blob: 7c2050350ef19cae7c3bf128f10a5d8c719b0d91 [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "../testBase.h"
int test_read_image_2D( cl_context context, cl_command_queue queue, image_descriptor *imageInfo, MTdata d )
{
int error;
clMemWrapper image;
// Generate some data to test against
BufferOwningPtr<char> imageValues;
generate_random_image_data( imageInfo, imageValues, d );
if( gDebugTrace )
{
log_info( " - Creating %s image %d by %d...\n", gTestMipmaps?"mipmapped":"", (int)imageInfo->width, (int)imageInfo->height );
if( gTestMipmaps )
log_info( " with %llu mip levels\n", (unsigned long long) imageInfo->num_mip_levels );
}
// Construct testing sources
if(!gTestMipmaps)
{
image = create_image_2d( context, (cl_mem_flags)(CL_MEM_READ_ONLY), imageInfo->format, imageInfo->width, imageInfo->height, 0, NULL, &error );
if( image == NULL )
{
log_error( "ERROR: Unable to create 2D image of size %d x %d (%s)", (int)imageInfo->width, (int)imageInfo->height, IGetErrorString( error ) );
return -1;
}
}
else
{
cl_image_desc image_desc = {0};
image_desc.image_type = CL_MEM_OBJECT_IMAGE2D;
image_desc.image_width = imageInfo->width;
image_desc.image_height = imageInfo->height;
image_desc.num_mip_levels = imageInfo->num_mip_levels;
image = clCreateImage( context, CL_MEM_READ_ONLY, imageInfo->format, &image_desc, NULL, &error);
if( error != CL_SUCCESS )
{
log_error( "ERROR: Unable to create %d level mipmapped 2D image of size %d x %d (pitch %d ) (%s)",(int)imageInfo->num_mip_levels, (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->rowPitch, IGetErrorString( error ) );
return error;
}
}
if( gDebugTrace )
log_info( " - Writing image...\n" );
size_t origin[ 3 ] = { 0, 0, 0 };
size_t region[ 3 ] = { 0, 0, 1 };
size_t fullImageSize;
if( gTestMipmaps )
{
fullImageSize = (size_t)compute_mipmapped_image_size( *imageInfo );
}
else
{
fullImageSize = imageInfo->height * imageInfo->rowPitch;
}
BufferOwningPtr<char> resultValues(malloc(fullImageSize));
size_t imgValMipLevelOffset = 0;
for( size_t lod = 0; (gTestMipmaps && lod < imageInfo->num_mip_levels) || (!gTestMipmaps && lod < 1); lod++)
{
float lod_float = (float) lod;
origin[2] = lod;
size_t width_lod, height_lod, row_pitch_lod;
width_lod = (imageInfo->width >> lod) ? (imageInfo->width >> lod) : 1;
height_lod = (imageInfo->height >> lod) ? (imageInfo->height >> lod) : 1;
row_pitch_lod = gTestMipmaps ? (width_lod * get_pixel_size( imageInfo->format )): imageInfo->rowPitch;
region[0] = width_lod;
region[1] = height_lod;
if ( gDebugTrace && gTestMipmaps) {
log_info(" - Working at mipLevel :%llu\n", (unsigned long long)lod);
}
error = clEnqueueWriteImage(queue, image, CL_FALSE,
origin, region, ( gEnablePitch ? row_pitch_lod : 0 ), 0,
(char*)imageValues + imgValMipLevelOffset, 0, NULL, NULL);
if (error != CL_SUCCESS) {
log_error( "ERROR: Unable to write to 2D image of size %d x %d \n", (int)width_lod, (int)height_lod );
return -1;
}
// To verify, we just read the results right back and see whether they match the input
if( gDebugTrace ) {
log_info( " - Initing result array...\n" );
}
// Note: we read back without any pitch, to verify pitch actually WORKED
size_t scanlineSize = width_lod * get_pixel_size( imageInfo->format );
size_t imageSize = scanlineSize * height_lod;
memset( resultValues, 0xff, imageSize );
if( gDebugTrace )
log_info( " - Reading results...\n" );
error = clEnqueueReadImage( queue, image, CL_TRUE, origin, region, 0, 0, resultValues, 0, NULL, NULL );
test_error( error, "Unable to read image values" );
// Verify scanline by scanline, since the pitches are different
char *sourcePtr = (char *)imageValues + imgValMipLevelOffset;
char *destPtr = resultValues;
for( size_t y = 0; y < height_lod; y++ )
{
if( memcmp( sourcePtr, destPtr, scanlineSize ) != 0 )
{
if(gTestMipmaps)
{
log_error("At mip level %llu\n",(unsigned long long) lod);
}
log_error( "ERROR: Scanline %d did not verify for image size %d,%d pitch %d (extra %d bytes)\n", (int)y, (int)width_lod, (int)height_lod, (int)row_pitch_lod, (int)row_pitch_lod - (int)width_lod * (int)get_pixel_size( imageInfo->format ) );
log_error( "First few values: \n" );
log_error( " Input: " );
