blob: 31bb0a215145fcfd3cefd98b1689a4e648a4c36a [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <stdio.h>
#include <stdlib.h>
#include "procs.h"
#include "harness/errorHelpers.h"
#define MAX_SUB_DEVICES 16 // Limit the sub-devices to ensure no out of resource errors.
#define MEM_OBJ_SIZE 1024
#define IMAGE_DIM 16
// Kernel source code
static const char *image_migrate_kernel_code =
"__kernel void test_image_migrate(write_only image2d_t dst, read_only image2d_t src1,\n"
" read_only image2d_t src2, sampler_t sampler, uint x)\n"
"{\n"
" int tidX = get_global_id(0), tidY = get_global_id(1);\n"
" int2 coords = (int2) {tidX, tidY};\n"
" uint4 val = read_imageui(src1, sampler, coords) ^\n"
" read_imageui(src2, sampler, coords) ^\n"
" x;\n"
" write_imageui(dst, coords, val);\n"
"}\n";
enum migrations { MIGRATE_PREFERRED, // migrate to the preferred sub-device
MIGRATE_NON_PREFERRED, // migrate to a randomly chosen non-preferred sub-device
MIGRATE_RANDOM, // migrate to a randomly chosen sub-device with randomly chosen flags
NUMBER_OF_MIGRATIONS };
static cl_mem init_image(cl_command_queue cmd_q, cl_mem image, cl_uint *data)
{
cl_int err;
size_t origin[3] = {0, 0, 0};
size_t region[3] = {IMAGE_DIM, IMAGE_DIM, 1};
if (image) {
if ((err = clEnqueueWriteImage(cmd_q, image, CL_TRUE,
origin, region, 0, 0, data, 0, NULL, NULL)) != CL_SUCCESS) {
print_error(err, "Failed on enqueue write of image data.");
}
}
return image;
}
static cl_int migrateMemObject(enum migrations migrate, cl_command_queue *queues, cl_mem *mem_objects,
cl_uint num_devices, cl_mem_migration_flags *flags, MTdata d)
{
cl_uint i, j;
cl_int err = CL_SUCCESS;
for (i=0; i<num_devices; i++) {
j = genrand_int32(d) % num_devices;
flags[i] = 0;
switch (migrate) {
case MIGRATE_PREFERRED:
// Force the device to be preferred
j = i;
break;
case MIGRATE_NON_PREFERRED:
// Coerce the device to be non-preferred
if ((j == i) && (num_devices > 1)) j = (j+1) % num_devices;
break;
case MIGRATE_RANDOM:
// Choose a random set of flags
flags[i] = (cl_mem_migration_flags)(genrand_int32(d) & (CL_MIGRATE_MEM_OBJECT_HOST | CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED));
break;
default: log_error("Unhandled migration type: %d\n", migrate); return -1;
}
if ((err = clEnqueueMigrateMemObjects(queues[j], 1, (const cl_mem *)(&mem_objects[i]),
flags[i], 0, NULL, NULL)) != CL_SUCCESS) {
print_error(err, "Failed migrating memory object.");
}
}
return err;
}
static cl_int restoreImage(cl_command_queue *queues, cl_mem *mem_objects, cl_uint num_devices,
cl_mem_migration_flags *flags, cl_uint *buffer)
{
cl_uint i;
cl_int err;
const size_t origin[3] = {0, 0, 0};
const size_t region[3] = {IMAGE_DIM, IMAGE_DIM, 1};
// If the image was previously migrated with undefined content, reload the content.
for (i=0; i<num_devices; i++) {
if (flags[i] & CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED) {
if ((err = clEnqueueWriteImage(queues[i], mem_objects[i], CL_TRUE,
origin, region, 0, 0, buffer, 0, NULL, NULL)) != CL_SUCCESS) {
print_error(err, "Failed on restoration enqueue write of image data.");
return err;
}
}
}
return CL_SUCCESS;
}
int test_image_migrate(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
int failed = 0;
cl_uint i, j;
cl_int err;
cl_uint max_sub_devices = 0;
cl_uint num_devices, num_devices_limited;
cl_uint A[MEM_OBJ_SIZE], B[MEM_OBJ_SIZE], C[MEM_OBJ_SIZE];
cl_uint test_number = 1;
cl_device_affinity_domain domain, domains;
cl_device_id *devices;
cl_command_queue *queues;
cl_mem_migration_flags *flagsA, *flagsB, *flagsC;
cl_device_partition_property property[] = {CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN, 0, 0};
cl_mem *imageA, *imageB, *imageC;
cl_mem_flags flags;
cl_image_format format;
cl_sampler sampler = NULL;
cl_program program = NULL;
cl_kernel kernel = NULL;
cl_context ctx = NULL;
enum migrations migrateA, migrateB, migrateC;
MTdata d = init_genrand(gRandomSeed);
const size_t wgs[2] = {IMAGE_DIM, IMAGE_DIM};
const size_t wls[2] = {1, 1};
// Check for image support.
