blob: 6064655f0c5a8510521fcf29a604dad73ba6df4e [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "harness/compat.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "procs.h"
static const char *image_dim_kernel_code =
"\n"
"__kernel void test_image_dim(read_only image2d_t srcimg, write_only image2d_t dstimg, sampler_t sampler)\n"
"{\n"
" int tid_x = get_global_id(0);\n"
" int tid_y = get_global_id(1);\n"
" float4 color;\n"
"\n"
" color = read_imagef(srcimg, sampler, (int2)(tid_x, tid_y));\n"
" write_imagef(dstimg, (int2)(tid_x, tid_y), color);\n"
"\n"
"}\n";
static unsigned char *
generate_8888_image(int w, int h, MTdata d)
{
unsigned char *ptr = (unsigned char*)malloc(w * h * 4);
int i;
for (i=0; i<w*h*4; i++)
ptr[i] = (unsigned char)genrand_int32(d);
return ptr;
}
static int
verify_8888_image(unsigned char *image, unsigned char *outptr, int w, int h)
{
int i;
for (i=0; i<w*h; i++)
{
if (outptr[i] != image[i])
return -1;
}
return 0;
}
int
test_imagedim_pow2(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[2];
cl_image_format img_format;
unsigned char *input_ptr, *output_ptr;
cl_program program;
cl_kernel kernel;
size_t threads[2];
cl_ulong max_mem_size;
int img_width, max_img_width;
int img_height, max_img_height;
int max_img_dim;
int i, j, i2, j2, err=0;
size_t max_image2d_width, max_image2d_height;
int total_errors = 0;
MTdata d;
PASSIVE_REQUIRE_IMAGE_SUPPORT( device )
err = create_single_kernel_helper( context, &program, &kernel, 1, &image_dim_kernel_code, "test_image_dim" );
if (err)
{
log_error("create_program_and_kernel_with_sources failed\n");
return -1;
}
err = clGetDeviceInfo(device, CL_DEVICE_GLOBAL_MEM_SIZE,sizeof(max_mem_size), &max_mem_size, NULL);
if (err)
{
log_error("clGetDeviceInfo for CL_DEVICE_GLOBAL_MEM_SIZE failed (%d)\n", err);
return -1;
}
err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof(max_image2d_width), &max_image2d_width, NULL);
if (err)
{
log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_WIDTH failed (%d)\n", err);
return -1;
}
err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof(max_image2d_width), &max_image2d_height, NULL);
if (err)
{
log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_HEIGHT failed (%d)\n", err);
return -1;
}
log_info("Device reported max image sizes of %lu x %lu, and max mem size of %gMB.\n",
max_image2d_width, max_image2d_height, max_mem_size/(1024.0*1024.0));
if (max_mem_size > (cl_ulong)SIZE_MAX) {
max_mem_size = (cl_ulong)SIZE_MAX;
}
cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err);
test_error(err, "clCreateSampler failed");
max_img_width = (int)max_image2d_width;
max_img_height = (int)max_image2d_height;
// determine max image dim we can allocate - assume RGBA image, 4 bytes per pixel,
// and we want to consume 1/4 of global memory (this is the minimum required to be
// supported by the spec)
max_mem_size /= 4; // use 1/4
max_mem_size /= 4; // 4 bytes per pixel
max_img_dim = (int)sqrt((double)max_mem_size);
// convert to a power of 2
{
unsigned int n = (unsigned int)max_img_dim;
unsigned int m = 0x80000000;
// round-down to the nearest power of 2
while (m > n)
m >>= 1;
max_img_dim = (int)m;
}
if (max_img_width > max_img_dim)
max_img_width = max_img_dim;
if (max_img_height > max_img_dim)
max_img_height = max_img_dim;
log_info("Adjusted maximum image size to test is %d x %d, which is a max mem size of %gMB.\n",
max_img_width, max_img_height, (max_img_width*max_img_height*4)/(1024.0*1024.0));
d = init_genrand( gRandomSeed );
input_ptr = generate_8888_image(max_img_width, max_img_height, d);
output_ptr = (unsigned char*)malloc(sizeof(unsigned char) * 4 * max_img_width * max_img_height);
// test power of 2 width, height starting at 1 to 4K
for (i=1,i2=0; i<=max_img_height; i<<=1,i2++)
{
img_height = (1 << i2);
for (j=1,j2=0; j<=max_img_width; j<<=1,j2++)
{
img_width = (1 << j2);
img_format.image_channel_order = CL_RGBA;
img_format.image_channel_data_type = CL_UNORM_INT8;
streams[0] =
create_image_2d(context, CL_MEM_READ_WRITE, &img_format,
img_width, img_height, 0, NULL, NULL);
if (!streams[0])
{
log_error("create_image_2d failed. width = %d, height = %d\n", img_width, img_height);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
img_format.image_channel_order = CL_RGBA;
img_format.image_channel_data_type = CL_UNORM_INT8;
streams[1] =
create_image_2d(context, CL_MEM_READ_WRITE, &img_format,
img_width, img_height, 0, NULL, NULL);
if (!streams[1])
{
log_error("create_image_2d failed. width = %d, height = %d\n", img_width, img_height);
