blob: 379d8e353fe02a26b471bfb1f0be912b2da61c6a [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "Utility.h"
#include <string.h>
#include "FunctionList.h"
int TestFunc_Int_Float(const Func *f, MTdata, bool relaxedMode);
int TestFunc_Int_Double(const Func *f, MTdata, bool relaxedMode);
extern const vtbl _i_unary = { "i_unary", TestFunc_Int_Float,
TestFunc_Int_Double };
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode);
static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "__kernel void math_kernel", sizeNames[vectorSize], "( __global int", sizeNames[vectorSize], "* out, __global float", sizeNames[vectorSize], "* in)\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ", name, "( in[i] );\n"
"}\n"
};
const char *c3[] = { "__kernel void math_kernel", sizeNames[vectorSize], "( __global int* out, __global float* in)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" float3 f0 = vload3( 0, in + 3 * i );\n"
" int3 i0 = ", name, "( f0 );\n"
" vstore3( i0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
" float3 f0;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (float3)( in[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" int3 i0 = ", name, "( f0 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = i0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = i0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c)/sizeof(c[0]);
if( sizeValues[vectorSize] == 3 )
{
kern = c3;
kernSize = sizeof(c3)/sizeof(c3[0]);
}
char testName[32];
snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
static int BuildKernelDouble(const char *name, int vectorSize, cl_kernel *k,
cl_program *p, bool relaxedMode)
{
const char *c[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel", sizeNames[vectorSize], "( __global int", sizeNames[vectorSize], "* out, __global double", sizeNames[vectorSize], "* in)\n"
"{\n"
" int i = get_global_id(0);\n"
" out[i] = ", name, "( in[i] );\n"
"}\n"
};
const char *c3[] = {"#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
"__kernel void math_kernel", sizeNames[vectorSize], "( __global int* out, __global double* in)\n"
"{\n"
" size_t i = get_global_id(0);\n"
" if( i + 1 < get_global_size(0) )\n"
" {\n"
" double3 f0 = vload3( 0, in + 3 * i );\n"
" int3 i0 = ", name, "( f0 );\n"
" vstore3( i0, 0, out + 3*i );\n"
" }\n"
" else\n"
" {\n"
" size_t parity = i & 1; // Figure out how many elements are left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two buffer size \n"
" double3 f0;\n"
" switch( parity )\n"
" {\n"
" case 1:\n"
" f0 = (double3)( in[3*i], NAN, NAN ); \n"
" break;\n"
" case 0:\n"
" f0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
" break;\n"
" }\n"
" int3 i0 = ", name, "( f0 );\n"
" switch( parity )\n"
" {\n"
" case 0:\n"
" out[3*i+1] = i0.y; \n"
" // fall through\n"
" case 1:\n"
" out[3*i] = i0.x; \n"
" break;\n"
" }\n"
" }\n"
"}\n"
};
const char **kern = c;
size_t kernSize = sizeof(c)/sizeof(c[0]);
if( sizeValues[vectorSize] == 3 )
{
kern = c3;
kernSize = sizeof(c3)/sizeof(c3[0]);
}
char testName[32];
snprintf( testName, sizeof( testName ) -1, "math_kernel%s", sizeNames[vectorSize] );
return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
}
typedef struct BuildKernelInfo
{
cl_uint offset; // the first vector size to build
cl_kernel *kernels;
cl_program *programs;
const char *nameInCode;
bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
}BuildKernelInfo;
static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
static cl_int BuildKernel_FloatFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
{
BuildKernelInfo *info = (BuildKernelInfo*) p;
cl_uint i = info->offset + job_id;
return BuildKernel(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p );
static cl_int BuildKernel_DoubleFn( cl_uint job_id, cl_uint thread_id UNUSED, void *p )
{
BuildKernelInfo *info = (BuildKernelInfo*) p;
cl_uint i = info->offset + job_id;
return BuildKernelDouble(info->nameInCode, i, info->kernels + i,
info->programs + i, info->relaxedMode);
}
int TestFunc_Int_Float(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[ VECTOR_SIZE_COUNT ];
cl_kernel kernels[ VECTOR_SIZE_COUNT ];
int ftz = f->ftz || 0 == (gFloatCapabilities & CL_FP_DENORM) || gForceFTZ;
size_t bufferSize = (gWimpyMode)?gWimpyBufferSize:BUFFER_SIZE;
uint64_t step = bufferSize / sizeof( float );
int scale = (int)((1ULL<<32) / (16 * bufferSize / sizeof( float )) + 1);
logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
if( gWimpyMode )
{
step = (1ULL<<32) * gWimpyReductionFactor / (512);
}
// This test is not using ThreadPool so we need to disable FTZ here
// for reference computations
FPU_mode_type oldMode;
DisableFTZ(&oldMode);
Force64BitFPUPrecision();
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if( (error = ThreadPool_Do( BuildKernel_FloatFn, gMaxVectorSizeIndex - gMinVectorSizeIndex, &build_info ) ))
return error;
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernel( f->nameInCode, (int) i, kernels + i, programs + i) ) )
return error;
*/
for( i = 0; i < (1ULL<<32); i += step )
{
//Init input array
uint32_t *p = (uint32_t *)gIn;
if( gWimpyMode )
{
for( j = 0; j < bufferSize / sizeof( float ); j++ )
p[j] = (uint32_t) i + j * scale;
}
else
{
for( j = 0; j < bufferSize / sizeof( float ); j++ )
p[j] = (uint32_t) i + j;
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
// write garbage into output arrays
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
goto exit;
}
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeValues[j] * sizeof(cl_float);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
}
// Get that moving
if( (error = clFlush(gQueue) ))
vlog( "clFlush failed\n" );
//Calculate the correctly rounded reference result
int *r = (int *)gOut_Ref;
float *s = (float *)gIn;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
r[j] = f->func.i_f( s[j] );
// Read the data back
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray failed %d\n", error );
goto exit;
}
}
if( gSkipCorrectnessTesting )
break;
//Verify data
uint32_t *t = (uint32_t *)gOut_Ref;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint32_t *q = (uint32_t *)(gOut[k]);
// If we aren't getting the correctly rounded result
if( t[j] != q[j] )
{
if( ftz && IsFloatSubnormal(s[j]))
{
unsigned int correct0 = f->func.i_f( 0.0 );
unsigned int correct1 = f->func.i_f( -0.0 );
if( q[j] == correct0 || q[j] == correct1 )
continue;
}
uint32_t err = t[j] - q[j];
if( q[j] > t[j] )
err = q[j] - t[j];
vlog_error( "\nERROR: %s%s: %d ulp error at %a (0x%8.8x): *%d vs. %d\n", f->name, sizeNames[k], err, ((float*) gIn)[j], ((cl_uint*) gIn)[j], t[j], q[j] );
error = -1;
goto exit;
}
}
}
if( 0 == (i & 0x0fffffff) )
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step, bufferSize);
} else
{
vlog("." );
}
fflush(stdout);
}
}
if( ! gSkipCorrectnessTesting )
{
if( gWimpyMode )
vlog( "Wimp pass" );
else
vlog( "passed" );
}
if( gMeasureTimes )
{
//Init input array
uint32_t *p = (uint32_t *)gIn;
for( j = 0; j < bufferSize / sizeof( float ); j++ )
p[j] = genrand_int32(d);
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeValues[j] * sizeof(cl_float);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
double sum = 0.0;
double bestTime = INFINITY;
for( k = 0; k < PERF_LOOP_COUNT; k++ )
{
uint64_t startTime = GetTime();
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
// Make sure OpenCL is done
if( (error = clFinish(gQueue) ) )
{
vlog_error( "Error %d at clFinish\n", error );
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime( endTime, startTime );
sum += time;
if( time < bestTime )
bestTime = time;
}
if( gReportAverageTimes )
bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( float ) );
vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sf%s", f->name, sizeNames[j] );
}
}
vlog( "\n" );
exit:
RestoreFPState(&oldMode);
// Release
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}
int TestFunc_Int_Double(const Func *f, MTdata d, bool relaxedMode)
{
uint64_t i;
uint32_t j, k;
int error;
cl_program programs[ VECTOR_SIZE_COUNT ];
cl_kernel kernels[ VECTOR_SIZE_COUNT ];
int ftz = f->ftz || gForceFTZ;
size_t bufferSize = (gWimpyMode)?gWimpyBufferSize:BUFFER_SIZE;
uint64_t step = bufferSize / sizeof( cl_double );
int scale = (int)((1ULL<<32) / (16 * bufferSize / sizeof( cl_double )) + 1);
logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);
if( gWimpyMode )
{
step = (1ULL<<32) * gWimpyReductionFactor / (512);
}
// This test is not using ThreadPool so we need to disable FTZ here
// for reference computations
FPU_mode_type oldMode;
DisableFTZ(&oldMode);
Force64BitFPUPrecision();
// Init the kernels
BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
f->nameInCode, relaxedMode };
if( (error = ThreadPool_Do( BuildKernel_DoubleFn,
gMaxVectorSizeIndex - gMinVectorSizeIndex,
&build_info ) ))
{
return error;
