blob: 16441a47ca117ef52a83e9efc3285ace700a412d [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "testBase.h"
#if defined( __APPLE__ )
#include <OpenGL/glu.h>
#else
#include <GL/glu.h>
#endif
const char *get_kernel_suffix( cl_image_format *format )
{
switch( format->image_channel_data_type )
{
case CL_UNORM_INT8:
case CL_UNORM_INT16:
case CL_UNORM_INT24:
case CL_SNORM_INT8:
case CL_SNORM_INT16:
case CL_HALF_FLOAT:
case CL_FLOAT:
case CL_UNORM_INT_101010:
return "f";
case CL_SIGNED_INT8:
case CL_SIGNED_INT16:
case CL_SIGNED_INT32:
return "i";
case CL_UNSIGNED_INT8:
case CL_UNSIGNED_INT16:
case CL_UNSIGNED_INT32:
return "ui";
default:
log_error("Test error: unsupported kernel suffix for image_channel_data_type 0x%X\n",format->image_channel_data_type);
return "";
}
}
ExplicitType get_read_kernel_type( cl_image_format *format )
{
switch( format->image_channel_data_type )
{
case CL_UNORM_INT8:
case CL_UNORM_INT16:
case CL_UNORM_INT24:
case CL_SNORM_INT8:
case CL_SNORM_INT16:
case CL_HALF_FLOAT:
case CL_FLOAT:
case CL_UNORM_INT_101010:
#ifdef GL_VERSION_3_2
case CL_DEPTH:
#endif
return kFloat;
case CL_SIGNED_INT8:
case CL_SIGNED_INT16:
case CL_SIGNED_INT32:
return kInt;
case CL_UNSIGNED_INT8:
case CL_UNSIGNED_INT16:
case CL_UNSIGNED_INT32:
return kUInt;
default:
log_error("Test error: unsupported kernel suffix for image_channel_data_type 0x%X\n",format->image_channel_data_type);
return kNumExplicitTypes;
}
}
ExplicitType get_write_kernel_type( cl_image_format *format )
{
switch( format->image_channel_data_type )
{
case CL_UNORM_INT8:
return kFloat;
case CL_UNORM_INT16:
return kFloat;
case CL_UNORM_INT24:
return kFloat;
case CL_SNORM_INT8:
return kFloat;
case CL_SNORM_INT16:
return kFloat;
case CL_HALF_FLOAT:
return kHalf;
case CL_FLOAT:
return kFloat;
case CL_SIGNED_INT8:
return kChar;
case CL_SIGNED_INT16:
return kShort;
case CL_SIGNED_INT32:
return kInt;
case CL_UNSIGNED_INT8:
return kUChar;
case CL_UNSIGNED_INT16:
return kUShort;
case CL_UNSIGNED_INT32:
return kUInt;
case CL_UNORM_INT_101010:
return kFloat;
#ifdef GL_VERSION_3_2
case CL_DEPTH:
return kFloat;
#endif
default:
return kInt;
}
}
const char* get_write_conversion( cl_image_format *format, ExplicitType type )
{
switch( format->image_channel_data_type )
{
case CL_UNORM_INT8:
case CL_UNORM_INT16:
case CL_SNORM_INT8:
case CL_SNORM_INT16:
case CL_HALF_FLOAT:
case CL_FLOAT:
case CL_UNORM_INT_101010:
case CL_UNORM_INT24:
if(type != kFloat) return "convert_float4";
break;
case CL_SIGNED_INT8:
case CL_SIGNED_INT16:
case CL_SIGNED_INT32:
if(type != kInt) return "convert_int4";
break;
case CL_UNSIGNED_INT8:
case CL_UNSIGNED_INT16:
case CL_UNSIGNED_INT32:
if(type != kUInt) return "convert_uint4";
break;
default:
return "";
}
return "";
}
// The only three input types to this function are kInt, kUInt and kFloat, due to the way we set up our tests
// The output types, though, are pretty much anything valid for GL to receive
#define DOWNSCALE_INTEGER_CASE( enum, type, bitShift ) \
case enum: \
{ \
cl_##type *dst = new cl_##type[ numPixels * 4 ]; \
for( size_t i = 0; i < numPixels * 4; i++ ) \
dst[ i ] = src[ i ]; \
return (char *)dst; \
}
#define UPSCALE_FLOAT_CASE( enum, type, typeMax ) \
case enum: \
{ \
cl_##type *dst = new cl_##type[ numPixels * 4 ]; \
for( size_t i = 0; i < numPixels * 4; i++ ) \
dst[ i ] = (cl_##type)( src[ i ] * typeMax ); \
return (char *)dst; \
}
