount + i ], &kernel[ kTotalVecCount + i ], 1, &ptr, "test_fn" );
test_error( err, "Unable to create kernel" );
}
}
for( i = 0; i < kTotalVecCount; i++ )
{
for( j = 0; j < 3; j++ )
{
err = clSetKernelArg( kernel[ i ], j, sizeof( streams[ j ] ), &streams[ j ] );
test_error( err, "Unable to set kernel argument" );
}
threads[0] = (size_t)n_elems;
err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL );
test_error( err, "Unable to execute kernel" );
err = clEnqueueReadBuffer( queue, streams[2], true, 0, sizeof(cl_float)*num_elements, (void *)output_ptr, 0, NULL, NULL );
test_error( err, "Unable to read results" );
if( floatVerifyFn( input_ptr[0], input_ptr[1], output_ptr, n_elems, ((g_arrVecSizes[i])) ) )
{
log_error(" float%d%s test failed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", float");
err = -1;
}
else
{
log_info(" float%d%s test passed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", float");
err = 0;
}
if (err)
break;
}
if (test_double)
{
for( i = 0; i < kTotalVecCount; i++ )
{
for( j = 0; j < 3; j++ )
{
err = clSetKernelArg( kernel[ kTotalVecCount + i ], j, sizeof( streams[ 3 + j ] ), &streams[ 3 + j ] );
test_error( err, "Unable to set kernel argument" );
}
threads[0] = (size_t)n_elems;
err = clEnqueueNDRangeKernel( queue, kernel[kTotalVecCount + i], 1, NULL, threads, NULL, 0, NULL, NULL );
test_error( err, "Unable to execute kernel" );
err = clEnqueueReadBuffer( queue, streams[5], CL_TRUE, 0, sizeof(cl_double)*num_elements, (void *)output_ptr_double, 0, NULL, NULL );
test_error( err, "Unable to read results" );
if( doubleVerifyFn( input_ptr_double[0], input_ptr_double[1], output_ptr_double, n_elems, ((g_arrVecSizes[i]))))
{
log_error(" double%d%s test failed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", double");
err = -1;
}
else
{
log_info(" double%d%s test passed\n", ((g_arrVecSizes[i])), vectorSecondParam ? "" : ", double");
err = 0;
}
if (err)
break;
}
}
for( i = 0; i < ((test_double) ? 6 : 3); i++ )
{
clReleaseMemObject(streams[i]);
}
for (i=0; i < ((test_double) ? kTotalVecCount * 2 : kTotalVecCount) ; i++)
{
clReleaseKernel(kernel[i]);
clReleaseProgram(program[i]);
}
free(input_ptr[0]);
free(input_ptr[1]);
free(output_ptr);
free(program);
free(kernel);
if (test_double)
{
free(input_ptr_double[0]);
free(input_ptr_double[1]);
free(output_ptr_double);
}
return err;
}