blob: def78d75265131e27a2f5fabb8b94d079e2fa58b [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "helpers.h"
#include "harness/imageHelpers.h"
#if defined( __APPLE__ )
#include <OpenGL/glu.h>
#else
#include <GL/glu.h>
#endif
#if defined(__linux__)
// On linux we dont link to GLU library to avoid comaptibility issues with
// libstdc++
// FIXME: Implement this
const GLubyte* gluErrorString (GLenum error)
{
const char* gl_Error = "OpenGL Error";
return (const GLubyte*)gl_Error;
}
#endif
void * CreateGLTexture1DArray(size_t width, size_t length,
GLenum target, GLenum glFormat, GLenum internalFormat, GLenum glType,
ExplicitType type, GLuint *outTextureID, int *outError,
bool allocateMem, MTdata d)
{
*outError = 0;
GLenum err = 0;
char * buffer;
unsigned int size = 0;
// width_in_pixels * pixel_width * number_of_images:
if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) )
{
size = width * length;
}
else
{
size = width * length * 4;
}
buffer = (char *)CreateRandomData(type, size, d);
glGenTextures( 1, outTextureID );
glBindTexture( get_base_gl_target( target ), *outTextureID );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
glTexParameteri( get_base_gl_target( target ), GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( get_base_gl_target( target ), GL_TEXTURE_MAG_FILTER, GL_NEAREST );
err = glGetError();
if( err != GL_NO_ERROR ) {
log_error( "ERROR: Failed to create GL texture object: %s!\n", gluErrorString( err ));
*outError = -1;
free( buffer );
return NULL;
}
// use TexImage2D to pump the 1D array fill of bits:
glTexImage2D( get_base_gl_target(target), 0, internalFormat, (GLsizei)width,
(GLsizei)length, 0, glFormat, glType, buffer );
err = glGetError();
if( err != GL_NO_ERROR ) {
if (err != GL_OUT_OF_MEMORY) {
log_error( "ERROR: Unable to load data using glTexImage2D for "
"TEXTURE_1D_ARRAY : %s : %s : %d : %d : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
(int)(width), (int)(length),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -1;
} else {
log_info( "WARNING: Unable to load data using glTexImage2D for "
"TEXTURE_1D_ARRAY : %s : %s : %d : %d : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
(int)(width), (int)(length),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -2;
}
free( buffer );
return NULL;
}
if( !allocateMem ) {
free( buffer );
return NULL;
}
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * length; i++ ) {
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * length; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
return buffer;
}
void * CreateGLTexture2DArray(size_t width, size_t height, size_t length,
GLenum target, GLenum glFormat, GLenum internalFormat, GLenum glType,
ExplicitType type, GLuint *outTextureID, int *outError,
bool allocateMem, MTdata d)
{
*outError = 0;
char * buffer;
unsigned int size = 0;
if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) )
{
size = width * height * length;
}
else
{
size = width * height * length * 4;
}
buffer = (char *)CreateRandomData(type, size, d);
if( type == kFloat && allocateMem )
{
// Re-fill the created buffer to just have [0-1] floats, since that's what it'd expect
cl_float *p = (cl_float *)buffer;
for( size_t i = 0; i < size; i++ )
{
p[ i ] = (float) genrand_real1( d );
}
}
else if( !allocateMem )
memset( buffer, 0, size * get_explicit_type_size( type ) );
glGenTextures( 1, outTextureID );
glBindTexture( target, *outTextureID );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
glTexParameteri( target, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( target, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
glGetError();
//the default alignment in OpenGL is 4 bytes and need to be changed for GL_DEPTH_COMPONENT16 which is aligned to 2 bytes
if (internalFormat == GL_DEPTH_COMPONENT16)
glPixelStorei(GL_UNPACK_ALIGNMENT, get_explicit_type_size( type ));
glTexImage3D( target, 0, internalFormat, (GLsizei)width, (GLsizei)height,
(GLsizei)length, 0, glFormat, glType, buffer );
if (internalFormat == GL_DEPTH_COMPONENT16)
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
GLenum err = glGetError();
if( err != GL_NO_ERROR )
{
if (err != GL_OUT_OF_MEMORY) {
log_error( "ERROR: Unable to load data into GL texture (%s) format %s "
"type %s internal format %s\n", gluErrorString( err ),
GetGLFormatName( glFormat ), get_explicit_type_name( type ),
GetGLFormatName( internalFormat ) );
*outError = -1;
} else {
log_info( "WARNING: Unable to load data into GL texture (%s) format %s "
"type %s internal format %s\n", gluErrorString( err ),
GetGLFormatName( glFormat ), get_explicit_type_name( type ),
GetGLFormatName( internalFormat ) );
*outError = -2;
}
delete [] buffer;
return NULL;
}
if( !allocateMem )
{
delete [] buffer;
return NULL;
}
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * height * length; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * length; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
return buffer;
}
void * CreateGLTextureBuffer(size_t width, GLenum target,
GLenum glFormat, GLenum internalFormat, GLenum glType, ExplicitType type,
GLuint *outTex, GLuint *outBuf, int *outError, bool allocateMem, MTdata d)
{
// First, generate a regular GL Buffer from random data.
*outError = 0;
GLenum err = 0;
char * buffer;
unsigned int size = 0;
// The buffer should be the array width * number of elements * element pitch
if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) )
{
size = width;
}
else
{
size = width * 4;
}
buffer = (char*)CreateRandomData(type, size, d);
err = glGetError();
glGenBuffers(1, outBuf);
glBindBuffer(GL_TEXTURE_BUFFER, *outBuf);
// Need to multiply by the type size:
size *= ( GetGLTypeSize( GetGLTypeForExplicitType(type) ) );
glBufferData(GL_TEXTURE_BUFFER, size, buffer, GL_DYNAMIC_DRAW);
// Now make a Texture out of this Buffer:
glGenTextures(1, outTex);
glBindTexture(GL_TEXTURE_BUFFER, *outTex);
glTexBuffer(GL_TEXTURE_BUFFER, internalFormat, *outBuf);
if ((err = glGetError())) {
log_error( "ERROR: Unable to load data into glTexBuffer : %s : %s : %d : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
(int)(size),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -1;
delete [] buffer;
return NULL;
}
if( !allocateMem ) {
free( buffer );
return NULL;
}
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width; i++ ) {
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
return buffer;
}
void* CreateGLTexture1D( size_t width, GLenum target, GLenum glFormat,
GLenum internalFormat, GLenum glType, ExplicitType type,
GLuint *outTextureID, int *outError, bool allocateMem, MTdata d )
{
*outError = 0;
GLenum err = 0;
char * buffer;
unsigned int size = 0;
// The buffer should be the array width * number of elements * element pitch
if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) )
{
size = width;
}
else
{
size = width * 4;
}
buffer = (char*)CreateRandomData(type, size, d);
glGenTextures( 1, outTextureID );
glBindTexture( get_base_gl_target( target ), *outTextureID );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
glTexParameteri( get_base_gl_target( target ), GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( get_base_gl_target( target ), GL_TEXTURE_MAG_FILTER, GL_NEAREST );
err = glGetError();
if( err != GL_NO_ERROR )
{
log_error( "ERROR: Failed to create GL texture object: %s!\n", gluErrorString( err ));
*outError = -1;
free( buffer );
return NULL;
}
glTexImage1D( get_base_gl_target(target), 0, internalFormat, (GLsizei)width,
0, glFormat, glType, buffer );
err = glGetError();
if( err != GL_NO_ERROR )
{
if (err != GL_OUT_OF_MEMORY) {
log_error( "ERROR: Unable to load data into glTexImage1D : %s : %s : %d : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
(int)(width),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -1;
} else {
log_info( "WARNING: Unable to load data into glTexImage1D : %s : %s : %d : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
(int)(width),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -2;
}
free( buffer );
return NULL;
}
if( !allocateMem ) {
free( buffer );
return NULL;
}
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width; i++ ) {
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
return buffer;
}
void * CreateGLTexture2D( size_t width, size_t height,
GLenum target, GLenum glFormat,
GLenum internalFormat, GLenum glType,
ExplicitType type, GLuint *outTextureID,
int *outError, bool allocateMem, MTdata d )
{
*outError = 0;
GLenum err = 0;
char * buffer;
unsigned int size = 0;
if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) )
{
size = width * height;
}
else
{
size = width * height * 4;
}
buffer = (char *)CreateRandomData(type, size, d);
glGenTextures( 1, outTextureID );
glBindTexture( get_base_gl_target( target ), *outTextureID );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