char * convert_to_expected( void * inputBuffer, size_t numPixels, ExplicitType inType, ExplicitType outType, size_t channelNum, GLenum glDataType )
{
#ifdef DEBUG
log_info( "- Converting from input type '%s' to output type '%s'\n",
get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
#endif
if( inType == outType )
{
char *outData = new char[ numPixels * channelNum * get_explicit_type_size(outType) ] ; // sizeof( cl_int ) ];
if (glDataType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV) {
for (size_t i = 0; i < numPixels; ++i) {
((cl_float*)outData)[i] = ((cl_float*)inputBuffer)[2 * i];
}
}
else {
memcpy( outData, inputBuffer, numPixels * channelNum * get_explicit_type_size(inType) );
}
return outData;
}
else if( inType == kChar )
{
cl_char *src = (cl_char *)inputBuffer;
switch( outType )
{
case kInt:
{
cl_int *outData = new cl_int[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_int)((src[ i ]));
}
return (char *)outData;
}
case kFloat:
{
// If we're converting to float, then CL decided that we should be normalized
cl_float *outData = new cl_float[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_float)src[ i ] / 127.0f;
}
return (char *)outData;
}
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
else if( inType == kUChar )
{
cl_uchar *src = (cl_uchar *)inputBuffer;
switch( outType )
{
case kUInt:
{
cl_uint *outData = new cl_uint[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_uint)((src[ i ]));
}
return (char *)outData;
}
case kFloat:
{
// If we're converting to float, then CL decided that we should be normalized
cl_float *outData = new cl_float[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_float)(src[ i ]) / 256.0f;
}
return (char *)outData;
}
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
else if( inType == kShort )
{
cl_short *src = (cl_short *)inputBuffer;
switch( outType )
{
case kInt:
{
cl_int *outData = new cl_int[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_int)((src[ i ]));
}
return (char *)outData;
}
case kFloat:
{
// If we're converting to float, then CL decided that we should be normalized
cl_float *outData = new cl_float[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_float)src[ i ] / 32768.0f;
}
return (char *)outData;
}
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
else if( inType == kUShort )
{
cl_ushort *src = (cl_ushort *)inputBuffer;
switch( outType )
{
case kUInt:
{
cl_uint *outData = new cl_uint[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_uint)((src[ i ]));
}
return (char *)outData;
}
case kFloat:
{
// If we're converting to float, then CL decided that we should be normalized
cl_float *outData = new cl_float[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_float)(src[ i ]) / 65535.0f;
}
return (char *)outData;
}
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
else if( inType == kInt )
{
cl_int *src = (cl_int *)inputBuffer;
switch( outType )
{
DOWNSCALE_INTEGER_CASE( kShort, short, 16 )
DOWNSCALE_INTEGER_CASE( kChar, char, 24 )
case kFloat:
{
// If we're converting to float, then CL decided that we should be normalized
cl_float *outData = new cl_float[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_float)fmaxf( (float)src[ i ] / 2147483647.f, -1.f );
}
return (char *)outData;
}
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
else if( inType == kUInt )
{
cl_uint *src = (cl_uint *)inputBuffer;
switch( outType )
{
DOWNSCALE_INTEGER_CASE( kUShort, ushort, 16 )