clReleaseMemObject(streams[0]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
size_t origin[3] = {0,0,0};
size_t region[3] = {img_width, img_height, 1};
err = clEnqueueWriteImage(queue, streams[0], CL_FALSE, origin, region, 0, 0, input_ptr, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
log_error("clWriteImage failed\n");
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
err = clSetKernelArg(kernel, 0, sizeof streams[0], &streams[0]);
err |= clSetKernelArg(kernel, 1, sizeof streams[1], &streams[1]);
err |= clSetKernelArg(kernel, 2, sizeof sampler, &sampler);
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
threads[0] = (size_t)img_width;
threads[1] = (size_t)img_height;
log_info("Testing image dimensions %d x %d with local threads NULL.\n", img_width, img_height);
err = clEnqueueNDRangeKernel( queue, kernel, 2, NULL, threads, NULL, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
log_error("Image Dimension test failed. image width = %d, image height = %d, local NULL\n",
img_width, img_height);
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
err = clEnqueueReadImage(queue, streams[1], CL_TRUE, origin, region, 0, 0, output_ptr, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
log_error("clReadImage failed\n");
log_error("Image Dimension test failed. image width = %d, image height = %d, local NULL\n",
img_width, img_height);
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
err = verify_8888_image(input_ptr, output_ptr, img_width, img_height);
if (err)
{
total_errors++;
log_error("Image Dimension test failed. image width = %d, image height = %d\n", img_width, img_height);
}
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
}
}
// cleanup
free(input_ptr);
free(output_ptr);
free_mtdata(d);
clReleaseSampler(sampler);
clReleaseKernel(kernel);
clReleaseProgram(program);
return total_errors;
}
int
test_imagedim_non_pow2(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
{
cl_mem streams[2];
cl_image_format img_format;
unsigned char *input_ptr, *output_ptr;
cl_program program;
cl_kernel kernel;
size_t threads[2], local_threads[2];
cl_ulong max_mem_size;
int img_width, max_img_width;
int img_height, max_img_height;
int max_img_dim;
int i, j, i2, j2, err=0;
size_t max_image2d_width, max_image2d_height;
int total_errors = 0;
size_t max_local_workgroup_size[3];
MTdata d;
PASSIVE_REQUIRE_IMAGE_SUPPORT( device )
err = create_single_kernel_helper( context, &program, &kernel, 1, &image_dim_kernel_code, "test_image_dim" );
if (err)
{
log_error("create_program_and_kernel_with_sources failed\n");
return -1;
}
size_t work_group_size = 0;
err = clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(work_group_size), &work_group_size, NULL);
test_error(err, "clGetKerenlWorkgroupInfo failed for CL_KERNEL_WORK_GROUP_SIZE");
err = clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(max_local_workgroup_size), max_local_workgroup_size, NULL);
test_error(err, "clGetDeviceInfo failed for CL_DEVICE_MAX_WORK_ITEM_SIZES");
err = clGetDeviceInfo(device, CL_DEVICE_GLOBAL_MEM_SIZE,sizeof(max_mem_size), &max_mem_size, NULL);
if (err)
{
log_error("clGetDeviceInfo for CL_DEVICE_GLOBAL_MEM_SIZE failed (%d)\n", err);
return -1;
}
err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof(max_image2d_width), &max_image2d_width, NULL);
if (err)
{
log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_WIDTH failed (%d)\n", err);
return -1;
}
err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof(max_image2d_width), &max_image2d_height, NULL);
if (err)
{
log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_HEIGHT failed (%d)\n", err);
return -1;
}
log_info("Device reported max image sizes of %lu x %lu, and max mem size of %gMB.\n",
max_image2d_width, max_image2d_height, max_mem_size/(1024.0*1024.0));
cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err);
test_error(err, "clCreateSampler failed");
max_img_width = (int)max_image2d_width;
max_img_height = (int)max_image2d_height;
if (max_mem_size > (cl_ulong)SIZE_MAX) {
max_mem_size = (cl_ulong)SIZE_MAX;
}
// determine max image dim we can allocate - assume RGBA image, 4 bytes per pixel,
// and we want to consume 1/4 of global memory (this is the minimum required to be
// supported by the spec)
max_mem_size /= 4; // use 1/4
max_mem_size /= 4; // 4 bytes per pixel
max_img_dim = (int)sqrt((double)max_mem_size);
// convert to a power of 2
{
unsigned int n = (unsigned int)max_img_dim;
unsigned int m = 0x80000000;
// round-down to the nearest power of 2
while (m > n)
m >>= 1;