glTexParameteri( get_base_gl_target( target ), GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( get_base_gl_target( target ), GL_TEXTURE_MAG_FILTER, GL_NEAREST );
err = glGetError();
if( err != GL_NO_ERROR )
{
log_error( "ERROR: Failed to create GL texture object: %s!\n", gluErrorString( err ));
*outError = -1;
free( buffer );
return NULL;
}
if( get_base_gl_target( target ) == GL_TEXTURE_CUBE_MAP )
{
char * temp = (char *)malloc(size * get_explicit_type_size( type ) * sizeof(cl_char));
if(allocateMem)
memcpy( temp, buffer, size * get_explicit_type_size( type ) );
else
memset( temp, 0, size * get_explicit_type_size( type ) );
glTexImage2D( GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, internalFormat, (GLsizei)width, (GLsizei)height, 0, glFormat, glType, temp );
glTexImage2D( GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, internalFormat, (GLsizei)width, (GLsizei)height, 0, glFormat, glType, temp );
glTexImage2D( GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, internalFormat, (GLsizei)width, (GLsizei)height, 0, glFormat, glType, temp );
glTexImage2D( GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, internalFormat, (GLsizei)width, (GLsizei)height, 0, glFormat, glType, temp );
glTexImage2D( GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, internalFormat, (GLsizei)width, (GLsizei)height, 0, glFormat, glType, temp );
glTexImage2D( GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, internalFormat, (GLsizei)width, (GLsizei)height, 0, glFormat, glType, temp );
free(temp);
}
else
{
#ifdef DEBUG
log_info("- glTexImage2D : %s : %s : %d : %d : %s : %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
width, height,
GetGLFormatName(glFormat),
GetGLTypeName(glType));
DumpGLBuffer(glType, width, height, buffer);
#endif
//the default alignment in OpenGL is 4 bytes and need to be changed for GL_DEPTH_COMPONENT16 which is aligned to 2 bytes
if (internalFormat == GL_DEPTH_COMPONENT16)
glPixelStorei(GL_UNPACK_ALIGNMENT, get_explicit_type_size( type ));
glTexImage2D( get_base_gl_target(target), 0, internalFormat, (GLsizei)width, (GLsizei)height, 0, glFormat, glType, buffer );
if (internalFormat == GL_DEPTH_COMPONENT16)
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
}
err = glGetError();
if( err != GL_NO_ERROR )
{
if (err != GL_OUT_OF_MEMORY) {
log_error( "ERROR: Unable to load data into glTexImage2D : %s : %s : %d : %d : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
(int)(width), (int)(height),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -1;
} else {
log_info( "WARNING: Unable to load data into glTexImage2D : %s : %s : %d : %d : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(internalFormat),
(int)(width), (int)(height),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -2;
}
free( buffer );
return NULL;
}
#ifdef DEBUG
char * test = (char *)malloc(width * height * 4 * get_explicit_type_size( type ));
memset(test, 0, width * height * 4 * get_explicit_type_size( type ));
if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) )
{
glFormat = GL_RGBA;
glType = GL_FLOAT;
}
log_info("- glGetTexImage : %s : %s : %s\n",
GetGLTargetName(target),
GetGLFormatName(glFormat),
GetGLTypeName(glType));
glGetTexImage(target, 0, glFormat, glType, test);
DumpGLBuffer(glType, width, height, test);
free(test);
err = glGetError();
if( err != GL_NO_ERROR )
{
log_error( "ERROR: Unable to read data from glGetTexImage : %s : %s : %s : Error %s\n",
GetGLTargetName(target),
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
return NULL;
}
#endif
if( !allocateMem )
{
free( buffer );
return NULL;
}
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * height; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * height; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
return buffer;
}
void * CreateGLTexture3D( size_t width, size_t height, size_t depth,
GLenum target, GLenum glFormat,
GLenum internalFormat, GLenum glType,
ExplicitType type, GLuint *outTextureID,
int *outError, MTdata d, bool allocateMem)
{
*outError = 0;
char * buffer;
unsigned int size = 0;
if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) )
{
size = width * height * depth;
}
else
{
size = width * height * depth * 4;
}
buffer = (char *)create_random_data( type, d, size );
if( type == kFloat && allocateMem )
{
// Re-fill the created buffer to just have [0-1] floats, since that's what it'd expect
cl_float *p = (cl_float *)buffer;
for( size_t i = 0; i < size; i++ )
{
p[ i ] = (float) genrand_real1( d );
}
}
else if( !allocateMem )
memset( buffer, 0, size * get_explicit_type_size( type ) );
glGenTextures( 1, outTextureID );
glBindTexture( target, *outTextureID );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
glTexParameteri( target, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( target, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
glGetError();
glTexImage3D( target, 0, internalFormat, (GLsizei)width, (GLsizei)height, (GLsizei)depth, 0, glFormat, glType, buffer );
GLenum err = glGetError();
if( err != GL_NO_ERROR )
{
if (err != GL_OUT_OF_MEMORY) {
log_error( "ERROR: Unable to load data into GL texture (%s) format %s type %s internal format %s\n", gluErrorString( err ), GetGLFormatName( glFormat ), get_explicit_type_name( type ), GetGLFormatName( internalFormat ) );
*outError = -1;
} else {
log_info( "WARNING: Unable to load data into GL texture (%s) format %s type %s internal format %s\n", gluErrorString( err ), GetGLFormatName( glFormat ), get_explicit_type_name( type ), GetGLFormatName( internalFormat ) );
*outError = -2;
}
delete [] buffer;
return NULL;
}
if( !allocateMem )
{
delete [] buffer;
return NULL;
}
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * height * depth; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * height * depth; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
return buffer;
}
void * ReadGLTexture( GLenum glTarget, GLuint glTexture, GLuint glBuf, GLint width,
GLenum glFormat, GLenum glInternalFormat,
GLenum glType, ExplicitType typeToReadAs,
size_t outWidth, size_t outHeight )
{
// Read results from the GL texture
glBindTexture(get_base_gl_target(glTarget), glTexture);
GLint realWidth, realHeight, realDepth;
glGetTexLevelParameteriv( glTarget, 0, GL_TEXTURE_WIDTH, &realWidth );
glGetTexLevelParameteriv( glTarget, 0, GL_TEXTURE_HEIGHT, &realHeight );
glGetTexLevelParameteriv( glTarget, 0, GL_TEXTURE_DEPTH, &realDepth );
realDepth = (realDepth) ? realDepth : 1;
GLint realInternalFormat;
glGetTexLevelParameteriv( glTarget, 0, GL_TEXTURE_INTERNAL_FORMAT, &realInternalFormat );
#ifdef DEBUG
log_info( "- Reading back from GL: %d x %d : %s : %s : %s : %s (stored as %s)\n",
realWidth, realHeight,
GetGLTargetName( glTarget),
GetGLFormatName( glInternalFormat ),
GetGLFormatName( glFormat ),
GetGLTypeName( glType ),
GetGLFormatName( realInternalFormat ));
#endif
GLenum readBackFormat;
switch(glFormat)
{
case GL_RGBA_INTEGER_EXT:
readBackFormat = GL_RGBA_INTEGER_EXT;
break;
case GL_DEPTH_COMPONENT:
readBackFormat = GL_DEPTH_COMPONENT;
break;
case GL_DEPTH_STENCIL:
readBackFormat = GL_DEPTH_STENCIL;
break;
default:
readBackFormat = GL_RGBA;
break;
}
GLenum readBackType;
switch (glType) {
#ifdef __APPLE__
case GL_UNSIGNED_INT_8_8_8_8:
case GL_UNSIGNED_INT_8_8_8_8_REV:
readBackType = GL_UNSIGNED_BYTE;
break;
#endif
case GL_HALF_FLOAT:
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_INT:
case GL_BYTE:
case GL_SHORT:
case GL_INT:
case GL_FLOAT:
default:
readBackType = glType;
}
size_t outBytes;
if (get_base_gl_target(glTarget) != GL_TEXTURE_BUFFER) {
outBytes = realWidth * realHeight * realDepth * 4
* GetGLTypeSize(readBackType);
}
else {
outBytes = width * 4;
outBytes *= ( GetGLTypeSize( GetGLTypeForExplicitType(typeToReadAs) ) );
}
cl_char *outBuffer = (cl_char *)malloc( outBytes );
memset(outBuffer, 0, outBytes);
if (get_base_gl_target(glTarget) != GL_TEXTURE_BUFFER) {
//the default alignment in OpenGL is 4 bytes and need to be changed for GL_DEPTH_COMPONENT16 which is aligned to 2 bytes
if (realInternalFormat == GL_DEPTH_COMPONENT16)
glPixelStorei(GL_PACK_ALIGNMENT, 2);
glGetTexImage( glTarget, 0, readBackFormat, readBackType, outBuffer );
if (realInternalFormat == GL_DEPTH_COMPONENT16)
glPixelStorei(GL_PACK_ALIGNMENT, 4);
}
else {
glBindBuffer(GL_ARRAY_BUFFER, glBuf);
glGetBufferSubData(GL_ARRAY_BUFFER, 0, outBytes, outBuffer);
}
#ifdef DEBUG
log_info( "- glGetTexImage: %s : %s : %s \n",
GetGLTargetName( glTarget),
GetGLFormatName(readBackFormat),
GetGLTypeName(readBackType));
DumpGLBuffer(readBackType, realWidth, realHeight, (void*)outBuffer);
#endif
return (void *)outBuffer;
}
int CreateGLRenderbufferRaw( GLsizei width, GLsizei height,
