blob: a4b7726a76cf4cd31355e4ccf6bf40b8997a7a00 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 The Khronos Group Inc.
* Copyright (c) 2021-2022 Valve Corporation
* Copyright (c) 2021-2022 LunarG, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and/or associated documentation files (the "Materials"), to
* deal in the Materials without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Materials, and to permit persons to whom the Materials are
* furnished to do so, subject to the following conditions:
*
* The above copyright notice(s) and this permission notice shall be included in
* all copies or substantial portions of the Materials.
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
*
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE
* USE OR OTHER DEALINGS IN THE MATERIALS.
*
* Author: Charles Giessen <charles@lunarg.com>
* Author: Mark Young <marky@lunarg.com>
*/
#include "test_environment.h"
// These tests are all instance extension tests that touch physical devices. This was
// before the idea that physical device extensions were more appropriately found in the
// list of device extensions. Because of that, all these tests need to support devices
// that don't support the extension and have a fallback path in the loader that needs
// validation.
// Fill in random but valid data into the device properties struct for the current physical device
static void FillInRandomICDInfo(uint32_t& vendor_id, uint32_t& driver_vers) {
vendor_id = VK_MAKE_API_VERSION(0, rand() % 64, rand() % 255, rand() % 255);
driver_vers = VK_MAKE_API_VERSION(0, rand() % 64, rand() % 255, rand() % 255);
}
// Fill in random but valid data into the device properties struct for the current physical device
static void FillInRandomDeviceProps(VkPhysicalDeviceProperties& props, uint32_t api_vers, uint32_t vendor, uint32_t driver_vers) {
props.apiVersion = api_vers;
props.driverVersion = driver_vers;
props.vendorID = vendor;
props.deviceID = (static_cast<uint32_t>(rand()) >> 4) + (static_cast<uint32_t>(rand()) << 2);
props.deviceType = static_cast<VkPhysicalDeviceType>(rand() % 5);
for (uint8_t idx = 0; idx < VK_UUID_SIZE; ++idx) {
props.pipelineCacheUUID[idx] = static_cast<uint8_t>(rand() % 255);
}
}
//
// VK_KHR_get_physical_device_properties2
//
// Test vkGetPhysicalDeviceProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysDevProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2KHR"));
ASSERT_EQ(GetPhysDevProps2, nullptr);
}
// Test vkGetPhysicalDeviceProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevProps2KHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysDevProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2KHR"));
ASSERT_EQ(GetPhysDevProps2, nullptr);
}
// Test vkGetPhysicalDeviceProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomDeviceProps(env.get_test_icd(0).physical_devices.back().properties, VK_API_VERSION_1_0, 5, 123);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysDevProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2KHR"));
ASSERT_NE(GetPhysDevProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceProperties props{};
instance->vkGetPhysicalDeviceProperties(physical_device, &props);
VkPhysicalDeviceProperties2KHR props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR};
GetPhysDevProps2(physical_device, &props2);
// Both properties should match
ASSERT_EQ(props.apiVersion, props2.properties.apiVersion);
ASSERT_EQ(props.driverVersion, props2.properties.driverVersion);
ASSERT_EQ(props.vendorID, props2.properties.vendorID);
ASSERT_EQ(props.deviceID, props2.properties.deviceID);
ASSERT_EQ(props.deviceType, props2.properties.deviceType);
ASSERT_EQ(0, memcmp(props.pipelineCacheUUID, props2.properties.pipelineCacheUUID, VK_UUID_SIZE));
}
// Test vkGetPhysicalDeviceProperties2 where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomDeviceProps(env.get_test_icd(0).physical_devices.back().properties, VK_API_VERSION_1_1, 5, 123);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2"));
ASSERT_NE(GetPhysDevProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceProperties props{};
instance->vkGetPhysicalDeviceProperties(physical_device, &props);
VkPhysicalDeviceProperties2KHR props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR};
GetPhysDevProps2(physical_device, &props2);
// Both properties should match
ASSERT_EQ(props.apiVersion, props2.properties.apiVersion);
ASSERT_EQ(props.driverVersion, props2.properties.driverVersion);
ASSERT_EQ(props.vendorID, props2.properties.vendorID);
ASSERT_EQ(props.deviceID, props2.properties.deviceID);
ASSERT_EQ(props.deviceType, props2.properties.deviceType);
ASSERT_EQ(0, memcmp(props.pipelineCacheUUID, props2.properties.pipelineCacheUUID, VK_UUID_SIZE));
}
// Test vkGetPhysicalDeviceProperties2 and vkGetPhysicalDeviceProperties2KHR where ICD is 1.0 and supports
// extension but the instance supports 1.1 and the extension
TEST(LoaderInstPhysDevExts, PhysDevProps2KHRInstanceSupports11) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomDeviceProps(env.get_test_icd(0).physical_devices.back().properties, VK_API_VERSION_1_0, 5, 123);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2"));
ASSERT_NE(GetPhysDevProps2, nullptr);
auto GetPhysDevProps2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2KHR"));
ASSERT_NE(GetPhysDevProps2KHR, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceProperties props{};
instance->vkGetPhysicalDeviceProperties(physical_device, &props);
VkPhysicalDeviceProperties2 props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2};
GetPhysDevProps2(physical_device, &props2);
// Both VkPhysicalDeviceProperties2 properties should match
ASSERT_EQ(props.apiVersion, props2.properties.apiVersion);
ASSERT_EQ(props.driverVersion, props2.properties.driverVersion);
ASSERT_EQ(props.vendorID, props2.properties.vendorID);
ASSERT_EQ(props.deviceID, props2.properties.deviceID);
ASSERT_EQ(props.deviceType, props2.properties.deviceType);
ASSERT_EQ(0, memcmp(props.pipelineCacheUUID, props2.properties.pipelineCacheUUID, VK_UUID_SIZE));
VkPhysicalDeviceProperties2KHR props2KHR{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR};
GetPhysDevProps2(physical_device, &props2KHR);
// Both VkPhysicalDeviceProperties2KHR properties should match
ASSERT_EQ(props.apiVersion, props2KHR.properties.apiVersion);
ASSERT_EQ(props.driverVersion, props2KHR.properties.driverVersion);
ASSERT_EQ(props.vendorID, props2KHR.properties.vendorID);
ASSERT_EQ(props.deviceID, props2KHR.properties.deviceID);
ASSERT_EQ(props.deviceType, props2KHR.properties.deviceType);
ASSERT_EQ(0, memcmp(props.pipelineCacheUUID, props2KHR.properties.pipelineCacheUUID, VK_UUID_SIZE));
ASSERT_FALSE(log.find("Emulating call in ICD"));
}
// Test vkGetPhysicalDeviceProperties2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevProps2Mixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2"));
ASSERT_NE(GetPhysDevProps2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &props);
VkPhysicalDeviceProperties2KHR props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2};
GetPhysDevProps2(physical_devices[dev], &props2);
// Both properties should match
ASSERT_EQ(props.apiVersion, props2.properties.apiVersion);
ASSERT_EQ(props.driverVersion, props2.properties.driverVersion);
ASSERT_EQ(props.vendorID, props2.properties.vendorID);
ASSERT_EQ(props.deviceID, props2.properties.deviceID);
ASSERT_EQ(props.deviceType, props2.properties.deviceType);
ASSERT_EQ(0, memcmp(props.pipelineCacheUUID, props2.properties.pipelineCacheUUID, VK_UUID_SIZE));
}
}
// Fill in random but valid data into the features struct for the current physical device
static void FillInRandomFeatures(VkPhysicalDeviceFeatures& feats) {
feats.robustBufferAccess = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.fullDrawIndexUint32 = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.imageCubeArray = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.independentBlend = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.geometryShader = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.tessellationShader = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sampleRateShading = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.dualSrcBlend = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.logicOp = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.multiDrawIndirect = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.drawIndirectFirstInstance = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.depthClamp = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.depthBiasClamp = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.fillModeNonSolid = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.depthBounds = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.wideLines = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.largePoints = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.alphaToOne = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.multiViewport = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.samplerAnisotropy = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.textureCompressionETC2 = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.textureCompressionASTC_LDR = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.textureCompressionBC = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.occlusionQueryPrecise = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.pipelineStatisticsQuery = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.vertexPipelineStoresAndAtomics = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.fragmentStoresAndAtomics = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderTessellationAndGeometryPointSize = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderImageGatherExtended = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderStorageImageExtendedFormats = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderStorageImageMultisample = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderStorageImageReadWithoutFormat = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderStorageImageWriteWithoutFormat = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderUniformBufferArrayDynamicIndexing = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderSampledImageArrayDynamicIndexing = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderStorageBufferArrayDynamicIndexing = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderStorageImageArrayDynamicIndexing = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderClipDistance = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderCullDistance = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderFloat64 = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderInt64 = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderInt16 = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderResourceResidency = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.shaderResourceMinLod = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseBinding = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidencyBuffer = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidencyImage2D = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidencyImage3D = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidency2Samples = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidency4Samples = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidency8Samples = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidency16Samples = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.sparseResidencyAliased = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.variableMultisampleRate = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
