blob: 3702726f882545dc8d3da66983a2ceec384ff3d9 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "procs.h"
#include "harness/conversions.h"
#include "harness/typeWrappers.h"
const cl_mem_flags flag_set[] = {
CL_MEM_ALLOC_HOST_PTR,
CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR,
CL_MEM_USE_HOST_PTR,
CL_MEM_COPY_HOST_PTR,
0
};
const char* flag_set_names[] = {
"CL_MEM_ALLOC_HOST_PTR",
"CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR",
"CL_MEM_USE_HOST_PTR",
"CL_MEM_COPY_HOST_PTR",
"0"
};
int test_enqueue_map_buffer(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
int error;
const size_t bufferSize = 256*256;
MTdataHolder d{gRandomSeed};
BufferOwningPtr<cl_char> hostPtrData{ malloc(bufferSize) };
BufferOwningPtr<cl_char> referenceData{ malloc(bufferSize) };
BufferOwningPtr<cl_char> finalData{malloc(bufferSize)};
for (int src_flag_id=0; src_flag_id < ARRAY_SIZE(flag_set); src_flag_id++)
{
clMemWrapper memObject;
log_info("Testing with cl_mem_flags src: %s\n", flag_set_names[src_flag_id]);
generate_random_data(kChar, (unsigned int)bufferSize, d, hostPtrData);
memcpy(referenceData, hostPtrData, bufferSize);
void *hostPtr = nullptr;
cl_mem_flags flags = flag_set[src_flag_id];
bool hasHostPtr = (flags & CL_MEM_USE_HOST_PTR) || (flags & CL_MEM_COPY_HOST_PTR);
if (hasHostPtr) hostPtr = hostPtrData;
memObject = clCreateBuffer(context, flags, bufferSize, hostPtr, &error);
test_error( error, "Unable to create testing buffer" );
if (!hasHostPtr)
{
error =
clEnqueueWriteBuffer(queue, memObject, CL_TRUE, 0, bufferSize,
hostPtrData, 0, NULL, NULL);
test_error( error, "clEnqueueWriteBuffer failed");
}
for( int i = 0; i < 128; i++ )
{
size_t offset = (size_t)random_in_range( 0, (int)bufferSize - 1, d );
size_t length = (size_t)random_in_range( 1, (int)( bufferSize - offset ), d );
cl_char *mappedRegion = (cl_char *)clEnqueueMapBuffer( queue, memObject, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE,
offset, length, 0, NULL, NULL, &error );
if( error != CL_SUCCESS )
{
print_error( error, "clEnqueueMapBuffer call failed" );
log_error( "\tOffset: %d Length: %d\n", (int)offset, (int)length );
return -1;
}
// Write into the region
for( size_t j = 0; j < length; j++ )
{
cl_char spin = (cl_char)genrand_int32( d );
// Test read AND write in one swipe
cl_char value = mappedRegion[ j ];
value = spin - value;
mappedRegion[ j ] = value;
// Also update the initial data array
value = referenceData[offset + j];
value = spin - value;
referenceData[offset + j] = value;
}
// Unmap
error = clEnqueueUnmapMemObject( queue, memObject, mappedRegion, 0, NULL, NULL );
test_error( error, "Unable to unmap buffer" );
}
// Final validation: read actual values of buffer and compare against our reference
error = clEnqueueReadBuffer( queue, memObject, CL_TRUE, 0, bufferSize, finalData, 0, NULL, NULL );
test_error( error, "Unable to read results" );
for( size_t q = 0; q < bufferSize; q++ )
{
if (referenceData[q] != finalData[q])
{
log_error(
"ERROR: Sample %d did not validate! Got %d, expected %d\n",
(int)q, (int)finalData[q], (int)referenceData[q]);
return -1;
}
}
} // cl_mem flags
return 0;
}
int test_enqueue_map_image(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements)
{
int error;
cl_image_format format = { CL_RGBA, CL_UNSIGNED_INT32 };
const size_t imageSize = 256;
const size_t imageDataSize = imageSize * imageSize * 4 * sizeof(cl_uint);
