blob: 177239adb1ef23416c87f79a5c70358548da7825 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "Utility.h"
#include <string.h>
#include "FunctionList.h"
int TestFunc_Float2_Float(const Func *f, MTdata, bool relaxedMode);
int TestFunc_Double2_Double(const Func *f, MTdata, bool relaxedMode);
extern const vtbl _unary_two_results = { "unary_two_results",
TestFunc_Float2_Float,
TestFunc_Double2_Double };
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float",
sizeNames[vectorSize],
"* out, __global float",
sizeNames[vectorSize],
"* out2, __global float",
sizeNames[vectorSize],
"* in)\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ",
name,
"( in[i], out2 + i );\n"
"}\n" };
const char *c3[] = {
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global float* out, __global float* out2, __global float* in)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" float3 f0 = vload3( 0, in + 3 * i );\n"
" float3 iout = NAN;\n"
" f0 = ",
name,
"( f0, &iout );\n"
" vstore3( f0, 0, out + 3*i );\n"
" vstore3( iout, 0, out2 + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" float3 iout = NAN;\n"
" float3 f0;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (float3)( in[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" f0 = ",
name,
"( f0, &iout );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" out2[3*i+1] = iout.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" out2[3*i] = iout.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
sizeNames[vectorSize]);
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global double",
sizeNames[vectorSize],
"* out, __global double",
sizeNames[vectorSize],
"* out2, __global double",
sizeNames[vectorSize],
"* in)\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ",
name,
"( in[i], out2 + i );\n"
"}\n" };
const char *c3[] = {
"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel",
sizeNames[vectorSize],
"( __global double* out, __global double* out2, __global double* in)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" double3 f0 = vload3( 0, in + 3 * i );\n"
" double3 iout = NAN;\n"
" f0 = ",
name,
"( f0, &iout );\n"
" vstore3( f0, 0, out + 3*i );\n"
" vstore3( iout, 0, out2 + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are "
"left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
"buffer size \n"
" double3 iout = NAN;\n"
" double3 f0;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (double3)( in[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" f0 = ",
name,
"( f0, &iout );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = f0.y; \n"
" out2[3*i+1] = iout.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = f0.x; \n"
" out2[3*i] = iout.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c) / sizeof(c[0]);
if (sizeValues[vectorSize] == 3)
{
kern = c3;
kernSize = sizeof(c3) / sizeof(c3[0]);
}
char testName[32];
snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
sizeNames[vectorSize]);
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_kernel *kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
} BuildKernelInfo;
static cl_int BuildKernel_FloatFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p);
static cl_int BuildKernel_FloatFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
static cl_int BuildKernel_DoubleFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p);
static cl_int BuildKernel_DoubleFn(cl_uint job_id, cl_uint thread_id UNUSED,
void *p)
{
BuildKernelInfo *info = (BuildKernelInfo *)p;
cl_uint i = info->offset + job_id;
return BuildKernelDouble(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
int TestFunc_Float2_Float(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
uint32_t l;
int error;
char const *testing_mode;
cl_program programs[VECTOR_SIZE_COUNT];
cl_kernel kernels[VECTOR_SIZE_COUNT];
float maxError0 = 0.0f;
float maxError1 = 0.0f;
int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
float maxErrorVal0 = 0.0f;
float maxErrorVal1 = 0.0f;
size_t bufferSize = (gWimpyMode) ? gWimpyBufferSize : BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(float), bufferSize);
int scale = (int)((1ULL << 32) / (16 * bufferSize / sizeof(float)) + 1);