feats.inheritedQueries = (rand() % 2) == 0 ? VK_FALSE : VK_TRUE;
}
// Compare the contents of the feature structs
static bool CompareFeatures(const VkPhysicalDeviceFeatures& feats1, const VkPhysicalDeviceFeatures2& feats2) {
return feats1.robustBufferAccess == feats2.features.robustBufferAccess &&
feats1.fullDrawIndexUint32 == feats2.features.fullDrawIndexUint32 &&
feats1.imageCubeArray == feats2.features.imageCubeArray && feats1.independentBlend == feats2.features.independentBlend &&
feats1.geometryShader == feats2.features.geometryShader &&
feats1.tessellationShader == feats2.features.tessellationShader &&
feats1.sampleRateShading == feats2.features.sampleRateShading && feats1.dualSrcBlend == feats2.features.dualSrcBlend &&
feats1.logicOp == feats2.features.logicOp && feats1.multiDrawIndirect == feats2.features.multiDrawIndirect &&
feats1.drawIndirectFirstInstance == feats2.features.drawIndirectFirstInstance &&
feats1.depthClamp == feats2.features.depthClamp && feats1.depthBiasClamp == feats2.features.depthBiasClamp &&
feats1.fillModeNonSolid == feats2.features.fillModeNonSolid && feats1.depthBounds == feats2.features.depthBounds &&
feats1.wideLines == feats2.features.wideLines && feats1.largePoints == feats2.features.largePoints &&
feats1.alphaToOne == feats2.features.alphaToOne && feats1.multiViewport == feats2.features.multiViewport &&
feats1.samplerAnisotropy == feats2.features.samplerAnisotropy &&
feats1.textureCompressionETC2 == feats2.features.textureCompressionETC2 &&
feats1.textureCompressionASTC_LDR == feats2.features.textureCompressionASTC_LDR &&
feats1.textureCompressionBC == feats2.features.textureCompressionBC &&
feats1.occlusionQueryPrecise == feats2.features.occlusionQueryPrecise &&
feats1.pipelineStatisticsQuery == feats2.features.pipelineStatisticsQuery &&
feats1.vertexPipelineStoresAndAtomics == feats2.features.vertexPipelineStoresAndAtomics &&
feats1.fragmentStoresAndAtomics == feats2.features.fragmentStoresAndAtomics &&
feats1.shaderTessellationAndGeometryPointSize == feats2.features.shaderTessellationAndGeometryPointSize &&
feats1.shaderImageGatherExtended == feats2.features.shaderImageGatherExtended &&
feats1.shaderStorageImageExtendedFormats == feats2.features.shaderStorageImageExtendedFormats &&
feats1.shaderStorageImageMultisample == feats2.features.shaderStorageImageMultisample &&
feats1.shaderStorageImageReadWithoutFormat == feats2.features.shaderStorageImageReadWithoutFormat &&
feats1.shaderStorageImageWriteWithoutFormat == feats2.features.shaderStorageImageWriteWithoutFormat &&
feats1.shaderUniformBufferArrayDynamicIndexing == feats2.features.shaderUniformBufferArrayDynamicIndexing &&
feats1.shaderSampledImageArrayDynamicIndexing == feats2.features.shaderSampledImageArrayDynamicIndexing &&
feats1.shaderStorageBufferArrayDynamicIndexing == feats2.features.shaderStorageBufferArrayDynamicIndexing &&
feats1.shaderStorageImageArrayDynamicIndexing == feats2.features.shaderStorageImageArrayDynamicIndexing &&
feats1.shaderClipDistance == feats2.features.shaderClipDistance &&
feats1.shaderCullDistance == feats2.features.shaderCullDistance &&
feats1.shaderFloat64 == feats2.features.shaderFloat64 && feats1.shaderInt64 == feats2.features.shaderInt64 &&
feats1.shaderInt16 == feats2.features.shaderInt16 &&
feats1.shaderResourceResidency == feats2.features.shaderResourceResidency &&
feats1.shaderResourceMinLod == feats2.features.shaderResourceMinLod &&
feats1.sparseBinding == feats2.features.sparseBinding &&
feats1.sparseResidencyBuffer == feats2.features.sparseResidencyBuffer &&
feats1.sparseResidencyImage2D == feats2.features.sparseResidencyImage2D &&
feats1.sparseResidencyImage3D == feats2.features.sparseResidencyImage3D &&
feats1.sparseResidency2Samples == feats2.features.sparseResidency2Samples &&
feats1.sparseResidency4Samples == feats2.features.sparseResidency4Samples &&
feats1.sparseResidency8Samples == feats2.features.sparseResidency8Samples &&
feats1.sparseResidency16Samples == feats2.features.sparseResidency16Samples &&
feats1.sparseResidencyAliased == feats2.features.sparseResidencyAliased &&
feats1.variableMultisampleRate == feats2.features.variableMultisampleRate &&
feats1.inheritedQueries == feats2.features.inheritedQueries;
}
// Test vkGetPhysicalDeviceFeatures2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevFeats2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysDevFeats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2KHR"));
ASSERT_EQ(GetPhysDevFeats2, nullptr);
}
// Test vkGetPhysicalDeviceFeatures2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevFeatsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysDevFeats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2KHR"));
ASSERT_EQ(GetPhysDevFeats2, nullptr);
}
// Test vkGetPhysicalDeviceFeatures2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevFeats2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomFeatures(env.get_test_icd(0).physical_devices.back().features);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysDevFeats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2KHR"));
ASSERT_NE(GetPhysDevFeats2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceFeatures feats{};
instance->vkGetPhysicalDeviceFeatures(physical_device, &feats);
VkPhysicalDeviceFeatures2 feats2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR};
GetPhysDevFeats2(physical_device, &feats2);
ASSERT_TRUE(CompareFeatures(feats, feats2));
}
// Test vkGetPhysicalDeviceFeatures2 where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevFeats2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomFeatures(env.get_test_icd(0).physical_devices.back().features);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevFeats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2"));
ASSERT_NE(GetPhysDevFeats2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceFeatures feats{};
instance->vkGetPhysicalDeviceFeatures(physical_device, &feats);
VkPhysicalDeviceFeatures2 feats2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};
GetPhysDevFeats2(physical_device, &feats2);
ASSERT_TRUE(CompareFeatures(feats, feats2));
}
// Test vkGetPhysicalDeviceFeatures2 and vkGetPhysicalDeviceFeatures2KHR where ICD is 1.0 and supports
// extension but the instance supports 1.1 and the extension
TEST(LoaderInstPhysDevExts, PhysDevFeats2KHRInstanceSupports11) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomFeatures(env.get_test_icd(0).physical_devices.back().features);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevFeats2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2KHR"));
ASSERT_NE(GetPhysDevFeats2KHR, nullptr);
auto GetPhysDevFeats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2"));
ASSERT_NE(GetPhysDevFeats2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceFeatures feats{};
instance->vkGetPhysicalDeviceFeatures(physical_device, &feats);
VkPhysicalDeviceFeatures2KHR feats2KHR{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR};
GetPhysDevFeats2KHR(physical_device, &feats2KHR);
ASSERT_TRUE(CompareFeatures(feats, feats2KHR));
VkPhysicalDeviceFeatures2 feats2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};
GetPhysDevFeats2(physical_device, &feats2);
ASSERT_TRUE(CompareFeatures(feats, feats2));
ASSERT_FALSE(log.find("Emulating call in ICD"));
}
// Test vkGetPhysicalDeviceFeatures2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevFeatsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomFeatures(cur_dev.features);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevFeats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2"));
ASSERT_NE(GetPhysDevFeats2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceFeatures feats{};
instance->vkGetPhysicalDeviceFeatures(physical_devices[dev], &feats);
VkPhysicalDeviceFeatures2 feats2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};
GetPhysDevFeats2(physical_devices[dev], &feats2);
ASSERT_TRUE(CompareFeatures(feats, feats2));
}
}
// Fill in random but valid data into the format properties struct for the current physical device
static void FillInRandomFormatProperties(std::vector<VkFormatProperties>& props) {
props.resize(5);
for (uint8_t form = 0; form < 5; ++form) {
props[form].bufferFeatures = static_cast<VkFormatFeatureFlags>(rand());
props[form].linearTilingFeatures = static_cast<VkFormatFeatureFlags>(rand());
props[form].optimalTilingFeatures = static_cast<VkFormatFeatureFlags>(rand());
}
}
// Test vkGetPhysicalDeviceFormatProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevFormatProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysDevFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2KHR"));
ASSERT_EQ(GetPhysDevFormatProps2, nullptr);
}
// Test vkGetPhysicalDeviceFormatProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevFormatPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysDevFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2KHR"));
ASSERT_EQ(GetPhysDevFormatProps2, nullptr);
}
// Test vkGetPhysicalDeviceFormatProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevFormatProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomFormatProperties(env.get_test_icd(0).physical_devices.back().format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2KHR"));
ASSERT_NE(GetPhysDevFormatProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkFormatProperties props{};
instance->vkGetPhysicalDeviceFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, &props);
VkFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
GetPhysDevFormatProps2(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, &props2);
ASSERT_EQ(props.bufferFeatures, props2.formatProperties.bufferFeatures);
ASSERT_EQ(props.linearTilingFeatures, props2.formatProperties.linearTilingFeatures);
ASSERT_EQ(props.optimalTilingFeatures, props2.formatProperties.optimalTilingFeatures);
}
// Test vkGetPhysicalDeviceFormatProperties2 where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevFormatProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomFormatProperties(env.get_test_icd(0).physical_devices.back().format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2"));
ASSERT_NE(GetPhysDevFormatProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkFormatProperties props{};
instance->vkGetPhysicalDeviceFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, &props);
VkFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
GetPhysDevFormatProps2(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, &props2);
ASSERT_EQ(props.bufferFeatures, props2.formatProperties.bufferFeatures);
ASSERT_EQ(props.linearTilingFeatures, props2.formatProperties.linearTilingFeatures);
ASSERT_EQ(props.optimalTilingFeatures, props2.formatProperties.optimalTilingFeatures);
}
// Test vkGetPhysicalDeviceFormatProperties2 and vkGetPhysicalDeviceFormatProperties2KHR where ICD is 1.0 and supports
// extension but the instance supports 1.1 and the extension
TEST(LoaderInstPhysDevExts, PhysDevFormatProps2KHRInstanceSupports11) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomFormatProperties(env.get_test_icd(0).physical_devices.back().format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2"));
ASSERT_NE(GetPhysDevFormatProps2, nullptr);
auto GetPhysDevFormatProps2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2KHR"));
ASSERT_NE(GetPhysDevFormatProps2KHR, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkFormatProperties props{};
instance->vkGetPhysicalDeviceFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, &props);
VkFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
GetPhysDevFormatProps2(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, &props2);
ASSERT_EQ(props.bufferFeatures, props2.formatProperties.bufferFeatures);
ASSERT_EQ(props.linearTilingFeatures, props2.formatProperties.linearTilingFeatures);
ASSERT_EQ(props.optimalTilingFeatures, props2.formatProperties.optimalTilingFeatures);
VkFormatProperties2KHR props2KHR{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
GetPhysDevFormatProps2KHR(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, &props2KHR);
ASSERT_EQ(props.bufferFeatures, props2KHR.formatProperties.bufferFeatures);
ASSERT_EQ(props.linearTilingFeatures, props2KHR.formatProperties.linearTilingFeatures);
ASSERT_EQ(props.optimalTilingFeatures, props2KHR.formatProperties.optimalTilingFeatures);
ASSERT_FALSE(log.find("Emulating call in ICD"));
}
// Test vkGetPhysicalDeviceFormatProperties2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevFormatPropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomFormatProperties(cur_dev.format_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFormatProperties2"));
ASSERT_NE(GetPhysDevFormatProps2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkFormat format = static_cast<VkFormat>((dev + 1) % 5);
VkFormatProperties props{};
instance->vkGetPhysicalDeviceFormatProperties(physical_devices[dev], format, &props);
VkFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
GetPhysDevFormatProps2(physical_devices[dev], format, &props2);
ASSERT_EQ(props.bufferFeatures, props2.formatProperties.bufferFeatures);
ASSERT_EQ(props.linearTilingFeatures, props2.formatProperties.linearTilingFeatures);
ASSERT_EQ(props.optimalTilingFeatures, props2.formatProperties.optimalTilingFeatures);
}
}
// Fill in random but valid data into the image format data struct for the current physical device
static void FillInRandomImageFormatData(VkImageFormatProperties& props) {
props.maxExtent = {static_cast<uint32_t>(rand() % 512), static_cast<uint32_t>(rand() % 512),
static_cast<uint32_t>(rand() % 512)};
props.maxMipLevels = static_cast<uint32_t>(1 << (rand() % 16));
props.maxArrayLayers = static_cast<uint32_t>(1 << (rand() % 16));
props.sampleCounts = static_cast<VkSampleCountFlags>(1 << (rand() % 7));
props.maxResourceSize = static_cast<uint64_t>(rand());
}
// Test vkGetPhysicalDeviceImageFormatProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevImageFormatProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysDevImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceImageFormatProperties2KHR"));
ASSERT_EQ(GetPhysDevImageFormatProps2, nullptr);
}
// Test vkGetPhysicalDeviceImageFormatProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevImageFormatPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysDevImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceImageFormatProperties2KHR"));
ASSERT_EQ(GetPhysDevImageFormatProps2, nullptr);
}
// Test vkGetPhysicalDeviceImageFormatProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevImageFormatProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomImageFormatData(env.get_test_icd(0).physical_devices.back().image_format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysDevImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceImageFormatProperties2KHR"));
ASSERT_NE(GetPhysDevImageFormatProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkImageFormatProperties props{};
ASSERT_EQ(VK_SUCCESS,
instance->vkGetPhysicalDeviceImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL, 0, 0, &props));
VkPhysicalDeviceImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_IMAGE_TILING_OPTIMAL, // tiling
0, // usage
0, // flags
};
VkImageFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
ASSERT_EQ(VK_SUCCESS, GetPhysDevImageFormatProps2(physical_device, &info2, &props2));
ASSERT_EQ(props.maxExtent.width, props2.imageFormatProperties.maxExtent.width);
ASSERT_EQ(props.maxExtent.height, props2.imageFormatProperties.maxExtent.height);
ASSERT_EQ(props.maxExtent.depth, props2.imageFormatProperties.maxExtent.depth);
ASSERT_EQ(props.maxMipLevels, props2.imageFormatProperties.maxMipLevels);
ASSERT_EQ(props.maxArrayLayers, props2.imageFormatProperties.maxArrayLayers);
ASSERT_EQ(props.sampleCounts, props2.imageFormatProperties.sampleCounts);
ASSERT_EQ(props.maxResourceSize, props2.imageFormatProperties.maxResourceSize);
}
// Test vkGetPhysicalDeviceImageFormatProperties2 where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevImageFormatProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomImageFormatData(env.get_test_icd(0).physical_devices.back().image_format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceImageFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceImageFormatProperties2"));
ASSERT_NE(GetPhysDevImageFormatProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkImageFormatProperties props{};
ASSERT_EQ(VK_SUCCESS,
instance->vkGetPhysicalDeviceImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL, 0, 0, &props));
VkPhysicalDeviceImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_IMAGE_TILING_OPTIMAL, // tiling
0, // usage
0, // flags
};
VkImageFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
ASSERT_EQ(VK_SUCCESS, GetPhysDevImageFormatProps2(physical_device, &info2, &props2));
ASSERT_EQ(props.maxExtent.width, props2.imageFormatProperties.maxExtent.width);
ASSERT_EQ(props.maxExtent.height, props2.imageFormatProperties.maxExtent.height);
ASSERT_EQ(props.maxExtent.depth, props2.imageFormatProperties.maxExtent.depth);
ASSERT_EQ(props.maxMipLevels, props2.imageFormatProperties.maxMipLevels);
ASSERT_EQ(props.maxArrayLayers, props2.imageFormatProperties.maxArrayLayers);
ASSERT_EQ(props.sampleCounts, props2.imageFormatProperties.sampleCounts);
ASSERT_EQ(props.maxResourceSize, props2.imageFormatProperties.maxResourceSize);
}
// Test vkGetPhysicalDeviceImageFormatProperties2 and vkGetPhysicalDeviceImageFormatProperties2KHR where instance supports, an ICD,
// and a device under that ICD also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevImageFormatProps2KHRInstanceSupports11) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomImageFormatData(env.get_test_icd(0).physical_devices.back().image_format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceImageFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceImageFormatProperties2"));
ASSERT_NE(GetPhysDevImageFormatProps2, nullptr);
auto GetPhysDevImageFormatProps2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceImageFormatProperties2KHR"));
ASSERT_NE(GetPhysDevImageFormatProps2KHR, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkImageFormatProperties props{};
ASSERT_EQ(VK_SUCCESS,
instance->vkGetPhysicalDeviceImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL, 0, 0, &props));
VkPhysicalDeviceImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_IMAGE_TILING_OPTIMAL, // tiling
0, // usage
0, // flags
};
VkImageFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
ASSERT_EQ(VK_SUCCESS, GetPhysDevImageFormatProps2(physical_device, &info2, &props2));
ASSERT_EQ(props.maxExtent.width, props2.imageFormatProperties.maxExtent.width);
ASSERT_EQ(props.maxExtent.height, props2.imageFormatProperties.maxExtent.height);
ASSERT_EQ(props.maxExtent.depth, props2.imageFormatProperties.maxExtent.depth);
ASSERT_EQ(props.maxMipLevels, props2.imageFormatProperties.maxMipLevels);
ASSERT_EQ(props.maxArrayLayers, props2.imageFormatProperties.maxArrayLayers);
ASSERT_EQ(props.sampleCounts, props2.imageFormatProperties.sampleCounts);
ASSERT_EQ(props.maxResourceSize, props2.imageFormatProperties.maxResourceSize);
VkImageFormatProperties2KHR props2KHR{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR};
ASSERT_EQ(VK_SUCCESS, GetPhysDevImageFormatProps2KHR(physical_device, &info2, &props2KHR));
ASSERT_EQ(props.maxExtent.width, props2KHR.imageFormatProperties.maxExtent.width);
ASSERT_EQ(props.maxExtent.height, props2KHR.imageFormatProperties.maxExtent.height);
ASSERT_EQ(props.maxExtent.depth, props2KHR.imageFormatProperties.maxExtent.depth);
ASSERT_EQ(props.maxMipLevels, props2KHR.imageFormatProperties.maxMipLevels);
ASSERT_EQ(props.maxArrayLayers, props2KHR.imageFormatProperties.maxArrayLayers);
ASSERT_EQ(props.sampleCounts, props2KHR.imageFormatProperties.sampleCounts);
ASSERT_EQ(props.maxResourceSize, props2KHR.imageFormatProperties.maxResourceSize);
ASSERT_FALSE(log.find("Emulating call in ICD"));
}
// Test vkGetPhysicalDeviceImageFormatProperties2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevImageFormatPropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomImageFormatData(cur_dev.image_format_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceImageFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceImageFormatProperties2"));
ASSERT_NE(GetPhysDevImageFormatProps2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkImageFormatProperties props{};
ASSERT_EQ(VK_SUCCESS,
instance->vkGetPhysicalDeviceImageFormatProperties(physical_devices[dev], VK_FORMAT_R4G4_UNORM_PACK8,
VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, 0, 0, &props));
VkPhysicalDeviceImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_IMAGE_TILING_OPTIMAL, // tiling
0, // usage
0, // flags
};
VkImageFormatProperties2 props2{VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2};
ASSERT_EQ(VK_SUCCESS, GetPhysDevImageFormatProps2(physical_devices[dev], &info2, &props2));
ASSERT_EQ(props.maxExtent.width, props2.imageFormatProperties.maxExtent.width);
ASSERT_EQ(props.maxExtent.height, props2.imageFormatProperties.maxExtent.height);
ASSERT_EQ(props.maxExtent.depth, props2.imageFormatProperties.maxExtent.depth);
ASSERT_EQ(props.maxMipLevels, props2.imageFormatProperties.maxMipLevels);