GLenum attachment, GLenum glFormat,
GLenum internalFormat, GLenum glType,
GLuint *outFramebuffer,
GLuint *outRenderbuffer )
{
GLenum err = 0;
// Generate a renderbuffer and bind
glGenRenderbuffersEXT( 1, outRenderbuffer );
glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, *outRenderbuffer );
// Allocate storage to the renderbuffer
glGetError();
glRenderbufferStorageEXT( GL_RENDERBUFFER_EXT, internalFormat, (GLsizei)width, (GLsizei)height );
err = glGetError();
if( err != GL_NO_ERROR )
{
log_error("Failed to allocate render buffer storage!\n");
return 1701;
}
GLint realInternalFormat;
glGetRenderbufferParameterivEXT( GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_INTERNAL_FORMAT_EXT, &realInternalFormat );
internalFormat = realInternalFormat;
#ifdef DEBUG
GLint rsize, gsize, bsize, asize;
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_RED_SIZE_EXT,&rsize);
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_GREEN_SIZE_EXT,&gsize);
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_BLUE_SIZE_EXT,&bsize);
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_ALPHA_SIZE_EXT,&asize);
log_info("Renderbuffer internal format requested: %s actual: %s sizes: r=%d g=%d b=%d a=%d\n",
GetGLFormatName( internalFormat ), GetGLFormatName( realInternalFormat ),
rsize, gsize, bsize, asize );
#endif
// Create and bind a framebuffer to render with
glGenFramebuffersEXT( 1, outFramebuffer );
glBindFramebufferEXT( GL_FRAMEBUFFER_EXT, *outFramebuffer );
if( err != GL_NO_ERROR )
{
log_error( "ERROR: Unable to bind framebuffer : Error %s\n",
gluErrorString( err ));
return -1;
}
// Attach to the framebuffer
glFramebufferRenderbufferEXT( GL_FRAMEBUFFER_EXT, attachment, GL_RENDERBUFFER_EXT, *outRenderbuffer );
err = glGetError();
GLint status = glCheckFramebufferStatusEXT( GL_FRAMEBUFFER_EXT );
if( status != GL_FRAMEBUFFER_COMPLETE_EXT )
{
log_error( "ERROR: Unable to attach renderbuffer to framebuffer (%s, status %x)\n", gluErrorString( err ), (int)status );
return -1;
}
return 0;
}
void reorder_verification_buffer(GLenum glFormat, GLenum glType, char* buffer, size_t num_pixels)
{
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA)
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < num_pixels; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA)
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < num_pixels; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
}
#ifdef GL_VERSION_3_2
#define check_gl_error() \
{ \
GLenum errnom = GL_NO_ERROR;\
if ((errnom = glGetError()) != GL_NO_ERROR)\
log_error("GL Error: 0x%04X at %s:%d\n", errnom, __FILE__, __LINE__);\
}
const char *get_gl_vector_type( GLenum internalformat )
{
switch (internalformat) {
case GL_RGBA8:
case GL_RGBA16:
case GL_RGBA32F_ARB:
case GL_RGBA16F_ARB:
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT32F:
case GL_DEPTH24_STENCIL8:
case GL_DEPTH32F_STENCIL8:
return "vec4";
break;
case GL_RGBA8I_EXT:
case GL_RGBA16I_EXT:
case GL_RGBA32I_EXT:
return "ivec4";
break;
case GL_RGBA8UI_EXT:
case GL_RGBA16UI_EXT:
case GL_RGBA32UI_EXT:
return "uvec4";
break;
default:
log_error("Test error: unsupported data type\n");
return "";
break;
}
}
const char *get_gl_data_type( GLenum internalformat )
{
switch (internalformat) {
case GL_RGBA8:
case GL_RGBA16:
case GL_RGBA32F_ARB:
case GL_RGBA16F_ARB:
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT32F:
case GL_DEPTH24_STENCIL8:
case GL_DEPTH32F_STENCIL8:
return "float";
break;
case GL_RGBA8I_EXT:
case GL_RGBA16I_EXT:
case GL_RGBA32I_EXT:
return "int";
break;
case GL_RGBA8UI_EXT:
case GL_RGBA16UI_EXT:
case GL_RGBA32UI_EXT:
return "uint";
break;
default:
log_error("Test error: unsupported data type\n");
return "";
break;
}
}
void * CreateGLTexture2DMultisample( size_t width, size_t height, size_t samples,
GLenum target, GLenum glFormat,
GLenum internalFormat, GLenum glType,
ExplicitType type, GLuint *outTextureID,
int *outError, bool allocateMem, MTdata d , bool fixedSampleLocations)
{
// This function creates a multisample texture and renders into each sample
// using a GLSL shader
// Check if the renderer supports enough samples
GLint max_samples = get_gl_max_samples(target, internalFormat);
check_gl_error()
if (max_samples < (GLint)samples)
log_error("GL error: requested samples (%d) exceeds renderer max samples (%d)\n", samples, max_samples);
// Setup the GLSL program
const GLchar *vertex_source =
"#version 140\n"
"in vec4 att0;\n"
"void main (void) {\n"
" gl_Position = vec4(att0.xy,0.0,1.0);\n"
"}\n";
const GLchar *fragmentSource =
"#version 140\n"
"out %s out0;\n"
"uniform %s colorVal;\n"
"uniform float depthVal;\n"
"void main (void) {\n"
" out0 = %s(colorVal);\n"
" gl_FragDepth = depthVal;\n"
"}\n";
GLchar fragmentShader[256];
sprintf(fragmentShader, fragmentSource, get_gl_vector_type(internalFormat), get_gl_data_type(internalFormat), get_gl_vector_type(internalFormat));
const GLchar *fragment_source = &fragmentShader[0];
glShaderWrapper vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &vertex_source, NULL);
glCompileShader(vertex_shader);
check_gl_error()
glShaderWrapper fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &fragment_source, NULL);
glCompileShader(fragment_shader);
check_gl_error()
GLuint prog = glCreateProgram();
glAttachShader(prog, vertex_shader);
glAttachShader(prog, fragment_shader);
check_gl_error()
glBindAttribLocation(prog, 0, "att0");
glLinkProgram(prog);
check_gl_error()
// Setup the FBO and texture
glFramebufferWrapper fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
check_gl_error()
glViewport(0, 0, width, height);
check_gl_error()
GLuint tex = 0;
glGenTextures(1, &tex);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, tex);
glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, samples, internalFormat, width, height, fixedSampleLocations);
check_gl_error()
GLint attachment;
switch (internalFormat) {
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT32F:
attachment = GL_DEPTH_ATTACHMENT;
break;
case GL_DEPTH24_STENCIL8:
case GL_DEPTH32F_STENCIL8:
attachment = GL_DEPTH_STENCIL_ATTACHMENT;
break;
default:
attachment = GL_COLOR_ATTACHMENT0;
break;
}
glFramebufferTexture(GL_FRAMEBUFFER, attachment, tex, 0);
check_gl_error()
GLint status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status == GL_FRAMEBUFFER_UNSUPPORTED) {
log_info("GL status: GL_FRAMEBUFFER_UNSUPPORTED format %s multisample is not supported\n", GetGLFormatName(internalFormat));
*outTextureID = 0;
*outError = GL_FRAMEBUFFER_UNSUPPORTED;
return NULL;
}
if (status != GL_FRAMEBUFFER_COMPLETE) {
log_error("GL error: framebuffer incomplete status 0x%04X\n",status);
*outTextureID = 0;
*outError = status;
return NULL;
}
// Check if the framebuffer supports enough samples
GLint fbo_samples = 0;
glGetIntegerv(GL_SAMPLES, &fbo_samples);
check_gl_error();
if (fbo_samples < (GLint)samples)
log_error("GL Error: requested samples (%d) exceeds FBO capability (%d)\n", samples, fbo_samples);
glUseProgram(prog);
check_gl_error()
if (attachment != GL_DEPTH_ATTACHMENT && attachment != GL_DEPTH_STENCIL_ATTACHMENT) {
glDisable(GL_DEPTH_TEST);
check_gl_error()
}
else {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
check_gl_error()
}
// Setup the VBO for rendering a quad
GLfloat quad[] = {
-1.0f, -1.0f,
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, 1.0f
};
glBufferWrapper vbo;
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(quad), quad, GL_STREAM_DRAW);
check_gl_error()
glVertexArraysWrapper vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(GLfloat)*2, 0);
check_gl_error()
//clearing color and depth buffer
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
//calculating colors
double color_delta = 1.0 / samples;
double color = color_delta;
glEnable(GL_SAMPLE_MASK);
for (size_t i=0;i!=samples;++i) {
glSampleMaski(0, 1<<i);
GLint colorUniformLocation = glGetUniformLocation(prog, "colorVal");
switch (internalFormat) {
case GL_RGBA8I_EXT:
glUniform1i(colorUniformLocation, color * 0x7f);
break;
case GL_RGBA16I_EXT:
glUniform1i(colorUniformLocation, color * 0x7fff);
break;
case GL_RGBA32I_EXT:
glUniform1i(colorUniformLocation, color * 0x7fffffff);
break;
case GL_RGBA8UI_EXT:
glUniform1ui(colorUniformLocation, color * 0xff);
break;
case GL_RGBA16UI_EXT:
glUniform1ui(colorUniformLocation, color * 0xffff);
break;
case GL_RGBA32UI_EXT:
glUniform1ui(colorUniformLocation, color * 0xffffffff);
break;
default:
glUniform1f(colorUniformLocation, color);
break;
}
glUniform1f(glGetUniformLocation(prog, "depthVal"), color);
color += color_delta;
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
check_gl_error();
glFlush();
}
glDisable(GL_SAMPLE_MASK);
check_gl_error();
*outTextureID = tex;
// Create an output buffer containing the expected results.