cl_uchar overflow[BUFFER_SIZE / sizeof(float)];
int isFract = 0 == strcmp("fract", f->nameInCode);
int skipNanInf = isFract && !gInfNanSupport;
float float_ulps = getAllowedUlpError(f, relaxedMode);
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if ((error = ThreadPool_Do(BuildKernel_FloatFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
return error;
for (i = 0; i < (1ULL << 32); i += step)
{
// Init input array
uint32_t *p = (uint32_t *)gIn;
if (gWimpyMode)
{
for (j = 0; j < bufferSize / sizeof(float); j++)
{
p[j] = (uint32_t)i + j * scale;
if (relaxedMode && strcmp(f->name, "sincos") == 0)
{
float pj = *(float *)&p[j];
if (fabs(pj) > M_PI) ((float *)p)[j] = NAN;
}
}
}
else
{
for (j = 0; j < bufferSize / sizeof(float); j++)
{
p[j] = (uint32_t)i + j;
if (relaxedMode && strcmp(f->name, "sincos") == 0)
{
float pj = *(float *)&p[j];
if (fabs(pj) > M_PI) ((float *)p)[j] = NAN;
}
}
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
// write garbage into output arrays
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
error, j);
goto exit;
}
memset_pattern4(gOut2[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer2[j], CL_FALSE, 0,
bufferSize, gOut2[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2b(%d) ***\n",
error, j);
goto exit;
}
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeValues[j] * sizeof(cl_float);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gOutBuffer2[j]),
&gOutBuffer2[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error =
clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
}
// Get that moving
if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
FPU_mode_type oldMode;
RoundingMode oldRoundMode = kRoundToNearestEven;
if (isFract)
{
// Calculate the correctly rounded reference result
memset(&oldMode, 0, sizeof(oldMode));
if (ftz) ForceFTZ(&oldMode);
// Set the rounding mode to match the device
if (gIsInRTZMode)
oldRoundMode = set_round(kRoundTowardZero, kfloat);
}
// Calculate the correctly rounded reference result
float *r = (float *)gOut_Ref;
float *r2 = (float *)gOut_Ref2;
float *s = (float *)gIn;
if (skipNanInf)
{
for (j = 0; j < bufferSize / sizeof(float); j++)
{
double dd;
feclearexcept(FE_OVERFLOW);
if (relaxedMode)
r[j] = (float)f->rfunc.f_fpf(s[j], &dd);
else
r[j] = (float)f->func.f_fpf(s[j], &dd);
r2[j] = (float)dd;
overflow[j] =
FE_OVERFLOW == (FE_OVERFLOW & fetestexcept(FE_OVERFLOW));
}
}
else
{
for (j = 0; j < bufferSize / sizeof(float); j++)
{
double dd;
if (relaxedMode)
r[j] = (float)f->rfunc.f_fpf(s[j], &dd);
else
r[j] = (float)f->func.f_fpf(s[j], &dd);
r2[j] = (float)dd;
}
}
if (isFract && ftz) RestoreFPState(&oldMode);
// Read the data back
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("ReadArray failed %d\n", error);
goto exit;
}
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0,
bufferSize, gOut2[j], 0, NULL, NULL)))
{
vlog_error("ReadArray2 failed %d\n", error);
goto exit;
}
}
if (gSkipCorrectnessTesting)
{
if (isFract && gIsInRTZMode) (void)set_round(oldRoundMode, kfloat);
break;
}
// Verify data
uint32_t *t = (uint32_t *)gOut_Ref;
uint32_t *t2 = (uint32_t *)gOut_Ref2;
for (j = 0; j < bufferSize / sizeof(float); j++)
{
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
uint32_t *q = (uint32_t *)gOut[k];
uint32_t *q2 = (uint32_t *)gOut2[k];
// If we aren't getting the correctly rounded result
if (t[j] != q[j] || t2[j] != q2[j])
{
double correct, correct2;
float err, err2;
float test = ((float *)q)[j];
float test2 = ((float *)q2)[j];
if (relaxedMode)
correct = f->rfunc.f_fpf(s[j], &correct2);
else
correct = f->func.f_fpf(s[j], &correct2);
// Per section 10 paragraph 6, accept any result if an input
// or output is a infinity or NaN or overflow
if (relaxedMode || skipNanInf)
{
if (skipNanInf && overflow[j]) continue;
// Note: no double rounding here. Reference functions
// calculate in single precision.
if (IsFloatInfinity(correct) || IsFloatNaN(correct)
|| IsFloatInfinity(correct2) || IsFloatNaN(correct2)
|| IsFloatInfinity(s[j]) || IsFloatNaN(s[j]))
continue;
}
typedef int (*CheckForSubnormal)(
double, float); // If we are in fast relaxed math, we
// have a different calculation for the
// subnormal threshold.