PASSIVE_REQUIRE_IMAGE_SUPPORT( deviceID )
BufferOwningPtr<cl_uint> hostPtrData{ malloc(imageDataSize) };
BufferOwningPtr<cl_uint> referenceData{ malloc(imageDataSize) };
BufferOwningPtr<cl_uint> finalData{malloc(imageDataSize)};
MTdataHolder d{gRandomSeed};
for (int src_flag_id=0; src_flag_id < ARRAY_SIZE(flag_set); src_flag_id++) {
clMemWrapper memObject;
log_info("Testing with cl_mem_flags src: %s\n", flag_set_names[src_flag_id]);
generate_random_data(kUInt, (unsigned int)(imageSize * imageSize), d,
hostPtrData);
memcpy(referenceData, hostPtrData, imageDataSize);
cl_mem_flags flags = flag_set[src_flag_id];
bool hasHostPtr = (flags & CL_MEM_USE_HOST_PTR) || (flags & CL_MEM_COPY_HOST_PTR);
void *hostPtr = nullptr;
if (hasHostPtr) hostPtr = hostPtrData;
memObject = create_image_2d(context, CL_MEM_READ_WRITE | flags, &format,
imageSize, imageSize, 0, hostPtr, &error );
test_error( error, "Unable to create testing buffer" );
if (!hasHostPtr) {
size_t write_origin[3]={0,0,0}, write_region[3]={imageSize, imageSize, 1};
error =
clEnqueueWriteImage(queue, memObject, CL_TRUE, write_origin, write_region,
0, 0, hostPtrData, 0, NULL, NULL);
test_error( error, "Unable to write to testing buffer" );
}
for( int i = 0; i < 128; i++ )
{
size_t offset[3], region[3];
size_t rowPitch;
offset[ 0 ] = (size_t)random_in_range( 0, (int)imageSize - 1, d );
region[ 0 ] = (size_t)random_in_range( 1, (int)( imageSize - offset[ 0 ] - 1), d );
offset[ 1 ] = (size_t)random_in_range( 0, (int)imageSize - 1, d );
region[ 1 ] = (size_t)random_in_range( 1, (int)( imageSize - offset[ 1 ] - 1), d );
offset[ 2 ] = 0;
region[ 2 ] = 1;
cl_uint *mappedRegion = (cl_uint *)clEnqueueMapImage( queue, memObject, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE,
offset, region, &rowPitch, NULL, 0, NULL, NULL, &error );
if( error != CL_SUCCESS )
{
print_error( error, "clEnqueueMapImage call failed" );
log_error( "\tOffset: %d,%d Region: %d,%d\n", (int)offset[0], (int)offset[1], (int)region[0], (int)region[1] );
return -1;
}
// Write into the region
cl_uint *mappedPtr = mappedRegion;
for( size_t y = 0; y < region[ 1 ]; y++ )
{
for( size_t x = 0; x < region[ 0 ] * 4; x++ )
{
cl_int spin = (cl_int)random_in_range( 16, 1024, d );
cl_int value;
// Test read AND write in one swipe
value = mappedPtr[ ( y * rowPitch/sizeof(cl_uint) ) + x ];
value = spin - value;
mappedPtr[ ( y * rowPitch/sizeof(cl_uint) ) + x ] = value;
// Also update the initial data array
value =
referenceData[((offset[1] + y) * imageSize + offset[0]) * 4 + x];
value = spin - value;
referenceData[((offset[1] + y) * imageSize + offset[0]) * 4 + x] =
value;
}
}
// Unmap
error = clEnqueueUnmapMemObject( queue, memObject, mappedRegion, 0, NULL, NULL );
test_error( error, "Unable to unmap buffer" );
}
// Final validation: read actual values of buffer and compare against our reference
size_t finalOrigin[3] = { 0, 0, 0 }, finalRegion[3] = { imageSize, imageSize, 1 };
error = clEnqueueReadImage( queue, memObject, CL_TRUE, finalOrigin, finalRegion, 0, 0, finalData, 0, NULL, NULL );
test_error( error, "Unable to read results" );
for( size_t q = 0; q < imageSize * imageSize * 4; q++ )
{
if (referenceData[q] != finalData[q])
{
log_error("ERROR: Sample %d (coord %d,%d) did not validate! Got "
"%d, expected %d\n",
(int)q, (int)((q / 4) % imageSize),
(int)((q / 4) / imageSize), (int)finalData[q],
(int)referenceData[q]);
return -1;
}
}
} // cl_mem_flags
return 0;
}