unsigned int size = 0;
if ( glType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV )
{
size = width * height * 2;
}
else if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) || (attachment == GL_DEPTH_ATTACHMENT) || (attachment == GL_DEPTH_STENCIL_ATTACHMENT))
{
size = width * height;
}
else
{
size = width * height * 4;
}
char *data = (char *)malloc(get_explicit_type_size(type) * size * samples);
char *p = data;
size_t stride = get_explicit_type_size(type);
for (size_t s=0;s!=samples;++s) {
double val = color_delta + (color_delta * s);
for (size_t i=0;i!=size;++i) {
switch (type) {
case kChar:
*((char*)p) = val * 0x7f;
break;
case kUChar:
*((unsigned char*)p) = val * 0xff;
break;
case kFloat:
*((float*)p) = val;
break;
case kShort:
*((short*)p) = val*0x7fff;
break;
case kUShort:
*((unsigned short*)p) = val*0xffff;
break;
case kInt:
*((int*)p) = val*0x7fffffff;
break;
case kUInt:
*((unsigned int*)p) = val*0xffffffff;
break;
case kHalf: *((cl_half *)p) = convert_float_to_half(val); break;
default:
log_error("Test error: unexpected type enum 0x%x\n",type);
}
p += stride;
}
}
if (allocateMem)
reorder_verification_buffer(glFormat,glType,data,width*height*samples);
return data;
}
void * CreateGLTexture2DArrayMultisample(size_t width, size_t height,
size_t total_layers, size_t samples,
GLenum target, GLenum glFormat, GLenum internalFormat, GLenum glType,
ExplicitType type, GLuint *outTextureID, int *outError,
bool allocateMem, MTdata d, bool fixedSampleLocations)
{
// This function creates a multisample texture and renders into each sample
// using a GLSL shader
// Check if the renderer supports enough samples
GLint max_samples = get_gl_max_samples(target, internalFormat);
if (max_samples < (GLint)samples)
log_error("GL error: requested samples (%d) exceeds renderer max samples (%d)\n", samples, max_samples);
// Setup the GLSL program
const GLchar *vertex_source =
"#version 140\n"
"in vec4 att0;\n"
"void main (void) {\n"
" gl_Position = vec4(att0.xy,0.0,1.0);\n"
"}\n";
const GLchar *fragmentSource =
"#version 140\n"
"out %s out0;\n"
"uniform %s colorVal;\n"
"uniform float depthVal;\n"
"void main (void) {\n"
" out0 = %s(colorVal);\n"
" gl_FragDepth = depthVal;\n"
"}\n";
GLchar fragmentShader[256];
sprintf(fragmentShader, fragmentSource, get_gl_vector_type(internalFormat), get_gl_data_type(internalFormat), get_gl_vector_type(internalFormat));
const GLchar *fragment_source = &fragmentShader[0];
glShaderWrapper vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &vertex_source, NULL);
glCompileShader(vertex_shader);
check_gl_error()
glShaderWrapper fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &fragment_source, NULL);
glCompileShader(fragment_shader);
check_gl_error()
glProgramWrapper prog = glCreateProgram();
glAttachShader(prog, vertex_shader);
glAttachShader(prog, fragment_shader);
check_gl_error()
glBindAttribLocation(prog, 0, "att0");
glLinkProgram(prog);
check_gl_error()
// Setup the FBO and texture
glFramebufferWrapper fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
check_gl_error()
glViewport(0, 0, width, height);
check_gl_error()
GLuint tex = 0;
glGenTextures(1, &tex);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, tex);
glTexImage3DMultisample(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, samples, internalFormat, width, height, total_layers, fixedSampleLocations);
check_gl_error()
GLint attachment;
switch (internalFormat) {
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT32F:
attachment = GL_DEPTH_ATTACHMENT;
break;
case GL_DEPTH24_STENCIL8:
case GL_DEPTH32F_STENCIL8:
attachment = GL_DEPTH_STENCIL_ATTACHMENT;
break;
default:
attachment = GL_COLOR_ATTACHMENT0;
break;
}
//calculating colors
double color_delta = 1.0 / (total_layers * samples);
double color = color_delta;
if (attachment != GL_DEPTH_ATTACHMENT && attachment != GL_DEPTH_STENCIL_ATTACHMENT) {
glDisable(GL_DEPTH_TEST);
check_gl_error()
}
else {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
check_gl_error()
}
// Setup the VBO for rendering a quad
GLfloat quad[] = {
-1.0f, -1.0f,
1.0f, -1.0f,
1.0f, 1.0f,
-1.0f, 1.0f
};
glBufferWrapper vbo;
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(quad), quad, GL_STREAM_DRAW);
check_gl_error()
glVertexArraysWrapper vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(GLfloat)*2, 0);
check_gl_error()
for (size_t l=0; l!=total_layers; ++l) {
glFramebufferTextureLayer(GL_FRAMEBUFFER, attachment, tex, 0, l);
check_gl_error()
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status == GL_FRAMEBUFFER_UNSUPPORTED) {
log_info("GL status: GL_FRAMEBUFFER_UNSUPPORTED format %s multisample array is not supported\n", GetGLFormatName(internalFormat));
*outTextureID = 0;
*outError = GL_FRAMEBUFFER_UNSUPPORTED;
return NULL;
}
if (status != GL_FRAMEBUFFER_COMPLETE) {
log_error("GL error: framebuffer incomplete status 0x%04X\n",status);
*outTextureID = 0;
*outError = status;
return NULL;
}
// Check if the framebuffer supports enough samples
GLint fbo_samples = 0;
glGetIntegerv(GL_SAMPLES, &fbo_samples);
check_gl_error();
if (fbo_samples < (GLint)samples)
log_error("GL Error: requested samples (%d) exceeds FBO capability (%d)\n", samples, fbo_samples);
glUseProgram(prog);
check_gl_error()
//clearing color and depth buffer
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
glClearDepth(1.0);
glClear(GL_DEPTH_BUFFER_BIT);
glEnable(GL_SAMPLE_MASK);
for (size_t s=0;s!=samples;++s) {
double val = color_delta + color_delta * (l * samples + s);
glSampleMaski(0, 1<<s);
GLint colorUniformLocation = glGetUniformLocation(prog, "colorVal");
switch (internalFormat) {
case GL_RGBA8I_EXT:
glUniform1i(colorUniformLocation, val * 0x7f);
break;
case GL_RGBA16I_EXT:
glUniform1i(colorUniformLocation, val * 0x7fff);
break;
case GL_RGBA32I_EXT:
glUniform1i(colorUniformLocation, val * 0x7fffffff);
break;
case GL_RGBA8UI_EXT:
glUniform1ui(colorUniformLocation, val * 0xff);
break;
case GL_RGBA16UI_EXT:
glUniform1ui(colorUniformLocation, val * 0xffff);
break;
case GL_RGBA32UI_EXT:
glUniform1ui(colorUniformLocation, val * 0xffffffff);
break;
default:
glUniform1f(colorUniformLocation, val);
break;
}
glUniform1f(glGetUniformLocation(prog, "depthVal"), val);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
check_gl_error();
glFlush();
}
glDisable(GL_SAMPLE_MASK);
check_gl_error();
}
*outTextureID = tex;
// Create an output buffer containing the expected results.