if(checkForImageSupport(deviceID) == CL_IMAGE_FORMAT_NOT_SUPPORTED) {
log_info("Device does not support images. Skipping test.\n");
return 0;
}
// Allocate arrays whose size varies according to the maximum number of sub-devices.
if ((err = clGetDeviceInfo(deviceID, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(max_sub_devices), &max_sub_devices, NULL)) != CL_SUCCESS) {
print_error(err, "clGetDeviceInfo(CL_DEVICE_MAX_COMPUTE_UNITS) failed");
return -1;
}
if (max_sub_devices < 1) {
log_error("ERROR: Invalid number of compute units returned.\n");
return -1;
}
devices = (cl_device_id *)malloc(max_sub_devices * sizeof(cl_device_id));
queues = (cl_command_queue *)malloc(max_sub_devices * sizeof(cl_command_queue));
flagsA = (cl_mem_migration_flags *)malloc(max_sub_devices * sizeof(cl_mem_migration_flags));
flagsB = (cl_mem_migration_flags *)malloc(max_sub_devices * sizeof(cl_mem_migration_flags));
flagsC = (cl_mem_migration_flags *)malloc(max_sub_devices * sizeof(cl_mem_migration_flags));
imageA = (cl_mem *)malloc(max_sub_devices * sizeof(cl_mem));
imageB = (cl_mem *)malloc(max_sub_devices * sizeof(cl_mem));
imageC = (cl_mem *)malloc(max_sub_devices * sizeof(cl_mem));
if ((devices == NULL) || (queues == NULL) ||
(flagsA == NULL) || (flagsB == NULL) || (flagsC == NULL) ||
(imageA == NULL) || (imageB == NULL) || (imageC == NULL)) {
log_error("ERROR: Failed to successfully allocate required local buffers.\n");
failed = -1;
goto cleanup_allocations;
}
for (i=0; i<max_sub_devices; i++) {
devices[i] = NULL;
queues [i] = NULL;
imageA[i] = imageB[i] = imageC[i] = NULL;
}
for (i=0; i<MEM_OBJ_SIZE; i++) {
A[i] = genrand_int32(d);
B[i] = genrand_int32(d);
}
// Set image format.
format.image_channel_order = CL_RGBA;
format.image_channel_data_type = CL_UNSIGNED_INT32;
// Attempt to partition the device along each of the allowed affinity domain.
if ((err = clGetDeviceInfo(deviceID, CL_DEVICE_PARTITION_AFFINITY_DOMAIN, sizeof(domains), &domains, NULL)) != CL_SUCCESS) {
print_error(err, "clGetDeviceInfo(CL_PARTITION_AFFINITY_DOMAIN) failed");
return -1;
}
domains &= (CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE | CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE |
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE | CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE | CL_DEVICE_AFFINITY_DOMAIN_NUMA);
do {
if (domains) {
for (domain = 1; (domain & domains) == 0; domain <<= 1) {};
domains &= ~domain;
} else {
domain = 0;
}
// Determine the number of partitions for the device given the specific domain.
if (domain) {
property[1] = domain;
err = clCreateSubDevices(deviceID, (const cl_device_partition_property *)property, -1, NULL, &num_devices);
if ((err != CL_SUCCESS) || (num_devices == 0)) {
print_error(err, "Obtaining the number of partions by affinity failed.");
failed = 1;
goto cleanup;
}
} else {
num_devices = 1;
}
if (num_devices > 1) {
// Create each of the sub-devices and a corresponding context.