DOWNSCALE_INTEGER_CASE( kUChar, uchar, 24 )
case kFloat:
{
// If we're converting to float, then CL decided that we should be normalized
cl_float *outData = new cl_float[ numPixels * channelNum ];
const cl_float MaxValue = (glDataType == GL_UNSIGNED_INT_24_8) ? 16777215.f : 4294967295.f;
const cl_uint ShiftBits = (glDataType == GL_UNSIGNED_INT_24_8) ? 8 : 0;
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[ i ] = (cl_float)(src[ i ] >> ShiftBits) / MaxValue;
}
return (char *)outData;
}
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
else if( inType == kHalf )
{
cl_half *src = (cl_half *)inputBuffer;
switch( outType )
{
case kFloat:
{
cl_float *outData = new cl_float[ numPixels * channelNum ];
for( size_t i = 0; i < numPixels * channelNum; i++ )
{
outData[i] = cl_half_to_float(src[i]);
}
return (char *)outData;
}
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
else
{
cl_float *src = (cl_float *)inputBuffer;
switch( outType )
{
UPSCALE_FLOAT_CASE( kChar, char, 127.f )
UPSCALE_FLOAT_CASE( kUChar, uchar, 255.f )
UPSCALE_FLOAT_CASE( kShort, short, 32767.f )
UPSCALE_FLOAT_CASE( kUShort, ushort, 65535.f )
UPSCALE_FLOAT_CASE( kInt, int, 2147483647.f )
UPSCALE_FLOAT_CASE( kUInt, uint, 4294967295.f )
default:
log_error( "ERROR: Unsupported conversion from %s to %s!\n", get_explicit_type_name( inType ), get_explicit_type_name( outType ) );
return NULL;
}
}
return NULL;
}
int validate_integer_results( void *expectedResults, void *actualResults, size_t width, size_t height, size_t sampleNum, size_t typeSize )
{
return validate_integer_results( expectedResults, actualResults, width, height, sampleNum, 0, typeSize );
}
int validate_integer_results( void *expectedResults, void *actualResults, size_t width, size_t height, size_t depth, size_t sampleNum, size_t typeSize )
{
char *expected = (char *)expectedResults;
char *actual = (char *)actualResults;
for ( size_t s = 0; s < sampleNum; s++ )
{
for( size_t z = 0; z < ( ( depth == 0 ) ? 1 : depth ); z++ )
{
for( size_t y = 0; y < height; y++ )
{
for( size_t x = 0; x < width; x++ )
{
if( memcmp( expected, actual, typeSize * 4 ) != 0 )
{
char scratch[ 1024 ];
if( depth == 0 )
log_error( "ERROR: Data sample %d,%d,%d did not validate!\n", (int)x, (int)y, (int)s );
else
log_error( "ERROR: Data sample %d,%d,%d,%d did not validate!\n", (int)x, (int)y, (int)z, (int)s );
log_error( "\tExpected: %s\n", GetDataVectorString( expected, typeSize, 4, scratch ) );
log_error( "\t Actual: %s\n", GetDataVectorString( actual, typeSize, 4, scratch ) );
return -1;
}
expected += typeSize * 4;
actual += typeSize * 4;
}
}
}
}
return 0;
}
int validate_float_results( void *expectedResults, void *actualResults, size_t width, size_t height, size_t sampleNum, size_t channelNum )
{
return validate_float_results( expectedResults, actualResults, width, height, sampleNum, 0, channelNum );
}
int validate_float_results( void *expectedResults, void *actualResults, size_t width, size_t height, size_t depth, size_t sampleNum, size_t channelNum )
{
cl_float *expected = (cl_float *)expectedResults;
cl_float *actual = (cl_float *)actualResults;
for ( size_t s = 0; s < sampleNum; s++ )
{
for( size_t z = 0; z < ( ( depth == 0 ) ? 1 : depth ); z++ )
{
for( size_t y = 0; y < height; y++ )
{
for( size_t x = 0; x < width; x++ )
{
float err = 0.f;
for( size_t i = 0; i < channelNum; i++ )
{
float error = fabsf( expected[ i ] - actual[ i ] );