}
/*
for( i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++ )
if( (error = BuildKernelDouble( f->nameInCode, (int) i, kernels + i, programs + i) ) )
return error;
*/
for( i = 0; i < (1ULL<<32); i += step )
{
//Init input array
double *p = (double *)gIn;
if( gWimpyMode )
{
for( j = 0; j < bufferSize / sizeof( cl_double ); j++ )
p[j] = DoubleFromUInt32( (uint32_t) i + j * scale );
}
else
{
for( j = 0; j < bufferSize / sizeof( cl_double ); j++ )
p[j] = DoubleFromUInt32( (uint32_t) i + j );
}
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
// write garbage into output arrays
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
uint32_t pattern = 0xffffdead;
memset_pattern4(gOut[j], &pattern, bufferSize);
if( (error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, bufferSize, gOut[j], 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j );
goto exit;
}
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeValues[j] * sizeof(cl_double);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
}
// Get that moving
if( (error = clFlush(gQueue) ))
vlog( "clFlush failed\n" );
//Calculate the correctly rounded reference result
int *r = (int *)gOut_Ref;
double *s = (double *)gIn;
for( j = 0; j < bufferSize / sizeof( cl_double ); j++ )
r[j] = f->dfunc.i_f( s[j] );
// Read the data back
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
if( (error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, bufferSize, gOut[j], 0, NULL, NULL)) )
{
vlog_error( "ReadArray failed %d\n", error );
goto exit;
}
}
if( gSkipCorrectnessTesting )
break;
//Verify data
uint32_t *t = (uint32_t *)gOut_Ref;
for( j = 0; j < bufferSize / sizeof( cl_double ); j++ )
{
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
uint32_t *q = (uint32_t *)(gOut[k]);
// If we aren't getting the correctly rounded result
if( t[j] != q[j] )
{
if( ftz && IsDoubleSubnormal(s[j]))
{
unsigned int correct0 = f->dfunc.i_f( 0.0 );
unsigned int correct1 = f->dfunc.i_f( -0.0 );
if( q[j] == correct0 || q[j] == correct1 )
continue;
}
uint32_t err = t[j] - q[j];
if( q[j] > t[j] )
err = q[j] - t[j];
vlog_error( "\nERROR: %sD%s: %d ulp error at %.13la: *%d vs. %d\n", f->name, sizeNames[k], err, ((double*) gIn)[j], t[j], q[j] );
error = -1;
goto exit;
}
}
}
if( 0 == (i & 0x0fffffff) )
{
if (gVerboseBruteForce)
{
vlog("base:%14u step:%10zu bufferSize:%10zd \n", i, step, bufferSize);
} else
{
vlog("." );
}
fflush(stdout);
}
}
if( ! gSkipCorrectnessTesting )
{
if( gWimpyMode )
vlog( "Wimp pass" );
else
vlog( "passed" );
}
if( gMeasureTimes )
{
//Init input array
double *p = (double *)gIn;
for( j = 0; j < bufferSize / sizeof( cl_double ); j++ )
p[j] = DoubleFromUInt32( genrand_int32(d) );
if( (error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, bufferSize, gIn, 0, NULL, NULL) ))
{
vlog_error( "\n*** Error %d in clEnqueueWriteBuffer ***\n", error );
return error;
}
// Run the kernels
for( j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++ )
{
size_t vectorSize = sizeValues[j] * sizeof(cl_double);
size_t localCount = (bufferSize + vectorSize - 1) / vectorSize;
if( ( error = clSetKernelArg(kernels[j], 0, sizeof( gOutBuffer[j] ), &gOutBuffer[j] ) )) { LogBuildError(programs[j]); goto exit; }
if( ( error = clSetKernelArg( kernels[j], 1, sizeof( gInBuffer ), &gInBuffer ) )) { LogBuildError(programs[j]); goto exit; }
double sum = 0.0;
double bestTime = INFINITY;
for( k = 0; k < PERF_LOOP_COUNT; k++ )
{
uint64_t startTime = GetTime();
if( (error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL)) )
{
vlog_error( "FAILED -- could not execute kernel\n" );
goto exit;
}
// Make sure OpenCL is done
if( (error = clFinish(gQueue) ) )
{
vlog_error( "Error %d at clFinish\n", error );
goto exit;
}
uint64_t endTime = GetTime();
double time = SubtractTime( endTime, startTime );
sum += time;
if( time < bestTime )
bestTime = time;
}
if( gReportAverageTimes )
bestTime = sum / PERF_LOOP_COUNT;
double clocksPerOp = bestTime * (double) gDeviceFrequency * gComputeDevices * gSimdSize * 1e6 / (bufferSize / sizeof( double ) );
vlog_perf( clocksPerOp, LOWER_IS_BETTER, "clocks / element", "%sD%s", f->name, sizeNames[j] );
}
for( ; j < gMaxVectorSizeIndex; j++ )
vlog( "\t -- " );
}
vlog( "\n" );
exit:
RestoreFPState(&oldMode);
// Release
for( k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++ )
{
clReleaseKernel(kernels[k]);
clReleaseProgram(programs[k]);
}
return error;
}