if ((err = clCreateSubDevices(deviceID, (const cl_device_partition_property *)property, num_devices, devices, &num_devices)) != CL_SUCCESS) {
print_error(err, "Failed creating sub devices.");
failed = 1;
goto cleanup;
}
// Create a context containing all the sub-devices
ctx = clCreateContext(NULL, num_devices, devices, notify_callback, NULL, &err);
if (ctx == NULL) {
print_error(err, "Failed creating context containing the sub-devices.");
failed = 1;
goto cleanup;
}
// Create a command queue for each sub-device
for (i=0; i<num_devices; i++) {
if (devices[i]) {
if ((queues[i] = clCreateCommandQueue(ctx, devices[i], 0, &err)) == NULL) {
print_error(err, "Failed creating command queues.");
failed = 1;
goto cleanup;
}
}
}
} else {
// No partitioning available. Just exercise the APIs on a single device.
devices[0] = deviceID;
queues[0] = queue;
ctx = context;
}
// Build the kernel program.
if ((err = create_single_kernel_helper(ctx, &program, &kernel, 1,
&image_migrate_kernel_code,
"test_image_migrate")))
{
print_error(err, "Failed creating kernel.");
failed = 1;
goto cleanup;
}
// Create sampler.
sampler = clCreateSampler(ctx, CL_FALSE, CL_ADDRESS_CLAMP, CL_FILTER_NEAREST, &err );
if ((err != CL_SUCCESS) || !sampler) {
print_error(err, "Failed to create a sampler.");
failed = 1;
goto cleanup;
}
num_devices_limited = num_devices;
// Allocate memory buffers. 3 buffers (2 input, 1 output) for each sub-device.
// If we run out of memory, then restrict the number of sub-devices to be tested.
for (i=0; i<num_devices; i++) {
imageA[i] = init_image(queues[i], create_image_2d(ctx, (CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR),
&format, IMAGE_DIM, IMAGE_DIM, 0, NULL, &err), A);
imageB[i] = init_image(queues[i], create_image_2d(ctx, (CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR),
&format, IMAGE_DIM, IMAGE_DIM, 0, NULL, &err), B);
imageC[i] = create_image_2d(ctx, (CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR),
&format, IMAGE_DIM, IMAGE_DIM, 0, NULL, &err);
if ((imageA[i] == NULL) || (imageB[i] == NULL) || (imageC[i] == NULL)) {
if (i == 0) {
log_error("Failed to allocate even 1 set of buffers.\n");
failed = 1;
goto cleanup;
}
num_devices_limited = i;
break;
}
}
// For each partition, we will execute the test kernel with each of the 3 buffers migrated to one of the migrate options
for (migrateA=(enum migrations)(0); migrateA<NUMBER_OF_MIGRATIONS; migrateA = (enum migrations)((int)migrateA + 1)) {
if (migrateMemObject(migrateA, queues, imageA, num_devices_limited, flagsA, d) != CL_SUCCESS) {
failed = 1;
goto cleanup;
}
for (migrateC=(enum migrations)(0); migrateC<NUMBER_OF_MIGRATIONS; migrateC = (enum migrations)((int)migrateC + 1)) {
if (migrateMemObject(migrateC, queues, imageC, num_devices_limited, flagsC, d) != CL_SUCCESS) {
failed = 1;
goto cleanup;
}
for (migrateB=(enum migrations)(0); migrateB<NUMBER_OF_MIGRATIONS; migrateB = (enum migrations)((int)migrateB + 1)) {
if (migrateMemObject(migrateB, queues, imageB, num_devices_limited, flagsB, d) != CL_SUCCESS) {
failed = 1;
goto cleanup;
}
// Run the test on each of the partitions.