unsigned int size = 0;
if ( glType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV )
{
size = width * height * 2;
}
else if ( (glType == GL_UNSIGNED_INT_2_10_10_10_REV) || (glType == GL_UNSIGNED_INT_10_10_10_2) || (attachment == GL_DEPTH_ATTACHMENT) || (attachment == GL_DEPTH_STENCIL_ATTACHMENT))
{
size = width * height;
}
else
{
size = width * height * 4;
}
char *data = (char *)malloc(get_explicit_type_size(type) * size * total_layers * samples);
char *p = data;
size_t stride = get_explicit_type_size(type);
for (size_t s=0;s!=samples;++s) {
for (size_t l=0;l!=total_layers;++l) {
double val = color_delta + color_delta * (l * samples + s);
for (size_t i=0;i!=size;++i) {
switch (type) {
case kChar:
*((char*)p) = val * 0x7f;
break;
case kUChar:
*((unsigned char*)p) = val*0xff;
break;
case kFloat:
*((float*)p) = val;
break;
case kShort:
*((short*)p) = val * 0x7fff;
break;
case kUShort:
*((unsigned short*)p) = val * 0xffff;
break;
case kInt:
*((int*)p) = val * 0x7fffffff;
break;
case kUInt:
*((unsigned int*)p) = val*0xffffffff;
break;
case kHalf: *((cl_half *)p) = convert_float_to_half(val); break;
default:
log_error("Test error: unexpected type enum 0x%x\n",type);
}
p += stride;
}
}
}
if (allocateMem)
reorder_verification_buffer(glFormat,glType,data,width*height*samples*total_layers);
return data;
}
#endif // GL_VERSION_3_2
void * CreateGLRenderbuffer( GLsizei width, GLsizei height,
GLenum attachment, GLenum glFormat,
GLenum internalFormat, GLenum glType,
ExplicitType type,
GLuint *outFramebuffer,
GLuint *outRenderbuffer,
int *outError, MTdata d, bool allocateMem )
{
*outError = CreateGLRenderbufferRaw( width, height, attachment, glFormat, internalFormat,
glType, outFramebuffer, outRenderbuffer );
if( *outError != 0 )
return NULL;
GLenum err = 0;
// Generate a renderbuffer and bind
glGenRenderbuffersEXT( 1, outRenderbuffer );
glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, *outRenderbuffer );
// Allocate storage to the renderbuffer
glGetError();
glRenderbufferStorageEXT( GL_RENDERBUFFER_EXT, internalFormat, (GLsizei)width, (GLsizei)height );
err = glGetError();
if( err != GL_NO_ERROR )
{
*outError = 1701;
log_error("Failed to allocate render buffer storage!\n");
return NULL;
}
GLint realInternalFormat;
glGetRenderbufferParameterivEXT( GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_INTERNAL_FORMAT_EXT, &realInternalFormat );
internalFormat = realInternalFormat;
#ifdef DEBUG
GLint rsize, gsize, bsize, asize;
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_RED_SIZE_EXT,&rsize);
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_GREEN_SIZE_EXT,&gsize);
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_BLUE_SIZE_EXT,&bsize);
glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_ALPHA_SIZE_EXT,&asize);
log_info("Renderbuffer internal format requested: %s actual: %s sizes: r=%d g=%d b=%d a=%d\n",
GetGLFormatName( internalFormat ), GetGLFormatName( realInternalFormat ),
rsize, gsize, bsize, asize );
#endif
// Create and bind a framebuffer to render with
glGenFramebuffersEXT( 1, outFramebuffer );
glBindFramebufferEXT( GL_FRAMEBUFFER_EXT, *outFramebuffer );
if( err != GL_NO_ERROR )
{
log_error( "ERROR: Unable to bind framebuffer : Error %s\n",
gluErrorString( err ));
*outError = -1;
return NULL;
}
// Attach to the framebuffer
glFramebufferRenderbufferEXT( GL_FRAMEBUFFER_EXT, attachment, GL_RENDERBUFFER_EXT, *outRenderbuffer );
err = glGetError();
GLint status = glCheckFramebufferStatusEXT( GL_FRAMEBUFFER_EXT );
if( status != GL_FRAMEBUFFER_COMPLETE_EXT )
{
*outError = -1;
log_error( "ERROR: Unable to attach renderbuffer to framebuffer (%s, status %x)\n", gluErrorString( err ), (int)status );
return NULL;
}
void* buffer = CreateRandomData(type, width * height * 4, d);
#ifdef DEBUG
log_info( "- Fillling renderbuffer: %d : %d : %s : %s \n",
(int)width, (int)height,
GetGLFormatName(glFormat),
GetGLTypeName(glType));
DumpGLBuffer(glType, (int)width, (int)height, (void*)buffer);
#endif
// Fill a texture with our input data
glTextureWrapper texture;
glGenTextures( 1, &texture );
glBindTexture( GL_TEXTURE_RECTANGLE_ARB, texture );
glTexParameteri( GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexImage2D( GL_TEXTURE_RECTANGLE_ARB, 0, internalFormat, width, height, 0, glFormat, glType, buffer );
glEnable( GL_TEXTURE_RECTANGLE_ARB );
// Render fullscreen textured quad
glDisable( GL_LIGHTING );
glViewport(0, 0, width, height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode( GL_TEXTURE );
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glClear(GL_COLOR_BUFFER_BIT);
gluOrtho2D( -1.0, 1.0, -1.0, 1.0 );
glMatrixMode( GL_MODELVIEW );
glBegin( GL_QUADS );
{
glColor3f(1.0f, 1.0f, 1.0f);
glTexCoord2f( 0.0f, 0.0f );
glVertex3f( -1.0f, -1.0f, 0.0f );
glTexCoord2f( 0.0f, height );
glVertex3f( -1.0f, 1.0f, 0.0f );
glTexCoord2f( width, height );
glVertex3f( 1.0f, 1.0f, 0.0f );
glTexCoord2f( width, 0.0f );
glVertex3f( 1.0f, -1.0f, 0.0f );
}
glEnd();
glBindTexture( GL_TEXTURE_RECTANGLE_ARB, 0 );
glDisable( GL_TEXTURE_RECTANGLE_ARB );
glFlush();
// Read back the data in the renderbuffer
memset(buffer, 0, width * height * 4 * get_explicit_type_size( type ));
glReadBuffer( attachment );
glReadPixels( 0, 0, (GLsizei)width, (GLsizei)height, glFormat, glType, buffer );
err = glGetError();
if( err != GL_NO_ERROR )
{
log_error( "ERROR: Unable to read data via glReadPixels : %d : %d : %s : %s : Error %s\n",
(int)width, (int)height,
GetGLFormatName(glFormat),
GetGLTypeName(glType),
gluErrorString( err ));
*outError = -1;
}
#ifdef DEBUG
log_info( "- glReadPixels: %d : %d : %s : %s \n",
(int)width, (int)height,
GetGLFormatName(glFormat),
GetGLTypeName(glType));
DumpGLBuffer(glType, (int)width, (int)height, (void*)buffer);
#endif
if( !allocateMem )
{
free( buffer );
return NULL;
}
if( glType == GL_UNSIGNED_INT_8_8_8_8_REV && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < (size_t)width * height; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc2;
p[ i * 4 + 1 ] = uc1;
p[ i * 4 + 2 ] = uc0;
p[ i * 4 + 3 ] = uc3;
}
}
else if( glType == GL_UNSIGNED_INT_8_8_8_8 && glFormat == GL_BGRA && allocateMem )
{
// Reverse and reorder to validate since in the
// kernel the read_imagef() call always returns RGBA
cl_uchar *p = (cl_uchar *)buffer;
for( size_t i = 0; i < width * height; i++ )
{
cl_uchar uc0 = p[i * 4 + 0];
cl_uchar uc1 = p[i * 4 + 1];
cl_uchar uc2 = p[i * 4 + 2];
cl_uchar uc3 = p[i * 4 + 3];
p[ i * 4 + 0 ] = uc1;
p[ i * 4 + 1 ] = uc2;
p[ i * 4 + 2 ] = uc3;
p[ i * 4 + 3 ] = uc0;
}
}
return buffer;
}
void * ReadGLRenderbuffer( GLuint glFramebuffer, GLuint glRenderbuffer,
GLenum attachment, GLenum glFormat,
GLenum glInternalFormat, GLenum glType,