CheckForSubnormal isFloatResultSubnormalPtr;
if (relaxedMode)
{
err = Abs_Error(test, correct);
err2 = Abs_Error(test2, correct2);
isFloatResultSubnormalPtr =
&IsFloatResultSubnormalAbsError;
}
else
{
err = Ulp_Error(test, correct);
err2 = Ulp_Error(test2, correct2);
isFloatResultSubnormalPtr = &IsFloatResultSubnormal;
}
int fail = !(fabsf(err) <= float_ulps
&& fabsf(err2) <= float_ulps);
if (ftz)
{
// retry per section 6.5.3.2
if ((*isFloatResultSubnormalPtr)(correct, float_ulps))
{
if ((*isFloatResultSubnormalPtr)(correct2,
float_ulps))
{
fail = fail && !(test == 0.0f && test2 == 0.0f);
if (!fail)
{
err = 0.0f;
err2 = 0.0f;
}
}
else
{
fail = fail
&& !(test == 0.0f
&& fabsf(err2) <= float_ulps);
if (!fail) err = 0.0f;
}
}
else if ((*isFloatResultSubnormalPtr)(correct2,
float_ulps))
{
fail = fail
&& !(test2 == 0.0f && fabsf(err) <= float_ulps);
if (!fail) err2 = 0.0f;
}
// retry per section 6.5.3.3
if (IsFloatSubnormal(s[j]))
{
double correctp, correctn;
double correct2p, correct2n;
float errp, err2p, errn, err2n;
if (skipNanInf) feclearexcept(FE_OVERFLOW);
if (relaxedMode)
{
correctp = f->rfunc.f_fpf(0.0, &correct2p);
correctn = f->rfunc.f_fpf(-0.0, &correct2n);
}
else
{
correctp = f->func.f_fpf(0.0, &correct2p);
correctn = f->func.f_fpf(-0.0, &correct2n);
}
// Per section 10 paragraph 6, accept any result if
// an input or output is a infinity or NaN or
// overflow
if (skipNanInf)
{
if (fetestexcept(FE_OVERFLOW)) continue;
// Note: no double rounding here. Reference
// functions calculate in single precision.
if (IsFloatInfinity(correctp)
|| IsFloatNaN(correctp)
|| IsFloatInfinity(correctn)
|| IsFloatNaN(correctn)
|| IsFloatInfinity(correct2p)
|| IsFloatNaN(correct2p)
|| IsFloatInfinity(correct2n)
|| IsFloatNaN(correct2n))
continue;
}
if (relaxedMode)
{
errp = Abs_Error(test, correctp);
err2p = Abs_Error(test, correct2p);
errn = Abs_Error(test, correctn);
err2n = Abs_Error(test, correct2n);
}
else
{
errp = Ulp_Error(test, correctp);
err2p = Ulp_Error(test, correct2p);
errn = Ulp_Error(test, correctn);
err2n = Ulp_Error(test, correct2n);
}
fail = fail
&& ((!(fabsf(errp) <= float_ulps))
&& (!(fabsf(err2p) <= float_ulps))
&& ((!(fabsf(errn) <= float_ulps))
&& (!(fabsf(err2n) <= float_ulps))));
if (fabsf(errp) < fabsf(err)) err = errp;
if (fabsf(errn) < fabsf(err)) err = errn;
if (fabsf(err2p) < fabsf(err2)) err2 = err2p;
if (fabsf(err2n) < fabsf(err2)) err2 = err2n;
// retry per section 6.5.3.4
if ((*isFloatResultSubnormalPtr)(correctp,
float_ulps)
|| (*isFloatResultSubnormalPtr)(correctn,
float_ulps))
{
if ((*isFloatResultSubnormalPtr)(correct2p,
float_ulps)
|| (*isFloatResultSubnormalPtr)(correct2n,
float_ulps))
{
fail = fail
&& !(test == 0.0f && test2 == 0.0f);
if (!fail) err = err2 = 0.0f;
}
else
{
fail = fail
&& !(test == 0.0f
&& fabsf(err2) <= float_ulps);
if (!fail) err = 0.0f;
}
}
else if ((*isFloatResultSubnormalPtr)(correct2p,
float_ulps)
|| (*isFloatResultSubnormalPtr)(
correct2n, float_ulps))
{
fail = fail
&& !(test2 == 0.0f
&& (fabsf(err) <= float_ulps));
if (!fail) err2 = 0.0f;
}
}
}