for (i=0; i<num_devices_limited; i++) {
cl_uint x;
x = i + test_number;
if ((err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (const void *)&imageC[i])) != CL_SUCCESS) {
print_error(err, "Failed set kernel argument 0.");
failed = 1;
goto cleanup;
}
if ((err = clSetKernelArg(kernel, 1, sizeof(cl_mem), (const void *)&imageA[i])) != CL_SUCCESS) {
print_error(err, "Failed set kernel argument 1.");
failed = 1;
goto cleanup;
}
if ((err = clSetKernelArg(kernel, 2, sizeof(cl_mem), (const void *)&imageB[i])) != CL_SUCCESS) {
print_error(err, "Failed set kernel argument 2.");
failed = 1;
goto cleanup;
}
if ((err = clSetKernelArg(kernel, 3, sizeof(cl_sampler), (const void *)&sampler)) != CL_SUCCESS) {
print_error(err, "Failed set kernel argument 3.");
failed = 1;
goto cleanup;
}
if ((err = clSetKernelArg(kernel, 4, sizeof(cl_uint), (const void *)&x)) != CL_SUCCESS) {
print_error(err, "Failed set kernel argument 4.");
failed = 1;
goto cleanup;
}
if ((err = clEnqueueNDRangeKernel(queues[i], kernel, 2, NULL, wgs, wls, 0, NULL, NULL)) != CL_SUCCESS) {
print_error(err, "Failed enqueueing the NDRange kernel.");
failed = 1;
goto cleanup;
}
}
// Verify the results as long as neither input is an undefined migration
const size_t origin[3] = {0, 0, 0};
const size_t region[3] = {IMAGE_DIM, IMAGE_DIM, 1};
for (i=0; i<num_devices_limited; i++, test_number++) {
if (((flagsA[i] | flagsB[i]) & CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED) == 0) {
if ((err = clEnqueueReadImage(queues[i], imageC[i], CL_TRUE,
origin, region, 0, 0, C, 0, NULL, NULL)) != CL_SUCCESS) {
print_error(err, "Failed reading output buffer.");
failed = 1;
goto cleanup;
}
for (j=0; j<MEM_OBJ_SIZE; j++) {
cl_uint expected;
expected = A[j] ^ B[j] ^ test_number;
if (C[j] != expected) {
log_error("Failed on device %d, work item %4d, expected 0x%08x got 0x%08x (0x%08x ^ 0x%08x ^ 0x%08x)\n", i, j, expected, C[j], A[j], B[j], test_number);
failed = 1;
}
}
if (failed) goto cleanup;
}
}
if (restoreImage(queues, imageB, num_devices_limited, flagsB, B) != CL_SUCCESS) {
failed = 1;
goto cleanup;
}
}
}
if (restoreImage(queues, imageA, num_devices_limited, flagsA, A) != CL_SUCCESS) {
failed = 1;
goto cleanup;
}
}
cleanup:
// Clean up all the allocted resources create by the test. This includes sub-devices,
// command queues, and memory buffers.
for (i=0; i<max_sub_devices; i++) {
// Memory buffer cleanup
if (imageA[i]) {
if ((err = clReleaseMemObject(imageA[i])) != CL_SUCCESS) {
print_error(err, "Failed releasing memory object.");
failed = 1;
}
}
if (imageB[i]) {
if ((err = clReleaseMemObject(imageB[i])) != CL_SUCCESS) {
print_error(err, "Failed releasing memory object.");
failed = 1;
}
}
if (imageC[i]) {
if ((err = clReleaseMemObject(imageC[i])) != CL_SUCCESS) {
print_error(err, "Failed releasing memory object.");
failed = 1;
}
}
if (num_devices > 1) {
// Command queue cleanup
if (queues[i]) {
if ((err = clReleaseCommandQueue(queues[i])) != CL_SUCCESS) {
print_error(err, "Failed releasing command queue.");
failed = 1;
}
}
// Sub-device cleanup
if (devices[i]) {
if ((err = clReleaseDevice(devices[i])) != CL_SUCCESS) {
print_error(err, "Failed releasing sub device.");
failed = 1;
}
}
devices[i] = 0;
}
}
// Sampler cleanup
if (sampler) {
if ((err = clReleaseSampler(sampler)) != CL_SUCCESS) {
print_error(err, "Failed releasing sampler.");
failed = 1;
}
sampler = NULL;
}
// Context, program, and kernel cleanup
if (program) {
if ((err = clReleaseProgram(program)) != CL_SUCCESS) {
print_error(err, "Failed releasing program.");
failed = 1;
}
program = NULL;
}
if (kernel) {
if ((err = clReleaseKernel(kernel)) != CL_SUCCESS) {
print_error(err, "Failed releasing kernel.");
failed = 1;
}
kernel = NULL;
}
if (ctx && (ctx != context)) {
if ((err = clReleaseContext(ctx)) != CL_SUCCESS) {
print_error(err, "Failed releasing context.");
failed = 1;
}
}
ctx = NULL;
if (failed) goto cleanup_allocations;
} while (domains);
cleanup_allocations:
if (devices) free(devices);
if (queues) free(queues);
if (flagsA) free(flagsA);
if (flagsB) free(flagsB);
if (flagsC) free(flagsC);
if (imageA) free(imageA);
if (imageB) free(imageB);
if (imageC) free(imageC);
return ((failed) ? -1 : 0);
}