ExplicitType typeToReadAs,
size_t outWidth, size_t outHeight )
{
glBindFramebufferEXT( GL_FRAMEBUFFER_EXT, glFramebuffer );
glFramebufferRenderbufferEXT( GL_FRAMEBUFFER_EXT, attachment, GL_RENDERBUFFER_EXT, glRenderbuffer );
// Attach to the framebuffer
GLint err = glGetError();
if( glCheckFramebufferStatusEXT( GL_FRAMEBUFFER_EXT ) != GL_FRAMEBUFFER_COMPLETE_EXT )
{
log_error( "ERROR: Unable to attach renderbuffer to framebuffer (%s)\n", gluErrorString( err ) );
return NULL;
}
// Read results from the GL renderbuffer
#ifdef DEBUG
log_info( "- Reading back from GL: %d x %d : %s : %s : %s\n",
(int)outWidth, (int)outHeight,
GetGLFormatName( glInternalFormat ),
GetGLFormatName( glFormat ),
GetGLTypeName( glType ));
#endif
GLenum readBackFormat = glFormat == GL_RGBA_INTEGER_EXT ? GL_RGBA_INTEGER_EXT : GL_RGBA;
GLenum readBackType = glType;
size_t outBytes = outWidth * outHeight * 4 * GetGLTypeSize(readBackType);
void *outBuffer = malloc( outBytes );
memset(outBuffer, 0, outBytes);
glReadPixels( 0, 0, (GLsizei)outWidth, (GLsizei)outHeight, readBackFormat, readBackType, outBuffer );
#ifdef DEBUG
log_info( "- glReadPixels: %d : %d : %s : %s \n",
(int)outWidth, (int)outHeight,
GetGLFormatName(readBackFormat),
GetGLTypeName(readBackType));
DumpGLBuffer(readBackType, outWidth, outHeight, outBuffer);
#endif
return (void *)outBuffer;
}
GLenum
GetGLFormat(GLenum internalFormat)
{
GLenum glFormat;
switch (internalFormat)
{
case GL_BGRA:
case GL_RGBA8:
case GL_RGBA16:
case GL_RGBA32F_ARB:
glFormat = GL_RGBA;
break;
case GL_RGBA8I_EXT:
case GL_RGBA16I_EXT:
case GL_RGBA32I_EXT:
case GL_RGBA8UI_EXT:
case GL_RGBA16UI_EXT:
case GL_RGBA32UI_EXT:
glFormat = GL_RGBA_INTEGER_EXT;
break;
default:
glFormat = GL_RGBA;
break;
}
return glFormat;
}
GLenum GetGLTypeForExplicitType(ExplicitType type)
{
switch( type )
{
case kFloat:
return GL_FLOAT;
case kInt:
return GL_INT;
case kUInt:
return GL_UNSIGNED_INT;
case kShort:
return GL_SHORT;
case kUShort:
return GL_UNSIGNED_SHORT;
case kChar:
return GL_BYTE;
case kUChar:
return GL_UNSIGNED_BYTE;
case kHalf:
#if defined( __APPLE__ )
return GL_HALF_FLOAT;
#else
return GL_HALF_FLOAT_ARB;
#endif
default:
return GL_INT;
};
}
size_t GetGLTypeSize(GLenum type)
{
switch( type )
{
case GL_FLOAT:
return sizeof(GLfloat);
case GL_INT:
return sizeof(GLint);
case GL_UNSIGNED_INT:
case GL_UNSIGNED_INT_10_10_10_2:
case GL_UNSIGNED_INT_2_10_10_10_REV:
case GL_UNSIGNED_INT_24_8:
return sizeof(GLuint);
case GL_SHORT:
return sizeof(GLshort);
case GL_UNSIGNED_SHORT:
return sizeof(GLushort);
case GL_UNSIGNED_INT_8_8_8_8_REV:
case GL_BYTE:
return sizeof(GLbyte);
case GL_UNSIGNED_BYTE:
return sizeof(GLubyte);
#if defined( __APPLE__ )
case GL_HALF_FLOAT:
#else
case GL_HALF_FLOAT_ARB:
#endif
return sizeof(GLhalf);
case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
return 2 * sizeof(GLfloat);
default:
log_error("Unknown type 0x%x\n",type);
return 0;
};
}
ExplicitType GetExplicitTypeForGLType(GLenum type)
{
switch( type )
{
case GL_FLOAT:
return kFloat;
case GL_INT:
return kInt;
case GL_UNSIGNED_INT:
return kUInt;
case GL_SHORT:
return kShort;
case GL_UNSIGNED_SHORT:
return kUShort;
case GL_BYTE:
return kChar;
case GL_UNSIGNED_BYTE:
return kUChar;
#if defined( __APPLE__ )
case GL_HALF_FLOAT:
#else
case GL_HALF_FLOAT_ARB:
#endif
return kHalf;
default:
return kFloat;
};
}
GLenum get_base_gl_target( GLenum target )
{
switch( target )
{
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
return GL_TEXTURE_CUBE_MAP;
default:
return target;
}
}
const char *GetGLTypeName( GLenum type )
{
switch( type )
{
case GL_BYTE: return "GL_BYTE";
case GL_UNSIGNED_BYTE: return "GL_UNSIGNED_BYTE";
case GL_INT: return "GL_INT";
case GL_UNSIGNED_INT: return "GL_UNSIGNED_INT";
case GL_SHORT: return "GL_SHORT";
case GL_UNSIGNED_SHORT: return "GL_UNSIGNED_SHORT";
#if defined( __APPLE__ )
case GL_HALF_FLOAT: return "GL_HALF_FLOAT";
#else
case GL_HALF_FLOAT_ARB: return "GL_HALF_FLOAT_ARB";
#endif
case GL_FLOAT: return "GL_FLOAT";
case GL_UNSIGNED_INT_8_8_8_8: return "GL_UNSIGNED_INT_8_8_8_8";
case GL_UNSIGNED_INT_8_8_8_8_REV: return "GL_UNSIGNED_INT_8_8_8_8_REV";
case GL_UNSIGNED_INT_10_10_10_2: return "GL_UNSIGNED_INT_10_10_10_2";
case GL_UNSIGNED_INT_2_10_10_10_REV: return "GL_UNSIGNED_INT_2_10_10_10_REV";
#ifdef GL_VERSION_3_2
case GL_UNSIGNED_INT_24_8: return "GL_UNSIGNED_INT_24_8";
case GL_FLOAT_32_UNSIGNED_INT_24_8_REV: return "GL_FLOAT_32_UNSIGNED_INT_24_8_REV";
#endif
default:
{
static char foo[ 128 ];
sprintf( foo, "0x%04x", (int)type);
return foo;
}
}
}
const char *GetGLTargetName( GLenum tgt )
{
if( tgt == GL_TEXTURE_BUFFER ) return "GL_TEXTURE_BUFFER";
if( tgt == GL_TEXTURE_1D ) return "GL_TEXTURE_1D";
if( tgt == GL_TEXTURE_2D ) return "GL_TEXTURE_2D";
if( tgt == GL_TEXTURE_3D ) return "GL_TEXTURE_3D";
if( tgt == GL_TEXTURE_RECTANGLE_EXT ) return "GL_TEXTURE_RECTANGLE_EXT";
if( tgt == GL_TEXTURE_CUBE_MAP_POSITIVE_X ) return "GL_TEXTURE_CUBE_MAP_POSITIVE_X";
if( tgt == GL_TEXTURE_CUBE_MAP_POSITIVE_Y ) return "GL_TEXTURE_CUBE_MAP_POSITIVE_Y";
if( tgt == GL_TEXTURE_CUBE_MAP_POSITIVE_Z ) return "GL_TEXTURE_CUBE_MAP_POSITIVE_Z";
if( tgt == GL_TEXTURE_CUBE_MAP_NEGATIVE_X ) return "GL_TEXTURE_CUBE_MAP_NEGATIVE_X";
if( tgt == GL_TEXTURE_CUBE_MAP_NEGATIVE_Y ) return "GL_TEXTURE_CUBE_MAP_NEGATIVE_Y";
if( tgt == GL_TEXTURE_CUBE_MAP_NEGATIVE_Z ) return "GL_TEXTURE_CUBE_MAP_NEGATIVE_Z";
if( tgt == GL_TEXTURE_2D_MULTISAMPLE ) return "GL_TEXTURE_2D_MULTISAMPLE";
if( tgt == GL_TEXTURE_2D_MULTISAMPLE_ARRAY ) return "GL_TEXTURE_2D_MULTISAMPLE_ARRAY";
static char foo[ 128 ];
sprintf( foo, "0x%04x", (int)tgt);
return foo;
}
const char *GetGLAttachmentName( GLenum att )
{
if( att == GL_COLOR_ATTACHMENT0_EXT ) return "GL_COLOR_ATTACHMENT0_EXT";
if( att == GL_COLOR_ATTACHMENT1_EXT ) return "GL_COLOR_ATTACHMENT1_EXT";
if( att == GL_COLOR_ATTACHMENT2_EXT ) return "GL_COLOR_ATTACHMENT2_EXT";
if( att == GL_COLOR_ATTACHMENT3_EXT ) return "GL_COLOR_ATTACHMENT3_EXT";
if( att == GL_COLOR_ATTACHMENT4_EXT ) return "GL_COLOR_ATTACHMENT4_EXT";
if( att == GL_COLOR_ATTACHMENT5_EXT ) return "GL_COLOR_ATTACHMENT5_EXT";
if( att == GL_COLOR_ATTACHMENT6_EXT ) return "GL_COLOR_ATTACHMENT6_EXT";
if( att == GL_COLOR_ATTACHMENT7_EXT ) return "GL_COLOR_ATTACHMENT7_EXT";
if( att == GL_COLOR_ATTACHMENT8_EXT ) return "GL_COLOR_ATTACHMENT8_EXT";
if( att == GL_DEPTH_ATTACHMENT_EXT ) return "GL_DEPTH_ATTACHMENT_EXT";
return "";
}
const char *GetGLBaseFormatName( GLenum baseformat )
{
switch( baseformat )
{
case GL_RGBA8: return "GL_RGBA";
case GL_RGBA16: return "GL_RGBA";
case GL_RGBA: return "GL_RGBA";
case GL_BGRA: return "GL_BGRA";