if (fabsf(err) > maxError0)
{
maxError0 = fabsf(err);
maxErrorVal0 = s[j];
}
if (fabsf(err2) > maxError1)
{
maxError1 = fabsf(err2);
maxErrorVal1 = s[j];
}
if (fail)
{
vlog_error("\nERROR: %s%s: {%f, %f} ulp error at %a: "
"*{%a, %a} vs. {%a, %a}\n",
f->name, sizeNames[k], err, err2,
((float *)gIn)[j], ((float *)gOut_Ref)[j],
((float *)gOut_Ref2)[j], test, test2);
error = -1;
goto exit;
}
}
}
}
if (isFract && gIsInRTZMode) (void)set_round(oldRoundMode, kfloat);
if (0 == (i & 0x0fffffff))
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step,
bufferSize);
}
else
{
vlog(".");
}
fflush(stdout);
}
}
if (!gSkipCorrectnessTesting)
{
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("passed");
}
if (gMeasureTimes)
{
// Init input array
uint32_t *p = (uint32_t *)gIn;
for (j = 0; j < bufferSize / sizeof(float); j++)
p[j] = genrand_int32(d);
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeValues[j] * sizeof(cl_float);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gOutBuffer2[j]),
&gOutBuffer2[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (k = 0; k < PERF_LOOP_COUNT; k++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL,
NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (bufferSize / sizeof(float));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s",
f->name, sizeNames[j]);
}
}
if (!gSkipCorrectnessTesting)
vlog("\t{%8.2f, %8.2f} @ {%a, %a}", maxError0, maxError1, maxErrorVal0,
maxErrorVal1);
vlog("\n");
exit:
// Release
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}
int TestFunc_Double2_Double(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[VECTOR_SIZE_COUNT];
cl_kernel kernels[VECTOR_SIZE_COUNT];
float maxError0 = 0.0f;
float maxError1 = 0.0f;
int ftz = f->ftz || gForceFTZ;
double maxErrorVal0 = 0.0f;
double maxErrorVal1 = 0.0f;
size_t bufferSize = (gWimpyMode) ? gWimpyBufferSize : BUFFER_SIZE;
uint64_t step = getTestStep(sizeof(cl_double), bufferSize);
int scale = (int)((1ULL << 32) / (16 * bufferSize / sizeof(cl_double)) + 1);
logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);
Force64BitFPUPrecision();
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if ((error = ThreadPool_Do(BuildKernel_DoubleFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info)))
{
return error;
}
for (i = 0; i < (1ULL << 32); i += step)
{
// Init input array
double *p = (double *)gIn;
if (gWimpyMode)
{
for (j = 0; j < bufferSize / sizeof(cl_double); j++)
p[j] = DoubleFromUInt32((uint32_t)i + j * scale);
}
else
{
for (j = 0; j < bufferSize / sizeof(cl_double); j++)
p[j] = DoubleFromUInt32((uint32_t)i + j);
}
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
// write garbage into output arrays
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
error, j);
goto exit;
}
memset_pattern4(gOut2[j], &pattern, bufferSize);
if ((error =
clEnqueueWriteBuffer(gQueue, gOutBuffer2[j], CL_FALSE, 0,
bufferSize, gOut2[j], 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer2b(%d) ***\n",
error, j);
goto exit;
}
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeValues[j] * sizeof(cl_double);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gOutBuffer2[j]),