max_img_dim = (int)m;
}
if (max_img_width > max_img_dim)
max_img_width = max_img_dim;
if (max_img_height > max_img_dim)
max_img_height = max_img_dim;
log_info("Adjusted maximum image size to test is %d x %d, which is a max mem size of %gMB.\n",
max_img_width, max_img_height, (max_img_width*max_img_height*4)/(1024.0*1024.0));
d = init_genrand( gRandomSeed );
input_ptr = generate_8888_image(max_img_width, max_img_height, d);
output_ptr = (unsigned char*)malloc(sizeof(unsigned char) * 4 * max_img_width * max_img_height);
int plus_minus;
for (plus_minus=0; plus_minus < 3; plus_minus++)
{
// test power of 2 width, height starting at 1 to 4K
for (i=2,i2=1; i<=max_img_height; i<<=1,i2++)
{
img_height = (1 << i2);
for (j=2,j2=1; j<=max_img_width; j<<=1,j2++)
{
img_width = (1 << j2);
int effective_img_height = img_height;
int effective_img_width = img_width;
local_threads[0] = 1;
local_threads[1] = 1;
switch (plus_minus) {
case 0:
effective_img_height--;
local_threads[0] = work_group_size > max_local_workgroup_size[0] ? max_local_workgroup_size[0] : work_group_size;
while (img_width%local_threads[0] != 0)
local_threads[0]--;
break;
case 1:
effective_img_width--;
local_threads[1] = work_group_size > max_local_workgroup_size[1] ? max_local_workgroup_size[1] : work_group_size;
while (img_height%local_threads[1] != 0)
local_threads[1]--;
break;
case 2:
effective_img_width--;
effective_img_height--;
break;
default:
break;
}
img_format.image_channel_order = CL_RGBA;
img_format.image_channel_data_type = CL_UNORM_INT8;
streams[0] = create_image_2d(
context, CL_MEM_READ_WRITE, &img_format,
effective_img_width, effective_img_height, 0, NULL, NULL);
if (!streams[0])
{
log_error("create_image_2d failed. width = %d, height = %d\n", effective_img_width, effective_img_height);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
img_format.image_channel_order = CL_RGBA;
img_format.image_channel_data_type = CL_UNORM_INT8;
streams[1] = create_image_2d(
context, CL_MEM_READ_WRITE, &img_format,
effective_img_width, effective_img_height, 0, NULL, NULL);
if (!streams[1])
{
log_error("create_image_2d failed. width = %d, height = %d\n", effective_img_width, effective_img_height);
clReleaseMemObject(streams[0]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
size_t origin[3] = {0,0,0};
size_t region[3] = {effective_img_width, effective_img_height, 1};
err = clEnqueueWriteImage(queue, streams[0], CL_FALSE, origin, region, 0, 0, input_ptr, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
log_error("clWriteImage failed\n");
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
err = clSetKernelArg(kernel, 0, sizeof streams[0], &streams[0]);
err |= clSetKernelArg(kernel, 1, sizeof streams[1], &streams[1]);
err |= clSetKernelArg(kernel, 2, sizeof sampler, &sampler);
if (err != CL_SUCCESS)
{
log_error("clSetKernelArgs failed\n");
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
threads[0] = (size_t)effective_img_width;
threads[1] = (size_t)effective_img_height;
log_info("Testing image dimensions %d x %d with local threads %d x %d.\n",
effective_img_width, effective_img_height, (int)local_threads[0], (int)local_threads[1]);
err = clEnqueueNDRangeKernel( queue, kernel, 2, NULL, threads, local_threads, 0, NULL, NULL );
if (err != CL_SUCCESS)
{
log_error("clEnqueueNDRangeKernel failed\n");
log_error("Image Dimension test failed. image width = %d, image height = %d, local %d x %d\n",
effective_img_width, effective_img_height, (int)local_threads[0], (int)local_threads[1]);
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
err = clEnqueueReadImage(queue, streams[1], CL_TRUE, origin, region, 0, 0, output_ptr, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
log_error("clReadImage failed\n");
log_error("Image Dimension test failed. image width = %d, image height = %d, local %d x %d\n",
effective_img_width, effective_img_height, (int)local_threads[0], (int)local_threads[1]);
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
free(input_ptr);
free(output_ptr);
free_mtdata(d);
return -1;
}
err = verify_8888_image(input_ptr, output_ptr, effective_img_width, effective_img_height);
if (err)
{
total_errors++;
log_error("Image Dimension test failed. image width = %d, image height = %d\n", effective_img_width, effective_img_height);
}
clReleaseMemObject(streams[0]);
clReleaseMemObject(streams[1]);
}
}
}
// cleanup
free(input_ptr);
free(output_ptr);
free_mtdata(d);
clReleaseSampler(sampler);
clReleaseKernel(kernel);
clReleaseProgram(program);
return total_errors;
}