case GL_RGBA8I_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_RGBA16I_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_RGBA32I_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_RGBA8UI_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_RGBA16UI_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_RGBA32UI_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_RGBA32F_ARB: return "GL_RGBA";
case GL_RGBA_INTEGER_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_ALPHA4: return "GL_ALPHA";
case GL_ALPHA8: return "GL_ALPHA";
case GL_ALPHA12: return "GL_ALPHA";
case GL_ALPHA16: return "GL_ALPHA";
case GL_LUMINANCE4: return "GL_LUMINANCE";
case GL_LUMINANCE8: return "GL_LUMINANCE";
case GL_LUMINANCE12: return "GL_LUMINANCE";
case GL_LUMINANCE16: return "GL_LUMINANCE";
case GL_LUMINANCE4_ALPHA4: return "GL_LUMINANCE_ALPHA";
case GL_LUMINANCE6_ALPHA2: return "GL_LUMINANCE_ALPHA";
case GL_LUMINANCE8_ALPHA8: return "GL_LUMINANCE_ALPHA";
case GL_LUMINANCE12_ALPHA4: return "GL_LUMINANCE_ALPHA";
case GL_LUMINANCE12_ALPHA12: return "GL_LUMINANCE_ALPHA";
case GL_LUMINANCE16_ALPHA16: return "GL_LUMINANCE_ALPHA";
case GL_INTENSITY: return "GL_INTENSITY";
case GL_INTENSITY4: return "GL_INTENSITY";
case GL_INTENSITY8: return "GL_INTENSITY";
case GL_INTENSITY12: return "GL_INTENSITY";
case GL_INTENSITY16: return "GL_INTENSITY";
case GL_R3_G3_B2: return "GL_RGB";
case GL_RGB4: return "GL_RGB";
case GL_RGB5: return "GL_RGB";
case GL_RGB8: return "GL_RGB";
case GL_RGB10: return "GL_RGB";
case GL_RGB12: return "GL_RGB";
case GL_RGB16: return "GL_RGB";
case GL_RGBA2: return "GL_RGBA";
case GL_RGBA4: return "GL_RGBA";
case GL_RGB5_A1: return "GL_RGBA";
case GL_RGB10_A2: return "GL_RGBA";
case GL_RGBA12: return "GL_RGBA";
#ifdef GL_VERSION_3_2
case GL_DEPTH_COMPONENT: return "GL_DEPTH_COMPONENT";
case GL_DEPTH_COMPONENT16: return "GL_DEPTH_COMPONENT";
case GL_DEPTH_COMPONENT24: return "GL_DEPTH_COMPONENT";
case GL_DEPTH_COMPONENT32: return "GL_DEPTH_COMPONENT";
case GL_DEPTH_COMPONENT32F: return "GL_DEPTH_COMPONENT";
case GL_DEPTH_STENCIL: return "GL_DEPTH_STENCIL";
case GL_DEPTH24_STENCIL8: return "GL_DEPTH_STENCIL";
case GL_DEPTH32F_STENCIL8: return "GL_DEPTH_STENCIL";
#endif
default:
{
static char foo[ 128 ];
sprintf( foo, "0x%04x", (int)baseformat );
return foo;
}
}
}
const char *GetGLFormatName( GLenum format )
{
switch( format )
{
case GL_RGBA8: return "GL_RGBA8";
case GL_RGBA16: return "GL_RGBA16";
case GL_RGBA: return "GL_RGBA";
case GL_BGRA: return "GL_BGRA";
case GL_RGBA8I_EXT: return "GL_RGBA8I_EXT";
case GL_RGBA16I_EXT: return "GL_RGBA16I_EXT";
case GL_RGBA32I_EXT: return "GL_RGBA32I_EXT";
case GL_RGBA8UI_EXT: return "GL_RGBA8UI_EXT";
case GL_RGBA16UI_EXT: return "GL_RGBA16UI_EXT";
case GL_RGBA32UI_EXT: return "GL_RGBA32UI_EXT";
case GL_RGBA16F: return "GL_RGBA16F";
case GL_RGBA32F: return "GL_RGBA32F";
case GL_RGBA_INTEGER_EXT: return "GL_RGBA_INTEGER_EXT";
case GL_ALPHA4: return "GL_ALPHA4";
case GL_ALPHA8: return "GL_ALPHA8";
case GL_ALPHA12: return "GL_ALPHA12";
case GL_ALPHA16: return "GL_ALPHA16";
case GL_LUMINANCE4: return "GL_LUMINANCE4";
case GL_LUMINANCE8: return "GL_LUMINANCE8";
case GL_LUMINANCE12: return "GL_LUMINANCE12";
case GL_LUMINANCE16: return "GL_LUMINANCE16";
case GL_LUMINANCE4_ALPHA4: return "GL_LUMINANCE4_ALPHA4";
case GL_LUMINANCE6_ALPHA2: return "GL_LUMINANCE6_ALPHA2";
case GL_LUMINANCE8_ALPHA8: return "GL_LUMINANCE8_ALPHA8";
case GL_LUMINANCE12_ALPHA4: return "GL_LUMINANCE12_ALPHA4";
case GL_LUMINANCE12_ALPHA12: return "GL_LUMINANCE12_ALPHA12";
case GL_LUMINANCE16_ALPHA16: return "GL_LUMINANCE16_ALPHA16";
case GL_INTENSITY: return "GL_INTENSITY";
case GL_INTENSITY4: return "GL_INTENSITY4";
case GL_INTENSITY8: return "GL_INTENSITY8";
case GL_INTENSITY12: return "GL_INTENSITY12";
case GL_INTENSITY16: return "GL_INTENSITY16";
case GL_R3_G3_B2: return "GL_R3_G3_B2";
case GL_RGB4: return "GL_RGB4";
case GL_RGB5: return "GL_RGB5";
case GL_RGB8: return "GL_RGB8";
case GL_RGB10: return "GL_RGB10";
case GL_RGB12: return "GL_RGB12";
case GL_RGB16: return "GL_RGB16";
case GL_RGBA2: return "GL_RGBA2";
case GL_RGBA4: return "GL_RGBA4";
case GL_RGB5_A1: return "GL_RGB5_A1";
case GL_RGB10_A2: return "GL_RGB10_A2";
case GL_RGBA12: return "GL_RGBA12";
case GL_INT: return "GL_INT";
case GL_UNSIGNED_INT: return "GL_UNSIGNED_INT";
case GL_SHORT: return "GL_SHORT";
case GL_UNSIGNED_SHORT: return "GL_UNSIGNED_SHORT";
case GL_BYTE: return "GL_BYTE";
case GL_UNSIGNED_BYTE: return "GL_UNSIGNED_BYTE";
case GL_FLOAT: return "GL_FLOAT";
#if defined( __APPLE__ )
case GL_HALF_FLOAT: return "GL_HALF_FLOAT";
#else
case GL_HALF_FLOAT_ARB: return "GL_HALF_FLOAT_ARB";
#endif
#ifdef GL_VERSION_3_2
case GL_DEPTH_STENCIL: return "GL_DEPTH_STENCIL";
case GL_DEPTH_COMPONENT: return "GL_DEPTH_COMPONENT";
case GL_DEPTH_COMPONENT16: return "GL_DEPTH_COMPONENT16";
case GL_DEPTH_COMPONENT24: return "GL_DEPTH_COMPONENT24";
case GL_DEPTH_COMPONENT32: return "GL_DEPTH_COMPONENT32";
case GL_DEPTH_COMPONENT32F: return "GL_DEPTH_COMPONENT32F";
case GL_DEPTH24_STENCIL8: return "GL_DEPTH24_STENCIL8";
case GL_DEPTH32F_STENCIL8: return "GL_DEPTH32F_STENCIL8";
#endif
default:
{
static char foo[ 128 ];
sprintf( foo, "0x%04x", (int)format);
return foo;
}
}
}
void* CreateRandomData( ExplicitType type, size_t count, MTdata d )
{
switch(type)
{
case (kChar):
{
cl_char *p = (cl_char *)malloc(count * sizeof(cl_char));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = (cl_char)genrand_int32(d);
}
return (void*)p;
}
case (kUChar):
case (kUnsignedChar):
{
cl_uchar *p = (cl_uchar *)malloc(count * sizeof(cl_uchar));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = (cl_uchar)genrand_int32(d);
}
return (void*)p;
}
case (kShort):
{
cl_short *p = (cl_short *)malloc(count * sizeof(cl_short));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = (cl_short)genrand_int32(d);
}
return (void*)p;
}
case (kUShort):
case (kUnsignedShort):
{
cl_ushort *p = (cl_ushort *)malloc(count * sizeof(cl_ushort));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = (cl_ushort)genrand_int32(d);
}
return (void*)p;
}
case (kInt):
{
cl_int *p = (cl_int *)malloc(count * sizeof(cl_int));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = (cl_int)genrand_int32(d);
}
return (void*)p;
}
case (kUInt):
case (kUnsignedInt):
{
cl_uint *p = (cl_uint *)malloc(count * sizeof(cl_uint));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = (cl_uint)genrand_int32(d);
}
return (void*)p;
}
case (kFloat):
{
cl_float *p = (cl_float *)malloc(count * sizeof(cl_float));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = get_random_float( 0.f, 1.f, d );
}
return (void*)p;
}
case (kHalf):
{
cl_half *p = (cl_half *)malloc(count * sizeof(cl_half));
if(!p) return 0;
for( size_t i = 0; i < count; i++ )
{
p[ i ] = convert_float_to_half( get_random_float( 0.f, 1.f, d ) );