&gOutBuffer2[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error =
clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL, NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
}
// Get that moving
if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
// Calculate the correctly rounded reference result
double *r = (double *)gOut_Ref;
double *r2 = (double *)gOut_Ref2;
double *s = (double *)gIn;
for (j = 0; j < bufferSize / sizeof(cl_double); j++)
{
long double dd;
r[j] = (double)f->dfunc.f_fpf(s[j], &dd);
r2[j] = (double)dd;
}
// Read the data back
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
bufferSize, gOut[j], 0, NULL, NULL)))
{
vlog_error("ReadArray failed %d\n", error);
goto exit;
}
if ((error =
clEnqueueReadBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0,
bufferSize, gOut2[j], 0, NULL, NULL)))
{
vlog_error("ReadArray2 failed %d\n", error);
goto exit;
}
}
if (gSkipCorrectnessTesting) break;
// Verify data
uint64_t *t = (uint64_t *)gOut_Ref;
uint64_t *t2 = (uint64_t *)gOut_Ref2;
for (j = 0; j < bufferSize / sizeof(double); j++)
{
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
uint64_t *q = (uint64_t *)(gOut[k]);
uint64_t *q2 = (uint64_t *)(gOut2[k]);
// If we aren't getting the correctly rounded result
if (t[j] != q[j] || t2[j] != q2[j])
{
double test = ((double *)q)[j];
double test2 = ((double *)q2)[j];
long double correct2;
long double correct = f->dfunc.f_fpf(s[j], &correct2);
float err = Bruteforce_Ulp_Error_Double(test, correct);
float err2 = Bruteforce_Ulp_Error_Double(test2, correct2);
int fail = !(fabsf(err) <= f->double_ulps
&& fabsf(err2) <= f->double_ulps);
if (ftz)
{
// retry per section 6.5.3.2
if (IsDoubleResultSubnormal(correct, f->double_ulps))
{
if (IsDoubleResultSubnormal(correct2,
f->double_ulps))
{
fail = fail && !(test == 0.0f && test2 == 0.0f);
if (!fail)
{
err = 0.0f;
err2 = 0.0f;
}
}
else
{
fail = fail
&& !(test == 0.0f
&& fabsf(err2) <= f->double_ulps);
if (!fail) err = 0.0f;
}
}
else if (IsDoubleResultSubnormal(correct2,
f->double_ulps))
{
fail = fail
&& !(test2 == 0.0f
&& fabsf(err) <= f->double_ulps);
if (!fail) err2 = 0.0f;
}
// retry per section 6.5.3.3
if (IsDoubleSubnormal(s[j]))
{
long double correct2p, correct2n;
long double correctp =
f->dfunc.f_fpf(0.0, &correct2p);
long double correctn =
f->dfunc.f_fpf(-0.0, &correct2n);
float errp =
Bruteforce_Ulp_Error_Double(test, correctp);
float err2p =
Bruteforce_Ulp_Error_Double(test, correct2p);
float errn =
Bruteforce_Ulp_Error_Double(test, correctn);
float err2n =
Bruteforce_Ulp_Error_Double(test, correct2n);
fail = fail
&& ((!(fabsf(errp) <= f->double_ulps))
&& (!(fabsf(err2p) <= f->double_ulps))
&& ((!(fabsf(errn) <= f->double_ulps))
&& (!(fabsf(err2n)
<= f->double_ulps))));
if (fabsf(errp) < fabsf(err)) err = errp;
if (fabsf(errn) < fabsf(err)) err = errn;
if (fabsf(err2p) < fabsf(err2)) err2 = err2p;
if (fabsf(err2n) < fabsf(err2)) err2 = err2n;
// retry per section 6.5.3.4
if (IsDoubleResultSubnormal(correctp,