ASSERT_EQ(props.maxArrayLayers, props2.imageFormatProperties.maxArrayLayers);
ASSERT_EQ(props.sampleCounts, props2.imageFormatProperties.sampleCounts);
ASSERT_EQ(props.maxResourceSize, props2.imageFormatProperties.maxResourceSize);
}
}
// Test vkGetPhysicalDeviceMemoryProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevMemoryProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysDevMemoryProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceMemoryProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceMemoryProperties2KHR"));
ASSERT_EQ(GetPhysDevMemoryProps2, nullptr);
}
// Test vkGetPhysicalDeviceMemoryProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevMemoryPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysDevMemoryProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceMemoryProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceMemoryProperties2KHR"));
ASSERT_EQ(GetPhysDevMemoryProps2, nullptr);
}
// Fill in random but valid data into the memory data struct for the current physical device
static void FillInRandomMemoryData(VkPhysicalDeviceMemoryProperties& props) {
props.memoryTypeCount = (rand() % 7) + 1;
props.memoryHeapCount = (rand() % 7) + 1;
for (uint32_t i = 0; i < props.memoryHeapCount; ++i) {
props.memoryHeaps[i].size = (rand() % 728) + (rand() % 728) + 1;
props.memoryHeaps[i].flags = (rand() % 2) + 1;
}
for (uint32_t i = 0; i < props.memoryTypeCount; ++i) {
props.memoryTypes[i].propertyFlags = static_cast<VkMemoryPropertyFlags>((rand() % 2) + 1);
props.memoryTypes[i].heapIndex = rand() % props.memoryHeapCount;
}
}
// Compare the memory structs
static bool CompareMemoryData(const VkPhysicalDeviceMemoryProperties& props1, const VkPhysicalDeviceMemoryProperties2& props2) {
bool equal = true;
equal = equal && props1.memoryTypeCount == props2.memoryProperties.memoryTypeCount;
equal = equal && props1.memoryHeapCount == props2.memoryProperties.memoryHeapCount;
for (uint32_t i = 0; i < props1.memoryHeapCount; ++i) {
equal = equal && props1.memoryHeaps[i].size == props2.memoryProperties.memoryHeaps[i].size;
equal = equal && props1.memoryHeaps[i].flags == props2.memoryProperties.memoryHeaps[i].flags;
}
for (uint32_t i = 0; i < props1.memoryTypeCount; ++i) {
equal = equal && props1.memoryTypes[i].propertyFlags == props2.memoryProperties.memoryTypes[i].propertyFlags;
equal = equal && props1.memoryTypes[i].heapIndex == props2.memoryProperties.memoryTypes[i].heapIndex;
}
return equal;
}
// Test vkGetPhysicalDeviceMemoryProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevMemoryProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomMemoryData(env.get_test_icd(0).physical_devices.back().memory_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysDevMemoryProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceMemoryProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceMemoryProperties2KHR"));
ASSERT_NE(GetPhysDevMemoryProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceMemoryProperties props{};
instance->vkGetPhysicalDeviceMemoryProperties(physical_device, &props);
VkPhysicalDeviceMemoryProperties2 props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2};
GetPhysDevMemoryProps2(physical_device, &props2);
ASSERT_TRUE(CompareMemoryData(props, props2));
}
// Test vkGetPhysicalDeviceMemoryProperties2 where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevMemoryProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomMemoryData(env.get_test_icd(0).physical_devices.back().memory_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevMemoryProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceMemoryProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceMemoryProperties2"));
ASSERT_NE(GetPhysDevMemoryProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceMemoryProperties props{};
instance->vkGetPhysicalDeviceMemoryProperties(physical_device, &props);
VkPhysicalDeviceMemoryProperties2 props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2};
GetPhysDevMemoryProps2(physical_device, &props2);
ASSERT_TRUE(CompareMemoryData(props, props2));
}
// Test vkGetPhysicalDeviceMemoryProperties2 and vkGetPhysicalDeviceMemoryProperties2KHR where ICD is 1.0 and supports
// extension but the instance supports 1.1 and the extension
TEST(LoaderInstPhysDevExts, PhysDevMemoryProps2KHRInstanceSupports11) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomMemoryData(env.get_test_icd(0).physical_devices.back().memory_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevMemoryProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceMemoryProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceMemoryProperties2"));
ASSERT_NE(GetPhysDevMemoryProps2, nullptr);
auto GetPhysDevMemoryProps2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceMemoryProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceMemoryProperties2KHR"));
ASSERT_NE(GetPhysDevMemoryProps2KHR, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceMemoryProperties props{};
instance->vkGetPhysicalDeviceMemoryProperties(physical_device, &props);
VkPhysicalDeviceMemoryProperties2 props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2};
GetPhysDevMemoryProps2(physical_device, &props2);
ASSERT_TRUE(CompareMemoryData(props, props2));
VkPhysicalDeviceMemoryProperties2KHR props2KHR{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR};
GetPhysDevMemoryProps2KHR(physical_device, &props2KHR);
ASSERT_TRUE(CompareMemoryData(props, props2KHR));
ASSERT_FALSE(log.find("Emulating call in ICD"));
}
// Test vkGetPhysicalDeviceMemoryProperties2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevMemoryPropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomMemoryData(cur_dev.memory_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevMemoryProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceMemoryProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceMemoryProperties2"));
ASSERT_NE(GetPhysDevMemoryProps2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceMemoryProperties props{};
instance->vkGetPhysicalDeviceMemoryProperties(physical_devices[dev], &props);
VkPhysicalDeviceMemoryProperties2 props2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2};
GetPhysDevMemoryProps2(physical_devices[dev], &props2);
ASSERT_TRUE(CompareMemoryData(props, props2));
}
}
// Test vkGetPhysicalDeviceQueueFamilyProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevQueueFamilyProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysDevQueueFamilyProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceQueueFamilyProperties2KHR"));
ASSERT_EQ(GetPhysDevQueueFamilyProps2, nullptr);
}
// Test vkGetPhysicalDeviceQueueFamilyProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevQueueFamilyPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysDevQueueFamilyProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceQueueFamilyProperties2KHR"));
ASSERT_EQ(GetPhysDevQueueFamilyProps2, nullptr);
}
// Fill in random but valid data into the queue family data struct for the current physical device
static uint32_t FillInRandomQueueFamilyData(std::vector<MockQueueFamilyProperties>& props) {
props.resize((rand() % 4) + 1);
for (uint32_t i = 0; i < props.size(); ++i) {
props[i].properties.queueFlags = (rand() % 30) + 1;
props[i].properties.queueCount = (rand() % 7) + 1;
props[i].properties.timestampValidBits = (rand() % 30) + 7;
props[i].properties.minImageTransferGranularity.width = (rand() % 30) + 1;
props[i].properties.minImageTransferGranularity.height = (rand() % 30) + 1;
props[i].properties.minImageTransferGranularity.depth = (rand() % 30) + 1;
props[i].support_present = rand() % 2 == 0;
}
return static_cast<uint32_t>(props.size());
}
// Compare the queue family structs
static bool CompareQueueFamilyData(const std::vector<VkQueueFamilyProperties>& props1,
const std::vector<VkQueueFamilyProperties2>& props2) {
if (props1.size() != props2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < props1.size(); ++i) {
equal = equal && props1[i].queueFlags == props2[i].queueFamilyProperties.queueFlags;
equal = equal && props1[i].queueCount == props2[i].queueFamilyProperties.queueCount;
equal = equal && props1[i].timestampValidBits == props2[i].queueFamilyProperties.timestampValidBits;
equal = equal &&
props1[i].minImageTransferGranularity.width == props2[i].queueFamilyProperties.minImageTransferGranularity.width;
equal = equal &&
props1[i].minImageTransferGranularity.height == props2[i].queueFamilyProperties.minImageTransferGranularity.height;
equal = equal &&
props1[i].minImageTransferGranularity.depth == props2[i].queueFamilyProperties.minImageTransferGranularity.depth;
}
return equal;
}
// Test vkGetPhysicalDeviceQueueFamilyProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevQueueFamilyProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
uint32_t num_fam = FillInRandomQueueFamilyData(env.get_test_icd(0).physical_devices.back().queue_family_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysDevQueueFamilyProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceQueueFamilyProperties2KHR"));
ASSERT_NE(GetPhysDevQueueFamilyProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
uint32_t ret_fam_1 = 0;
std::vector<VkQueueFamilyProperties> props{};
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &ret_fam_1, nullptr);
ASSERT_EQ(num_fam, ret_fam_1);
props.resize(ret_fam_1);
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &ret_fam_1, props.data());
std::vector<VkQueueFamilyProperties2> props2{};
uint32_t ret_fam_2 = 0;
GetPhysDevQueueFamilyProps2(physical_device, &ret_fam_2, nullptr);
ASSERT_EQ(ret_fam_1, ret_fam_2);
props2.resize(ret_fam_2, VkQueueFamilyProperties2{VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2});
GetPhysDevQueueFamilyProps2(physical_device, &ret_fam_2, props2.data());
ASSERT_TRUE(CompareQueueFamilyData(props, props2));
}
// Test vkGetPhysicalDeviceQueueFamilyProperties2 where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevQueueFamilyProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
uint32_t num_fam = FillInRandomQueueFamilyData(env.get_test_icd(0).physical_devices.back().queue_family_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevQueueFamilyProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceQueueFamilyProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceQueueFamilyProperties2"));
ASSERT_NE(GetPhysDevQueueFamilyProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
uint32_t ret_fam_1 = 0;
std::vector<VkQueueFamilyProperties> props{};
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &ret_fam_1, nullptr);
ASSERT_EQ(num_fam, ret_fam_1);
props.resize(ret_fam_1);
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &ret_fam_1, props.data());
std::vector<VkQueueFamilyProperties2> props2{};
uint32_t ret_fam_2 = 0;
GetPhysDevQueueFamilyProps2(physical_device, &ret_fam_2, nullptr);
ASSERT_EQ(ret_fam_1, ret_fam_2);
props2.resize(ret_fam_2, VkQueueFamilyProperties2{VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2});