}
return (void*)p;
}
default:
{
log_error("Invalid explicit type specified for create random data!\n");
return 0;
}
}
return 0;
}
void DumpGLBuffer(GLenum type, size_t width, size_t height, void* buffer)
{
size_t i;
size_t count = width * height;
if(type == GL_BYTE)
{
cl_char* p = (cl_char*)buffer;
for(i = 0; i < count; i++)
log_info("[%4d] %3d %3d %3d %3d\n", (unsigned int)(i),
p[i* 4 + 0],
p[i* 4 + 1],
p[i* 4 + 2],
p[i* 4 + 3]);
}
else if(type == GL_UNSIGNED_BYTE)
{
cl_uchar* p = (cl_uchar*)buffer;
for(i = 0; i < count; i++)
log_info("[%4d] %3d %3d %3d %3d\n", (unsigned int)(i),
p[i* 4 + 0],
p[i* 4 + 1],
p[i* 4 + 2],
p[i* 4 + 3]);
}
else if(type == GL_INT)
{
cl_int* p = (cl_int*)buffer;
for(i = 0; i < count; i++)
log_info("[%4d] %3d %3d %3d %3d\n", (unsigned int)(i),
p[i* 4 + 0],
p[i* 4 + 1],
p[i* 4 + 2],
p[i* 4 + 3]);
}
else if(type == GL_UNSIGNED_INT)
{
cl_uint* p = (cl_uint*)buffer;
for(i = 0; i < count; i++)
log_info("[%4d] %3d %3d %3d %3d\n", (unsigned int)(i),
p[i* 4 + 0],
p[i* 4 + 1],
p[i* 4 + 2],
p[i* 4 + 3]);
}
else if(type == GL_SHORT)
{
cl_short* p = (cl_short*)buffer;
for(i = 0; i < count; i++)
log_info("[%4d] %3d %3d %3d %3d\n", (unsigned int)(i),
p[i* 4 + 0],
p[i* 4 + 1],
p[i* 4 + 2],
p[i* 4 + 3]);
}
else if(type == GL_UNSIGNED_SHORT)
{
cl_ushort* p = (cl_ushort*)buffer;
for(i = 0; i < count; i++)
log_info("[%4d] %3d %3d %3d %3d\n", (unsigned int)(i),
p[i* 4 + 0],
p[i* 4 + 1],
p[i* 4 + 2],
p[i* 4 + 3]);
}
else if(type == GL_FLOAT)
{
cl_float* p = (cl_float*)buffer;
for(i = 0; i < count; i++)
log_info("[%4d] %#f %#f %#f %#f\n", (unsigned int)(i),
p[i* 4 + 0],
p[i* 4 + 1],
p[i* 4 + 2],
p[i* 4 + 3]);
}
}
#if defined(_WIN32)
#include <string.h>
GLboolean gluCheckExtension(const GLubyte *extName, const GLubyte *extString)
{
const size_t len = strlen((const char*)extName);
const char* str = (const char*)extString;
while (str != NULL) {
str = strstr(str, (const char*)extName);
if (str == NULL) {
break;
}
if ((str > (const char*)extString || str[-1] == ' ')
&& (str[len] == ' ' || str[len] == '\0')) {
return GL_TRUE;
}
str = strchr(str + len, ' ');
}
return GL_FALSE;
}
#endif
// Function pointers for the GL/CL calls
clCreateFromGLBuffer_fn clCreateFromGLBuffer_ptr;
clCreateFromGLTexture_fn clCreateFromGLTexture_ptr;
clCreateFromGLTexture2D_fn clCreateFromGLTexture2D_ptr;
clCreateFromGLTexture3D_fn clCreateFromGLTexture3D_ptr;
clCreateFromGLRenderbuffer_fn clCreateFromGLRenderbuffer_ptr;
clGetGLObjectInfo_fn clGetGLObjectInfo_ptr;
clGetGLTextureInfo_fn clGetGLTextureInfo_ptr;
clEnqueueAcquireGLObjects_fn clEnqueueAcquireGLObjects_ptr;
clEnqueueReleaseGLObjects_fn clEnqueueReleaseGLObjects_ptr;
int init_clgl_ext() {
// As OpenCL for the platforms. Warn if more than one platform found,
// since this might not be the platform we want. By default, we simply
// use the first returned platform.
cl_uint nplatforms;
cl_platform_id platform;
clGetPlatformIDs(0, NULL, &nplatforms);
clGetPlatformIDs(1, &platform, NULL);
if (nplatforms > 1) {
log_info("clGetPlatformIDs returned multiple values. This is not "
"an error, but might result in obtaining incorrect function "
"pointers if you do not want the first returned platform.\n");
// Show them the platform name, in case it is a problem.
size_t size;
char *name;
clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &size);
name = (char*)malloc(size);
clGetPlatformInfo(platform, CL_PLATFORM_NAME, size, name, NULL);
log_info("Using platform with name: %s \n", name);
free(name);
}
// Create the function pointer table
clCreateFromGLBuffer_ptr = (clCreateFromGLBuffer_fn)clGetExtensionFunctionAddressForPlatform(platform,"clCreateFromGLBuffer");
if (clCreateFromGLBuffer_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clCreateFromGLBuffer) returned NULL.\n");
return -1;
}
clCreateFromGLTexture2D_ptr = (clCreateFromGLTexture2D_fn)clGetExtensionFunctionAddressForPlatform(platform,"clCreateFromGLTexture2D");
if (clCreateFromGLTexture2D_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clCreateFromGLTexture2D) returned NULL.\n");
return -1;
}
clCreateFromGLTexture3D_ptr = (clCreateFromGLTexture3D_fn)clGetExtensionFunctionAddressForPlatform(platform,"clCreateFromGLTexture3D");
if (clCreateFromGLTexture3D_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clCreateFromGLTexture3D\") returned NULL.\n");
return -1;
}
clCreateFromGLTexture_ptr = (clCreateFromGLTexture_fn)clGetExtensionFunctionAddressForPlatform(platform,"clCreateFromGLTexture");
if (clCreateFromGLTexture_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,\"clCreateFromGLTexture\") returned NULL.\n");
return -1;
}
clCreateFromGLRenderbuffer_ptr = (clCreateFromGLRenderbuffer_fn)clGetExtensionFunctionAddressForPlatform(platform,"clCreateFromGLRenderbuffer");
if (clCreateFromGLRenderbuffer_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clCreateFromGLRenderbuffer) returned NULL.\n");
return -1;
}
clGetGLObjectInfo_ptr = (clGetGLObjectInfo_fn)clGetExtensionFunctionAddressForPlatform(platform,"clGetGLObjectInfo");
if (clGetGLObjectInfo_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clGetGLObjectInfo) returned NULL.\n");
return -1;
}
clGetGLTextureInfo_ptr = (clGetGLTextureInfo_fn)clGetExtensionFunctionAddressForPlatform(platform,"clGetGLTextureInfo");
if (clGetGLTextureInfo_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clGetGLTextureInfo) returned NULL.\n");
return -1;
}
clEnqueueAcquireGLObjects_ptr = (clEnqueueAcquireGLObjects_fn)clGetExtensionFunctionAddressForPlatform(platform,"clEnqueueAcquireGLObjects");
if (clEnqueueAcquireGLObjects_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clEnqueueAcquireGLObjects) returned NULL.\n");
return -1;
}
clEnqueueReleaseGLObjects_ptr = (clEnqueueReleaseGLObjects_fn)clGetExtensionFunctionAddressForPlatform(platform,"clEnqueueReleaseGLObjects");
if (clEnqueueReleaseGLObjects_ptr == NULL) {
log_error("clGetExtensionFunctionAddressForPlatform(platform,clEnqueueReleaseGLObjects) returned NULL.\n");
return -1;
}
return 0;
}
GLint get_gl_max_samples( GLenum target, GLenum internalformat )
{
GLint max_samples = 0;
#ifdef GL_VERSION_4_2
glGetInternalformativ(target, internalformat, GL_SAMPLES, 1, &max_samples);
#else
switch (internalformat)
{
case GL_RGBA8I:
case GL_RGBA16I:
case GL_RGBA32I:
case GL_RGBA8UI:
case GL_RGBA16UI:
case GL_RGBA32UI:
glGetIntegerv(GL_MAX_INTEGER_SAMPLES, &max_samples);
break;
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT32F:
case GL_DEPTH24_STENCIL8:
case GL_DEPTH32F_STENCIL8:
glGetIntegerv(GL_MAX_DEPTH_TEXTURE_SAMPLES, &max_samples);
break;
default:
glGetIntegerv(GL_MAX_COLOR_TEXTURE_SAMPLES, &max_samples);
break;
}
#endif
return max_samples;
}