f->double_ulps)
|| IsDoubleResultSubnormal(correctn,
f->double_ulps))
{
if (IsDoubleResultSubnormal(correct2p,
f->double_ulps)
|| IsDoubleResultSubnormal(correct2n,
f->double_ulps))
{
fail = fail
&& !(test == 0.0f && test2 == 0.0f);
if (!fail) err = err2 = 0.0f;
}
else
{
fail = fail
&& !(test == 0.0f
&& fabsf(err2) <= f->double_ulps);
if (!fail) err = 0.0f;
}
}
else if (IsDoubleResultSubnormal(correct2p,
f->double_ulps)
|| IsDoubleResultSubnormal(correct2n,
f->double_ulps))
{
fail = fail
&& !(test2 == 0.0f
&& (fabsf(err) <= f->double_ulps));
if (!fail) err2 = 0.0f;
}
}
}
if (fabsf(err) > maxError0)
{
maxError0 = fabsf(err);
maxErrorVal0 = s[j];
}
if (fabsf(err2) > maxError1)
{
maxError1 = fabsf(err2);
maxErrorVal1 = s[j];
}
if (fail)
{
vlog_error(
"\nERROR: %sD%s: {%f, %f} ulp error at %.13la: "
"*{%.13la, %.13la} vs. {%.13la, %.13la}\n",
f->name, sizeNames[k], err, err2,
((double *)gIn)[j], ((double *)gOut_Ref)[j],
((double *)gOut_Ref2)[j], test, test2);
error = -1;
goto exit;
}
}
}
}
if (0 == (i & 0x0fffffff))
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step,
bufferSize);
}
else
{
vlog(".");
}
fflush(stdout);
}
}
if (!gSkipCorrectnessTesting)
{
if (gWimpyMode)
vlog("Wimp pass");
else
vlog("passed");
}
if (gMeasureTimes)
{
// Init input array
double *p = (double *)gIn;
for (j = 0; j < bufferSize / sizeof(double); j++)
p[j] = DoubleFromUInt32(genrand_int32(d));
if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
bufferSize, gIn, 0, NULL, NULL)))
{
vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
return error;
}
// Run the kernels
for (j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
{
size_t vectorSize = sizeValues[j] * sizeof(cl_double);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
&gOutBuffer[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 1, sizeof(gOutBuffer2[j]),
&gOutBuffer2[j])))
{
LogBuildError(programs[j]);
goto exit;
}
if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer),
&gInBuffer)))
{
LogBuildError(programs[j]);
goto exit;
}
double sum = 0.0;
double bestTime = INFINITY;
for (k = 0; k < PERF_LOOP_COUNT; k++)
{
uint64_t startTime = GetTime();
if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
&localCount, NULL, 0, NULL,
NULL)))
{
vlog_error("FAILED -- could not execute kernel\n");
goto exit;
}
// Make sure OpenCL is done
if ((error = clFinish(gQueue)))
{
vlog_error("Error %d at clFinish\n", error);
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime(endTime, startTime);
sum += time;
if (time < bestTime) bestTime = time;
}
if (gReportAverageTimes) bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double)gDeviceFrequency
* gComputeDevices * gSimdSize * 1e6
/ (bufferSize / sizeof(double));
vlog_perf(clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sD%s",
f->name, sizeNames[j]);
}
for (; j < gMaxVectorSizeIndex; j++) vlog("\t -- ");
}
if (!gSkipCorrectnessTesting)
vlog("\t{%8.2f, %8.2f} @ {%a, %a}", maxError0, maxError1, maxErrorVal0,
maxErrorVal1);
vlog("\n");
exit:
// Release
for (k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}