GetPhysDevQueueFamilyProps2(physical_device, &ret_fam_2, props2.data());
ASSERT_TRUE(CompareQueueFamilyData(props, props2));
}
// Test vkGetPhysicalDeviceQueueFamilyProperties2 and vkGetPhysicalDeviceQueueFamilyProperties2KHR where ICD is 1.0 and supports
// extension but the instance supports 1.1 and the extension
TEST(LoaderInstPhysDevExts, PhysDevQueueFamilyProps2KHRInstanceSupports11) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
uint32_t num_fam = FillInRandomQueueFamilyData(env.get_test_icd(0).physical_devices.back().queue_family_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevQueueFamilyProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceQueueFamilyProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceQueueFamilyProperties2"));
ASSERT_NE(GetPhysDevQueueFamilyProps2, nullptr);
auto GetPhysDevQueueFamilyProps2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceQueueFamilyProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceQueueFamilyProperties2KHR"));
ASSERT_NE(GetPhysDevQueueFamilyProps2KHR, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
uint32_t ret_fam_1 = 0;
std::vector<VkQueueFamilyProperties> props{};
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &ret_fam_1, nullptr);
ASSERT_EQ(num_fam, ret_fam_1);
props.resize(ret_fam_1);
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &ret_fam_1, props.data());
std::vector<VkQueueFamilyProperties2> props2{};
uint32_t ret_fam_2 = 0;
GetPhysDevQueueFamilyProps2(physical_device, &ret_fam_2, nullptr);
ASSERT_EQ(ret_fam_1, ret_fam_2);
props2.resize(ret_fam_2, VkQueueFamilyProperties2{VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2});
GetPhysDevQueueFamilyProps2(physical_device, &ret_fam_2, props2.data());
ASSERT_TRUE(CompareQueueFamilyData(props, props2));
std::vector<VkQueueFamilyProperties2KHR> props2KHR{};
uint32_t ret_fam_2_khr = 0;
GetPhysDevQueueFamilyProps2KHR(physical_device, &ret_fam_2_khr, nullptr);
ASSERT_EQ(ret_fam_1, ret_fam_2_khr);
props2KHR.resize(ret_fam_2_khr, VkQueueFamilyProperties2KHR{VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR});
GetPhysDevQueueFamilyProps2KHR(physical_device, &ret_fam_2_khr, props2KHR.data());
ASSERT_TRUE(CompareQueueFamilyData(props, props2KHR));
ASSERT_FALSE(log.find("Emulating call in ICD"));
}
// Test vkGetPhysicalDeviceQueueFamilyProperties2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevQueueFamilyPropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomQueueFamilyData(cur_dev.queue_family_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevQueueFamilyProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceQueueFamilyProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceQueueFamilyProperties2"));
ASSERT_NE(GetPhysDevQueueFamilyProps2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
uint32_t ret_fam_1 = 0;
std::vector<VkQueueFamilyProperties> props{};
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[dev], &ret_fam_1, nullptr);
props.resize(ret_fam_1);
instance->vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[dev], &ret_fam_1, props.data());
std::vector<VkQueueFamilyProperties2> props2{};
uint32_t ret_fam_2 = 0;
GetPhysDevQueueFamilyProps2(physical_devices[dev], &ret_fam_2, nullptr);
ASSERT_EQ(ret_fam_1, ret_fam_2);
props2.resize(ret_fam_2, VkQueueFamilyProperties2{VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2});
GetPhysDevQueueFamilyProps2(physical_devices[dev], &ret_fam_2, props2.data());
ASSERT_TRUE(CompareQueueFamilyData(props, props2));
}
}
// Test vkGetPhysicalDeviceSparseImageFormatProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevSparseImageFormatProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysDevSparseImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSparseImageFormatProperties2KHR"));
ASSERT_EQ(GetPhysDevSparseImageFormatProps2, nullptr);
}
// Test vkGetPhysicalDeviceSparseImageFormatProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevSparseImageFormatPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysDevSparseImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSparseImageFormatProperties2KHR"));
ASSERT_EQ(GetPhysDevSparseImageFormatProps2, nullptr);
}
// Fill in random but valid data into the sparse image format data struct for the current physical device
static void FillInRandomSparseImageFormatData(std::vector<VkSparseImageFormatProperties>& props) {
props.resize((rand() % 4) + 1);
for (uint32_t i = 0; i < props.size(); ++i) {
props[i].aspectMask = static_cast<VkImageAspectFlags>((rand() % 0x7FE) + 1);
props[i].imageGranularity = {static_cast<uint32_t>(rand() % 512), static_cast<uint32_t>(rand() % 512),
static_cast<uint32_t>(rand() % 512)};
props[i].flags = static_cast<VkSparseImageFormatFlags>((rand() % 6) + 1);
}
}
// Compare the sparse image format structs
static bool CompareSparseImageFormatData(const std::vector<VkSparseImageFormatProperties>& props1,
const std::vector<VkSparseImageFormatProperties2>& props2) {
if (props1.size() != props2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < props1.size(); ++i) {
equal = equal && props1[i].aspectMask == props2[i].properties.aspectMask;
equal = equal && props1[i].imageGranularity.width == props2[i].properties.imageGranularity.width;
equal = equal && props1[i].imageGranularity.height == props2[i].properties.imageGranularity.height;
equal = equal && props1[i].imageGranularity.depth == props2[i].properties.imageGranularity.depth;
equal = equal && props1[i].flags == props2[i].properties.flags;
}
return equal;
}
// Test vkGetPhysicalDeviceSparseImageFormatProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevSparseImageFormatProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomSparseImageFormatData(env.get_test_icd(0).physical_devices.back().sparse_image_format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysDevSparseImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSparseImageFormatProperties2KHR"));
ASSERT_NE(GetPhysDevSparseImageFormatProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkSparseImageFormatProperties> props{};
uint32_t sparse_count_1 = 0;
instance->vkGetPhysicalDeviceSparseImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, nullptr);
ASSERT_NE(sparse_count_1, 0);
props.resize(sparse_count_1);
instance->vkGetPhysicalDeviceSparseImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, props.data());
ASSERT_NE(sparse_count_1, 0);
VkPhysicalDeviceSparseImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_SAMPLE_COUNT_4_BIT, // samples
VK_IMAGE_USAGE_STORAGE_BIT, // usage
VK_IMAGE_TILING_OPTIMAL, // tiling
};
std::vector<VkSparseImageFormatProperties2> props2{};
uint32_t sparse_count_2 = 0;
GetPhysDevSparseImageFormatProps2(physical_device, &info2, &sparse_count_2, nullptr);
ASSERT_EQ(sparse_count_1, sparse_count_2);
props2.resize(sparse_count_2, VkSparseImageFormatProperties2{VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2});
GetPhysDevSparseImageFormatProps2(physical_device, &info2, &sparse_count_2, props2.data());
ASSERT_EQ(sparse_count_1, sparse_count_2);
ASSERT_TRUE(CompareSparseImageFormatData(props, props2));
}
// Test vkGetPhysicalDeviceSparseImageFormatProperties2 where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevSparseImageFormatProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomSparseImageFormatData(env.get_test_icd(0).physical_devices.back().sparse_image_format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevSparseImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSparseImageFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSparseImageFormatProperties2"));
ASSERT_NE(GetPhysDevSparseImageFormatProps2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkSparseImageFormatProperties> props{};
uint32_t sparse_count_1 = 0;
instance->vkGetPhysicalDeviceSparseImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, nullptr);
ASSERT_NE(sparse_count_1, 0);
props.resize(sparse_count_1);
instance->vkGetPhysicalDeviceSparseImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, props.data());
ASSERT_NE(sparse_count_1, 0);
VkPhysicalDeviceSparseImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_SAMPLE_COUNT_4_BIT, // samples
VK_IMAGE_USAGE_STORAGE_BIT, // usage
VK_IMAGE_TILING_OPTIMAL, // tiling
};
std::vector<VkSparseImageFormatProperties2> props2{};
uint32_t sparse_count_2 = 0;
GetPhysDevSparseImageFormatProps2(physical_device, &info2, &sparse_count_2, nullptr);
ASSERT_EQ(sparse_count_1, sparse_count_2);
props2.resize(sparse_count_2, VkSparseImageFormatProperties2{VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2});
GetPhysDevSparseImageFormatProps2(physical_device, &info2, &sparse_count_2, props2.data());
ASSERT_EQ(sparse_count_1, sparse_count_2);
ASSERT_TRUE(CompareSparseImageFormatData(props, props2));
}
// Test vkGetPhysicalDeviceSparseImageFormatProperties2 and vkGetPhysicalDeviceSparseImageFormatProperties2KHR where ICD is 1.0 and
// supports extension but the instance supports 1.1 and the extension
TEST(LoaderInstPhysDevExts, PhysDevSparseImageFormatProps2KHRInstanceSupports11) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
FillInRandomSparseImageFormatData(env.get_test_icd(0).physical_devices.back().sparse_image_format_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.create_info.add_extensions(
{VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME});
instance.CheckCreate();
DebugUtilsWrapper log{instance, VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT};
CreateDebugUtilsMessenger(log);
auto GetPhysDevSparseImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSparseImageFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSparseImageFormatProperties2"));
ASSERT_NE(GetPhysDevSparseImageFormatProps2, nullptr);
auto GetPhysDevSparseImageFormatProps2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSparseImageFormatProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSparseImageFormatProperties2KHR"));
ASSERT_NE(GetPhysDevSparseImageFormatProps2KHR, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkSparseImageFormatProperties> props{};
uint32_t sparse_count_1 = 0;
instance->vkGetPhysicalDeviceSparseImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, nullptr);
ASSERT_NE(sparse_count_1, 0);
props.resize(sparse_count_1);
instance->vkGetPhysicalDeviceSparseImageFormatProperties(physical_device, VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D,
VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, props.data());
ASSERT_NE(sparse_count_1, 0);
VkPhysicalDeviceSparseImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_SAMPLE_COUNT_4_BIT, // samples
VK_IMAGE_USAGE_STORAGE_BIT, // usage
VK_IMAGE_TILING_OPTIMAL, // tiling
};
std::vector<VkSparseImageFormatProperties2> props2{};
uint32_t sparse_count_2 = 0;
GetPhysDevSparseImageFormatProps2(physical_device, &info2, &sparse_count_2, nullptr);
ASSERT_EQ(sparse_count_1, sparse_count_2);
props2.resize(sparse_count_2, VkSparseImageFormatProperties2{VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2});