if( error > err )
err = error;
}
if( err > 1.f / 127.f ) // Max expected range of error if we converted from an 8-bit integer to a normalized float
{
if( depth == 0 )
log_error( "ERROR: Data sample %d,%d,%d did not validate!\n", (int)x, (int)y, (int)s );
else
log_error( "ERROR: Data sample %d,%d,%d,%d did not validate!\n", (int)x, (int)y, (int)z, (int)s );
if (channelNum == 4)
{
log_error( "\tExpected: %f %f %f %f\n", expected[ 0 ], expected[ 1 ], expected[ 2 ], expected[ 3 ] );
log_error( "\t : %a %a %a %a\n", expected[ 0 ], expected[ 1 ], expected[ 2 ], expected[ 3 ] );
log_error( "\t Actual: %f %f %f %f\n", actual[ 0 ], actual[ 1 ], actual[ 2 ], actual[ 3 ] );
log_error( "\t : %a %a %a %a\n", actual[ 0 ], actual[ 1 ], actual[ 2 ], actual[ 3 ] );
}
else if(channelNum == 1)
{
log_error( "\tExpected: %f\n", expected[ 0 ] );
log_error( "\t : %a\n", expected[ 0 ] );
log_error( "\t Actual: %f\n", actual[ 0 ] );
log_error( "\t : %a\n", actual[ 0 ] );
}
return -1;
}
expected += channelNum;
actual += channelNum;
}
}
}
}
return 0;
}
int validate_float_results_rgb_101010( void *expectedResults, void *actualResults, size_t width, size_t height, size_t sampleNum )
{
return validate_float_results_rgb_101010( expectedResults, actualResults, width, height, sampleNum, 0 );
}
int validate_float_results_rgb_101010( void *expectedResults, void *actualResults, size_t width, size_t height, size_t depth, size_t sampleNum )
{
cl_float *expected = (cl_float *)expectedResults;
cl_float *actual = (cl_float *)actualResults;
for ( size_t s = 0; s < sampleNum; s++ )
{
for( size_t z = 0; z < ( ( depth == 0 ) ? 1 : depth ); z++ )
{
for( size_t y = 0; y < height; y++ )
{
for( size_t x = 0; x < width; x++ )
{
float err = 0.f;
for( size_t i = 0; i < 3; i++ ) // skip the fourth channel
{
float error = fabsf( expected[ i ] - actual[ i ] );
if( error > err )
err = error;
}
if( err > 1.f / 127.f ) // Max expected range of error if we converted from an 8-bit integer to a normalized float
{
if( depth == 0 )
log_error( "ERROR: Data sample %d,%d,%d did not validate!\n", (int)x, (int)y, (int)s );
else
log_error( "ERROR: Data sample %d,%d,%d,%d did not validate!\n", (int)x, (int)y, (int)z, (int)s );
log_error( "\tExpected: %f %f %f\n", expected[ 0 ], expected[ 1 ], expected[ 2 ] );
log_error( "\t : %a %a %a\n", expected[ 0 ], expected[ 1 ], expected[ 2 ] );
log_error( "\t Actual: %f %f %f\n", actual[ 0 ], actual[ 1 ], actual[ 2 ] );
log_error( "\t : %a %a %a\n", actual[ 0 ], actual[ 1 ], actual[ 2 ] );
return -1;
}
expected += 4;
actual += 4;
}
}
}
}
return 0;
}
int CheckGLObjectInfo(cl_mem mem, cl_gl_object_type expected_cl_gl_type, GLuint expected_gl_name,
GLenum expected_cl_gl_texture_target, GLint expected_cl_gl_mipmap_level)
{
cl_gl_object_type object_type;
GLuint object_name;
GLenum texture_target;
GLint mipmap_level;
int error;
error = (*clGetGLObjectInfo_ptr)(mem, &object_type, &object_name);
test_error( error, "clGetGLObjectInfo failed");
if (object_type != expected_cl_gl_type) {
log_error("clGetGLObjectInfo did not return expected object type: expected %d, got %d.\n", expected_cl_gl_type, object_type);
return -1;
}
if (object_name != expected_gl_name) {
log_error("clGetGLObjectInfo did not return expected object name: expected %d, got %d.\n", expected_gl_name, object_name);
return -1;
}
// If we're dealing with a buffer or render buffer, we are done.