uint32_t *s = (uint32_t *)sourcePtr;
uint32_t *d = (uint32_t *)destPtr;
for( int q = 0; q < 12; q++ )
log_error( "%08x ", s[ q ] );
log_error( "\nOutput: " );
for( int q = 0; q < 12; q++ )
log_error( "%08x ", d[ q ] );
log_error( "\n" );
int outX, outY;
int offset = (int)get_pixel_size( imageInfo->format ) * (int)( width_lod - 16 );
if( offset < 0 )
offset = 0;
int foundCount = debug_find_vector_in_image( (char*)imageValues + imgValMipLevelOffset, imageInfo, destPtr + offset, get_pixel_size( imageInfo->format ), &outX, &outY, NULL );
if( foundCount > 0 )
{
int returnedOffset = ( (int)y * (int)width_lod + offset / (int)get_pixel_size( imageInfo->format ) ) - ( outY * (int)width_lod + outX );
if( memcmp( sourcePtr + returnedOffset * get_pixel_size( imageInfo->format ), destPtr, get_pixel_size( imageInfo->format ) * 8 ) == 0 )
log_error( " Values appear to be offsetted by %d\n", returnedOffset );
else
log_error( " Calculated offset is %d but unable to verify\n", returnedOffset );
}
else
{
log_error( " Unable to determine offset\n" );
}
return -1;
}
sourcePtr += row_pitch_lod;
destPtr += scanlineSize;
}
imgValMipLevelOffset += width_lod * height_lod * get_pixel_size( imageInfo->format );
}
return 0;
}
int test_read_image_set_2D( cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format )
{
size_t maxWidth, maxHeight;
cl_ulong maxAllocSize, memSize;
image_descriptor imageInfo = { 0 };
RandomSeed seed( gRandomSeed );
size_t pixelSize;
imageInfo.type = CL_MEM_OBJECT_IMAGE2D;
imageInfo.format = format;
imageInfo.depth = imageInfo.slicePitch = 0;
pixelSize = get_pixel_size( imageInfo.format );
int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
test_error( error, "Unable to get max image 2D size from device" );
if (memSize > (cl_ulong)SIZE_MAX) {
memSize = (cl_ulong)SIZE_MAX;
}
if( gTestSmallImages )
{
for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
{
imageInfo.rowPitch = imageInfo.width * pixelSize;
for( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ )
{
if (gTestMipmaps)
imageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(imageInfo.width, imageInfo.height, 0), seed);
if( gDebugTrace )
log_info( " at size %d,%d\n", (int)imageInfo.width, (int)imageInfo.height );
int ret = test_read_image_2D( context, queue, &imageInfo, seed );
if( ret )
return -1;
}
}
}
else if( gTestMaxImages )
{
// Try a specific set of maximum sizes
size_t numbeOfSizes;
size_t sizes[100][3];
get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D, imageInfo.format);
for( size_t idx = 0; idx < numbeOfSizes; idx++ )
{
imageInfo.width = sizes[idx][0];
imageInfo.height = sizes[idx][1];
imageInfo.rowPitch = imageInfo.width * pixelSize;
if (gTestMipmaps)
imageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(imageInfo.width, imageInfo.height, 0), seed);
log_info("Testing %d x %d\n", (int)imageInfo.width, (int)imageInfo.height);
if( gDebugTrace )
log_info( " at max size %d,%d\n", (int)maxWidth, (int)maxHeight );
if( test_read_image_2D( context, queue, &imageInfo, seed ) )
return -1;
}
}
else
{
for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
{
cl_ulong size;
// Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
// image, the result array, plus offset arrays, will fit in the global ram space
do
{
imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed );
if (gTestMipmaps)
{
imageInfo.num_mip_levels = (cl_uint) random_log_in_range(2, (int)compute_max_mip_levels(imageInfo.width, imageInfo.height, 0), seed);
imageInfo.rowPitch = imageInfo.width * get_pixel_size( imageInfo.format );
size = compute_mipmapped_image_size( imageInfo );
}
else
{
imageInfo.rowPitch = imageInfo.width * pixelSize;
if( gEnablePitch )
{
size_t extraWidth = (int)random_log_in_range( 0, 64, seed );
imageInfo.rowPitch += extraWidth * pixelSize;
}
size = (size_t)imageInfo.rowPitch * (size_t)imageInfo.height * 4;
}
} while( size > maxAllocSize || ( size / 3 ) > memSize );
if( gDebugTrace )
log_info( " at size %d,%d (row pitch %d) out of %d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.rowPitch, (int)maxWidth, (int)maxHeight );
int ret = test_read_image_2D( context, queue, &imageInfo, seed );
if( ret )
return -1;
}
}
return 0;
}