GetPhysDevSparseImageFormatProps2(physical_device, &info2, &sparse_count_2, props2.data());
ASSERT_EQ(sparse_count_1, sparse_count_2);
ASSERT_TRUE(CompareSparseImageFormatData(props, props2));
std::vector<VkSparseImageFormatProperties2KHR> props2KHR{};
uint32_t sparse_count_2_khr = 0;
GetPhysDevSparseImageFormatProps2KHR(physical_device, &info2, &sparse_count_2_khr, nullptr);
ASSERT_EQ(sparse_count_1, sparse_count_2_khr);
props2KHR.resize(sparse_count_2, VkSparseImageFormatProperties2KHR{VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR});
GetPhysDevSparseImageFormatProps2KHR(physical_device, &info2, &sparse_count_2_khr, props2KHR.data());
ASSERT_EQ(sparse_count_1, sparse_count_2_khr);
ASSERT_TRUE(CompareSparseImageFormatData(props, props2KHR));
ASSERT_FALSE(log.find("Emulating call in ICD"));
}
// Test vkGetPhysicalDeviceSparseImageFormatProperties2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevSparseImageFormatPropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomSparseImageFormatData(cur_dev.sparse_image_format_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysDevSparseImageFormatProps2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSparseImageFormatProperties2>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSparseImageFormatProperties2"));
ASSERT_NE(GetPhysDevSparseImageFormatProps2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
std::vector<VkSparseImageFormatProperties> props{};
uint32_t sparse_count_1 = 0;
instance->vkGetPhysicalDeviceSparseImageFormatProperties(
physical_devices[dev], VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D, VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, nullptr);
ASSERT_NE(sparse_count_1, 0);
props.resize(sparse_count_1);
instance->vkGetPhysicalDeviceSparseImageFormatProperties(
physical_devices[dev], VK_FORMAT_R4G4_UNORM_PACK8, VK_IMAGE_TYPE_2D, VK_SAMPLE_COUNT_4_BIT, VK_IMAGE_USAGE_STORAGE_BIT,
VK_IMAGE_TILING_OPTIMAL, &sparse_count_1, props.data());
ASSERT_NE(sparse_count_1, 0);
VkPhysicalDeviceSparseImageFormatInfo2 info2{
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2, // sType
nullptr, // pNext
VK_FORMAT_R4G4_UNORM_PACK8, // format
VK_IMAGE_TYPE_2D, // type
VK_SAMPLE_COUNT_4_BIT, // samples
VK_IMAGE_USAGE_STORAGE_BIT, // usage
VK_IMAGE_TILING_OPTIMAL, // tiling
};
std::vector<VkSparseImageFormatProperties2> props2{};
uint32_t sparse_count_2 = 0;
GetPhysDevSparseImageFormatProps2(physical_devices[dev], &info2, &sparse_count_2, nullptr);
ASSERT_EQ(sparse_count_1, sparse_count_2);
props2.resize(sparse_count_2, VkSparseImageFormatProperties2{VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2});
GetPhysDevSparseImageFormatProps2(physical_devices[dev], &info2, &sparse_count_2, props2.data());
ASSERT_EQ(sparse_count_1, sparse_count_2);
ASSERT_TRUE(CompareSparseImageFormatData(props, props2));
}
}
//
// VK_KHR_external_memory_capabilities
//
// Test vkGetPhysicalDeviceExternalBufferPropertiesKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevExtBufPropsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceExternalBufferProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalBufferPropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceExternalBufferProperties, nullptr);
}
// Test vkGetPhysicalDeviceExternalBufferPropertiesKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevExtBufPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceExternalBufferProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalBufferPropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceExternalBufferProperties, nullptr);
}
// Fill in random but valid data into the external memorydata struct for the current physical device
static void FillInRandomExtMemoryData(VkExternalMemoryProperties& props) {
props.externalMemoryFeatures = static_cast<VkExternalMemoryFeatureFlags>((rand() % 6) + 1);
props.exportFromImportedHandleTypes = static_cast<VkExternalMemoryHandleTypeFlags>((rand() % 0x1FFE) + 1);
props.compatibleHandleTypes = static_cast<VkExternalMemoryHandleTypeFlags>((rand() % 0x1FFE) + 1);
}
// Compare the external memory data structs
static bool CompareExtMemoryData(const VkExternalMemoryProperties& props1, const VkExternalMemoryProperties& props2,
bool supported = true) {
bool equal = true;
if (supported) {
equal = equal && props1.externalMemoryFeatures == props2.externalMemoryFeatures;
equal = equal && props1.exportFromImportedHandleTypes == props2.exportFromImportedHandleTypes;
equal = equal && props1.compatibleHandleTypes == props2.compatibleHandleTypes;
} else {
equal = equal && 0 == props2.externalMemoryFeatures;
equal = equal && 0 == props2.exportFromImportedHandleTypes;
equal = equal && 0 == props2.compatibleHandleTypes;
}
return equal;
}
// Test vkGetPhysicalDeviceExternalBufferPropertiesKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevExtBufProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomExtMemoryData(env.get_test_icd(0).physical_devices.back().external_memory_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysicalDeviceExternalBufferProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalBufferPropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceExternalBufferProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceExternalBufferInfoKHR info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO_KHR};
VkExternalBufferPropertiesKHR props{VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES_KHR};
GetPhysicalDeviceExternalBufferProperties(physical_device, &info, &props);
ASSERT_TRUE(CompareExtMemoryData(env.get_test_icd(0).physical_devices.back().external_memory_properties,
props.externalMemoryProperties));
}
// Test vkGetPhysicalDeviceExternalBufferProperties where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevExtBufProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 0});
FillInRandomExtMemoryData(env.get_test_icd(0).physical_devices.back().external_memory_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysicalDeviceExternalBufferProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalBufferProperties>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalBufferProperties"));
ASSERT_NE(GetPhysicalDeviceExternalBufferProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceExternalBufferInfo info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO};
VkExternalBufferProperties props{VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES};
GetPhysicalDeviceExternalBufferProperties(physical_device, &info, &props);
ASSERT_TRUE(CompareExtMemoryData(env.get_test_icd(0).physical_devices.back().external_memory_properties,
props.externalMemoryProperties));
}
// Test vkGetPhysicalDeviceExternalBufferProperties where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevExtBufPropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomExtMemoryData(cur_dev.external_memory_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysicalDeviceExternalBufferProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalBufferProperties>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalBufferProperties"));
ASSERT_NE(GetPhysicalDeviceExternalBufferProperties, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
VkPhysicalDeviceExternalBufferInfo info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO};
VkExternalBufferProperties props{VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES};
GetPhysicalDeviceExternalBufferProperties(physical_devices[dev], &info, &props);
// No driver support for extension or 1.1 for ICD 1, all others support
ASSERT_TRUE(CompareExtMemoryData(cur_dev.external_memory_properties, props.externalMemoryProperties, icd != 1));
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
//
// VK_KHR_external_semaphore_capabilities
//
// Test vkGetPhysicalDeviceExternalSemaphorePropertiesKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevExtSemPropsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceExternalSemaphoreProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalSemaphorePropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceExternalSemaphoreProperties, nullptr);
}
// Test vkGetPhysicalDeviceExternalSemaphorePropertiesKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevExtSemPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceExternalSemaphoreProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalSemaphorePropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceExternalSemaphoreProperties, nullptr);
}
// Fill in random but valid data into the external semaphore data struct for the current physical device
static void FillInRandomExtSemData(VkExternalSemaphoreProperties& props) {
props.sType = VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES;
props.pNext = nullptr;
props.exportFromImportedHandleTypes = static_cast<VkExternalSemaphoreHandleTypeFlags>((rand() % 0xFFF) + 1);
props.compatibleHandleTypes = static_cast<VkExternalSemaphoreHandleTypeFlags>((rand() % 0xFFF) + 1);
props.externalSemaphoreFeatures = static_cast<VkExternalSemaphoreFeatureFlags>((rand() % 0xFFF) + 1);
}
// Compare the external semaphore data structs
static bool CompareExtSemaphoreData(const VkExternalSemaphoreProperties& props1, const VkExternalSemaphoreProperties& props2,
bool supported = true) {
bool equal = true;
if (supported) {
equal = equal && props1.externalSemaphoreFeatures == props2.externalSemaphoreFeatures;
equal = equal && props1.exportFromImportedHandleTypes == props2.exportFromImportedHandleTypes;
equal = equal && props1.compatibleHandleTypes == props2.compatibleHandleTypes;
} else {
equal = equal && 0 == props2.externalSemaphoreFeatures;
equal = equal && 0 == props2.exportFromImportedHandleTypes;
equal = equal && 0 == props2.compatibleHandleTypes;
}
return equal;
}
// Test vkGetPhysicalDeviceExternalSemaphorePropertiesKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevExtSemProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomExtSemData(env.get_test_icd(0).physical_devices.back().external_semaphore_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysicalDeviceExternalSemaphoreProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalSemaphorePropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceExternalSemaphoreProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceExternalSemaphoreInfoKHR info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO_KHR};
VkExternalSemaphorePropertiesKHR props{VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES_KHR};
GetPhysicalDeviceExternalSemaphoreProperties(physical_device, &info, &props);
ASSERT_TRUE(CompareExtSemaphoreData(env.get_test_icd(0).physical_devices.back().external_semaphore_properties, props));
}
// Test vkGetPhysicalDeviceExternalSemaphoreProperties where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevExtSemProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME, 0});