if (object_type == CL_GL_OBJECT_BUFFER || object_type == CL_GL_OBJECT_RENDERBUFFER) {
return 0;
}
// Otherwise, it's a texture-based object and requires a bit more checking.
error = (*clGetGLTextureInfo_ptr)(mem, CL_GL_TEXTURE_TARGET, sizeof(texture_target), &texture_target, NULL);
test_error( error, "clGetGLTextureInfo for CL_GL_TEXTURE_TARGET failed");
if (texture_target != expected_cl_gl_texture_target) {
log_error("clGetGLTextureInfo did not return expected texture target: expected %d, got %d.\n", expected_cl_gl_texture_target, texture_target);
return -1;
}
error = (*clGetGLTextureInfo_ptr)(mem, CL_GL_MIPMAP_LEVEL, sizeof(mipmap_level), &mipmap_level, NULL);
test_error( error, "clGetGLTextureInfo for CL_GL_MIPMAP_LEVEL failed");
if (mipmap_level != expected_cl_gl_mipmap_level) {
log_error("clGetGLTextureInfo did not return expected mipmap level: expected %d, got %d.\n", expected_cl_gl_mipmap_level, mipmap_level);
return -1;
}
return 0;
}
bool CheckGLIntegerExtensionSupport()
{
// Get the OpenGL version and supported extensions
const GLubyte *glVersion = glGetString(GL_VERSION);
const GLubyte *glExtensionList = glGetString(GL_EXTENSIONS);
// Check if the OpenGL vrsion is 3.0 or grater or GL_EXT_texture_integer is supported
return (((glVersion[0] - '0') >= 3) || (strstr((const char*)glExtensionList, "GL_EXT_texture_integer")));
}
int is_rgb_101010_supported( cl_context context, GLenum gl_target )
{
cl_image_format formatList[ 128 ];
cl_uint formatCount = 0;
unsigned int i;
int error;
cl_mem_object_type image_type;
switch (get_base_gl_target(gl_target)) {
case GL_TEXTURE_1D:
image_type = CL_MEM_OBJECT_IMAGE1D;
case GL_TEXTURE_BUFFER:
image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
break;
case GL_TEXTURE_RECTANGLE_EXT:
case GL_TEXTURE_2D:
case GL_COLOR_ATTACHMENT0:
case GL_RENDERBUFFER:
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
image_type = CL_MEM_OBJECT_IMAGE2D;
break;
case GL_TEXTURE_3D:
image_type = CL_MEM_OBJECT_IMAGE3D;
case GL_TEXTURE_1D_ARRAY:
image_type = CL_MEM_OBJECT_IMAGE1D_ARRAY;
case GL_TEXTURE_2D_ARRAY:
image_type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
break;
default:
image_type = CL_MEM_OBJECT_IMAGE2D;
}
if ((error = clGetSupportedImageFormats(context, CL_MEM_READ_WRITE,
image_type, 128, formatList,
&formatCount ))) {
return error;
}
// Check if the RGB 101010 format is supported
for( i = 0; i < formatCount; i++ )
{
if( formatList[ i ].image_channel_data_type == CL_UNORM_INT_101010 )
{
return 1;
}
}
return 0;
}