FillInRandomExtSemData(env.get_test_icd(0).physical_devices.back().external_semaphore_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysicalDeviceExternalSemaphoreProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalSemaphoreProperties>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalSemaphoreProperties"));
ASSERT_NE(GetPhysicalDeviceExternalSemaphoreProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceExternalSemaphoreInfo info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO};
VkExternalSemaphoreProperties props{VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES};
GetPhysicalDeviceExternalSemaphoreProperties(physical_device, &info, &props);
ASSERT_TRUE(CompareExtSemaphoreData(env.get_test_icd(0).physical_devices.back().external_semaphore_properties, props));
}
// Test vkGetPhysicalDeviceExternalSemaphoreProperties where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevExtSemPropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomExtSemData(cur_dev.external_semaphore_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysicalDeviceExternalSemaphoreProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalSemaphoreProperties>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalSemaphoreProperties"));
ASSERT_NE(GetPhysicalDeviceExternalSemaphoreProperties, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
VkPhysicalDeviceExternalSemaphoreInfo info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO};
VkExternalSemaphoreProperties props{VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES};
GetPhysicalDeviceExternalSemaphoreProperties(physical_devices[dev], &info, &props);
// No driver support for extension or 1.1 for ICD 1, all others support
ASSERT_TRUE(CompareExtSemaphoreData(cur_dev.external_semaphore_properties, props, icd != 1));
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
//
// VK_KHR_external_fence_capabilities
//
// Test vkGetPhysicalDeviceExternalFencePropertiesKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevExtFencePropsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceExternalFenceProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalFencePropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceExternalFenceProperties, nullptr);
}
// Test vkGetPhysicalDeviceExternalFencePropertiesKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevExtFencePropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceExternalFenceProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalFencePropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceExternalFenceProperties, nullptr);
}
// Fill in random but valid data into the external fence data struct for the current physical device
static void FillInRandomExtFenceData(VkExternalFenceProperties& props) {
props.sType = VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES;
props.pNext = nullptr;
props.exportFromImportedHandleTypes = static_cast<VkExternalFenceHandleTypeFlags>((rand() % 0xFFF) + 1);
props.compatibleHandleTypes = static_cast<VkExternalFenceHandleTypeFlags>((rand() % 0xFFF) + 1);
props.externalFenceFeatures = static_cast<VkExternalFenceFeatureFlags>((rand() % 0xFFF) + 1);
}
// Compare the external fence data structs
static bool CompareExtFenceData(const VkExternalFenceProperties& props1, const VkExternalFenceProperties& props2,
bool supported = true) {
bool equal = true;
if (supported) {
equal = equal && props1.externalFenceFeatures == props2.externalFenceFeatures;
equal = equal && props1.exportFromImportedHandleTypes == props2.exportFromImportedHandleTypes;
equal = equal && props1.compatibleHandleTypes == props2.compatibleHandleTypes;
} else {
equal = equal && 0 == props2.externalFenceFeatures;
equal = equal && 0 == props2.exportFromImportedHandleTypes;
equal = equal && 0 == props2.compatibleHandleTypes;
}
return equal;
}
// Test vkGetPhysicalDeviceExternalFencePropertiesKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevExtFenceProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomExtFenceData(env.get_test_icd(0).physical_devices.back().external_fence_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysicalDeviceExternalFenceProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalFencePropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceExternalFenceProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceExternalFenceInfoKHR info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO_KHR};
VkExternalFencePropertiesKHR props{VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES_KHR};
GetPhysicalDeviceExternalFenceProperties(physical_device, &info, &props);
ASSERT_TRUE(CompareExtFenceData(env.get_test_icd(0).physical_devices.back().external_fence_properties, props));
}
// Test vkGetPhysicalDeviceExternalFenceProperties where instance supports, an ICD, and a device under that ICD
// also support, so everything should work and return properly.
TEST(LoaderInstPhysDevExts, PhysDevExtFenceProps2Simple) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).icd_api_version = VK_API_VERSION_1_1;
env.get_test_icd(0).add_instance_extension({VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, 0});
FillInRandomExtFenceData(env.get_test_icd(0).physical_devices.back().external_fence_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysicalDeviceExternalFenceProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalFenceProperties>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalFenceProperties"));
ASSERT_NE(GetPhysicalDeviceExternalFenceProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkPhysicalDeviceExternalFenceInfo info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO};
VkExternalFenceProperties props{VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES};
GetPhysicalDeviceExternalFenceProperties(physical_device, &info, &props);
ASSERT_TRUE(CompareExtFenceData(env.get_test_icd(0).physical_devices.back().external_fence_properties, props));
}
// Test vkGetPhysicalDeviceExternalFenceProperties where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevExtFencePropsMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME});
} else {
cur_icd.icd_api_version = VK_API_VERSION_1_0;
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomExtFenceData(cur_dev.external_fence_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.set_api_version(VK_API_VERSION_1_1);
instance.CheckCreate();
auto GetPhysicalDeviceExternalFenceProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalFenceProperties>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceExternalFenceProperties"));
ASSERT_NE(GetPhysicalDeviceExternalFenceProperties, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
VkPhysicalDeviceExternalFenceInfo info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO};
VkExternalFenceProperties props{VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES};
GetPhysicalDeviceExternalFenceProperties(physical_devices[dev], &info, &props);
// No driver support for extension or 1.1 for ICD 1, all others support
ASSERT_TRUE(CompareExtFenceData(cur_dev.external_fence_properties, props, icd != 1));
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
//
// VK_KHR_get_surface_capabilities2
//
// Test vkGetPhysicalDeviceSurfaceCapabilities2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevSurfaceCaps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceSurfaceCapabilities2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceCapabilities2KHR"));
ASSERT_EQ(GetPhysicalDeviceSurfaceCapabilities2, nullptr);
}
// Test vkGetPhysicalDeviceSurfaceCapabilities2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevSurfaceCaps2KHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceSurfaceCapabilities2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceCapabilities2KHR"));
ASSERT_EQ(GetPhysicalDeviceSurfaceCapabilities2, nullptr);
}
// Fill in random but valid data into the surface capability data struct for the current physical device
static void FillInRandomSurfaceCapsData(VkSurfaceCapabilitiesKHR& props) {
props.minImageCount = (rand() % 0xFFF) + 1;
props.maxImageCount = (rand() % 0xFFF) + 1;
props.currentExtent.width = (rand() % 0xFFF) + 1;
props.currentExtent.height = (rand() % 0xFFF) + 1;
props.minImageExtent.width = (rand() % 0xFFF) + 1;
props.minImageExtent.height = (rand() % 0xFFF) + 1;
props.maxImageExtent.width = (rand() % 0xFFF) + 1;
props.maxImageExtent.height = (rand() % 0xFFF) + 1;
props.maxImageArrayLayers = (rand() % 0xFFF) + 1;
props.supportedTransforms = static_cast<VkSurfaceTransformFlagsKHR>((rand() % 0xFFF) + 1);
props.currentTransform = static_cast<VkSurfaceTransformFlagBitsKHR>((rand() % 0xFFF) + 1);
props.supportedCompositeAlpha = static_cast<VkCompositeAlphaFlagsKHR>((rand() % 0xFFF) + 1);
props.supportedUsageFlags = static_cast<VkImageUsageFlags>((rand() % 0xFFF) + 1);
}
// Compare the surface capability data structs
static bool CompareSurfaceCapsData(const VkSurfaceCapabilitiesKHR& props1, const VkSurfaceCapabilitiesKHR& props2,
bool supported = true) {
bool equal = true;
if (supported) {
equal = equal && props1.minImageCount == props2.minImageCount;
equal = equal && props1.maxImageCount == props2.maxImageCount;
equal = equal && props1.currentExtent.width == props2.currentExtent.width;
equal = equal && props1.currentExtent.height == props2.currentExtent.height;
equal = equal && props1.minImageExtent.width == props2.minImageExtent.width;
equal = equal && props1.minImageExtent.height == props2.minImageExtent.height;
equal = equal && props1.maxImageExtent.width == props2.maxImageExtent.width;
equal = equal && props1.maxImageExtent.height == props2.maxImageExtent.height;
equal = equal && props1.maxImageArrayLayers == props2.maxImageArrayLayers;
equal = equal && props1.supportedTransforms == props2.supportedTransforms;
equal = equal && props1.currentTransform == props2.currentTransform;
equal = equal && props1.supportedCompositeAlpha == props2.supportedCompositeAlpha;
equal = equal && props1.supportedUsageFlags == props2.supportedUsageFlags;
} else {
equal = equal && 0 == props2.minImageCount;
equal = equal && 0 == props2.maxImageCount;
equal = equal && 0 == props2.currentExtent.width;
equal = equal && 0 == props2.currentExtent.height;
equal = equal && 0 == props2.minImageExtent.width;
equal = equal && 0 == props2.minImageExtent.height;
equal = equal && 0 == props2.maxImageExtent.width;
equal = equal && 0 == props2.maxImageExtent.height;
equal = equal && 0 == props2.maxImageArrayLayers;
equal = equal && 0 == props2.supportedTransforms;
equal = equal && 0 == props2.currentTransform;
equal = equal && 0 == props2.supportedCompositeAlpha;
equal = equal && 0 == props2.supportedUsageFlags;
}
return equal;
}
// Test vkGetPhysicalDeviceSurfaceCapabilities2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevSurfaceCaps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_SURFACE_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME};
Extension third_ext{VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME};
auto& cur_icd = env.get_test_icd(0);
cur_icd.add_instance_extensions({first_ext, second_ext, third_ext});
cur_icd.physical_devices.push_back({});
cur_icd.min_icd_interface_version = 3;
cur_icd.enable_icd_wsi = true;
FillInRandomSurfaceCapsData(env.get_test_icd(0).physical_devices.back().surface_capabilities);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions(
{VK_KHR_SURFACE_EXTENSION_NAME, VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceSurfaceCapabilities = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceCapabilities, nullptr);
auto CreateHeadlessSurfaceEXT = reinterpret_cast<PFN_vkCreateHeadlessSurfaceEXT>(
instance.functions->vkGetInstanceProcAddr(instance, "vkCreateHeadlessSurfaceEXT"));
ASSERT_NE(CreateHeadlessSurfaceEXT, nullptr);
auto DestroySurfaceKHR =
reinterpret_cast<PFN_vkDestroySurfaceKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkDestroySurfaceKHR"));
ASSERT_NE(DestroySurfaceKHR, nullptr);
auto GetPhysicalDeviceSurfaceCapabilities2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceCapabilities2KHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceCapabilities2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkSurfaceKHR surface;
VkHeadlessSurfaceCreateInfoEXT create_info{VK_STRUCTURE_TYPE_HEADLESS_SURFACE_CREATE_INFO_EXT};
ASSERT_EQ(VK_SUCCESS, CreateHeadlessSurfaceEXT(instance.inst, &create_info, nullptr, &surface));
VkSurfaceCapabilitiesKHR props{};
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceCapabilities(physical_device, surface, &props));
VkPhysicalDeviceSurfaceInfo2KHR info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR, nullptr, surface};
VkSurfaceCapabilities2KHR props2{VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR};
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceCapabilities2(physical_device, &info, &props2));
ASSERT_TRUE(CompareSurfaceCapsData(props, props2.surfaceCapabilities));
DestroySurfaceKHR(instance.inst, surface, nullptr);
}
// Test vkGetPhysicalDeviceSurfaceCapabilities2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevSurfaceCaps2KHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
Extension first_ext{VK_KHR_SURFACE_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME};
Extension third_ext{VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME};
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.min_icd_interface_version = 3;
cur_icd.enable_icd_wsi = true;
cur_icd.add_instance_extensions({first_ext, third_ext});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension(second_ext);
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_SURFACE_EXTENSION_NAME, 0});
cur_dev.extensions.push_back({VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomSurfaceCapsData(cur_dev.surface_capabilities);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions(
{VK_KHR_SURFACE_EXTENSION_NAME, VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceSurfaceCapabilities = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceCapabilities, nullptr);
auto CreateHeadlessSurfaceEXT = reinterpret_cast<PFN_vkCreateHeadlessSurfaceEXT>(
instance.functions->vkGetInstanceProcAddr(instance, "vkCreateHeadlessSurfaceEXT"));
ASSERT_NE(CreateHeadlessSurfaceEXT, nullptr);
auto DestroySurfaceKHR =
reinterpret_cast<PFN_vkDestroySurfaceKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkDestroySurfaceKHR"));
ASSERT_NE(DestroySurfaceKHR, nullptr);
auto GetPhysicalDeviceSurfaceCapabilities2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilities2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceCapabilities2KHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceCapabilities2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
VkSurfaceKHR surface;
VkHeadlessSurfaceCreateInfoEXT create_info{VK_STRUCTURE_TYPE_HEADLESS_SURFACE_CREATE_INFO_EXT};
ASSERT_EQ(VK_SUCCESS, CreateHeadlessSurfaceEXT(instance.inst, &create_info, nullptr, &surface));
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkSurfaceCapabilitiesKHR props{};
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceCapabilities(physical_devices[dev], surface, &props));
VkPhysicalDeviceSurfaceInfo2KHR info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR, nullptr, surface};
VkSurfaceCapabilities2KHR props2{VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR};
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceCapabilities2(physical_devices[dev], &info, &props2));
ASSERT_TRUE(CompareSurfaceCapsData(props, props2.surfaceCapabilities));
}
DestroySurfaceKHR(instance.inst, surface, nullptr);
}
// Test vkGetPhysicalDeviceSurfaceFormats2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevSurfaceFormats2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceSurfaceFormats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormats2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceFormats2KHR"));
ASSERT_EQ(GetPhysicalDeviceSurfaceFormats2, nullptr);
}
// Test vkGetPhysicalDeviceSurfaceFormats2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevSurfaceFormats2KHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceSurfaceFormats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormats2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceFormats2KHR"));
ASSERT_EQ(GetPhysicalDeviceSurfaceFormats2, nullptr);
}
// Fill in random but valid data into the surface formats data struct for the current physical device
static void FillInRandomSurfaceFormatsData(std::vector<VkSurfaceFormatKHR>& props) {
props.resize((rand() % 5) + 1);
for (uint32_t i = 0; i < props.size(); ++i) {
props[i].format = static_cast<VkFormat>((rand() % 0xFFF) + 1);
props[i].colorSpace = static_cast<VkColorSpaceKHR>((rand() % 0xFFF) + 1);
}
}
// Compare the surface formats data structs
static bool CompareSurfaceFormatsData(const std::vector<VkSurfaceFormatKHR>& props1, const std::vector<VkSurfaceFormat2KHR>& props2,
bool supported = true) {
if (props1.size() != props2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < props1.size(); ++i) {
if (supported) {
equal = equal && props1[i].format == props2[i].surfaceFormat.format;
equal = equal && props1[i].colorSpace == props2[i].surfaceFormat.colorSpace;
} else {
equal = equal && 0 == props2[i].surfaceFormat.format;
equal = equal && 0 == props2[i].surfaceFormat.colorSpace;
}
}
return equal;
}
// Test vkGetPhysicalDeviceSurfaceFormats2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevSurfaceFormats2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_SURFACE_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME};
Extension third_ext{VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME};
auto& cur_icd = env.get_test_icd(0);
cur_icd.add_instance_extensions({first_ext, second_ext, third_ext});
cur_icd.physical_devices.push_back({});
cur_icd.min_icd_interface_version = 3;
cur_icd.enable_icd_wsi = true;
FillInRandomSurfaceFormatsData(env.get_test_icd(0).physical_devices.back().surface_formats);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions(
{VK_KHR_SURFACE_EXTENSION_NAME, VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceSurfaceFormats = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormatsKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceFormatsKHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceFormats, nullptr);
auto CreateHeadlessSurfaceEXT = reinterpret_cast<PFN_vkCreateHeadlessSurfaceEXT>(
instance.functions->vkGetInstanceProcAddr(instance, "vkCreateHeadlessSurfaceEXT"));
ASSERT_NE(CreateHeadlessSurfaceEXT, nullptr);
auto DestroySurfaceKHR =
reinterpret_cast<PFN_vkDestroySurfaceKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkDestroySurfaceKHR"));
ASSERT_NE(DestroySurfaceKHR, nullptr);
auto GetPhysicalDeviceSurfaceFormats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormats2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceFormats2KHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceFormats2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkSurfaceKHR surface;
VkHeadlessSurfaceCreateInfoEXT create_info{VK_STRUCTURE_TYPE_HEADLESS_SURFACE_CREATE_INFO_EXT};
ASSERT_EQ(VK_SUCCESS, CreateHeadlessSurfaceEXT(instance.inst, &create_info, nullptr, &surface));
std::vector<VkSurfaceFormatKHR> props{};
uint32_t count_1 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats(physical_device, surface, &count_1, nullptr));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().surface_formats.size(), count_1);
props.resize(count_1);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats(physical_device, surface, &count_1, props.data()));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().surface_formats.size(), count_1);
VkPhysicalDeviceSurfaceInfo2KHR info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR, nullptr, surface};
std::vector<VkSurfaceFormat2KHR> props2{};
uint32_t count_2 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats2(physical_device, &info, &count_2, nullptr));
ASSERT_EQ(count_1, count_2);
props2.resize(count_2, VkSurfaceFormat2KHR{VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats2(physical_device, &info, &count_2, props2.data()));
ASSERT_TRUE(CompareSurfaceFormatsData(props, props2));
DestroySurfaceKHR(instance.inst, surface, nullptr);
}
// Test vkGetPhysicalDeviceSurfaceFormats2 where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevSurfaceFormats2KHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
Extension first_ext{VK_KHR_SURFACE_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME};
Extension third_ext{VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME};
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.enable_icd_wsi = true;
cur_icd.min_icd_interface_version = 3;
cur_icd.add_instance_extensions({first_ext, third_ext});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension(second_ext);
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_SURFACE_EXTENSION_NAME, 0});
cur_dev.extensions.push_back({VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomSurfaceFormatsData(cur_dev.surface_formats);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions(
{VK_KHR_SURFACE_EXTENSION_NAME, VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME, VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceSurfaceFormats = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormatsKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceFormatsKHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceFormats, nullptr);
auto CreateHeadlessSurfaceEXT = reinterpret_cast<PFN_vkCreateHeadlessSurfaceEXT>(
instance.functions->vkGetInstanceProcAddr(instance, "vkCreateHeadlessSurfaceEXT"));
ASSERT_NE(CreateHeadlessSurfaceEXT, nullptr);
auto DestroySurfaceKHR =
reinterpret_cast<PFN_vkDestroySurfaceKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkDestroySurfaceKHR"));
ASSERT_NE(DestroySurfaceKHR, nullptr);
auto GetPhysicalDeviceSurfaceFormats2 = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormats2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceSurfaceFormats2KHR"));
ASSERT_NE(GetPhysicalDeviceSurfaceFormats2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
VkSurfaceKHR surface;
VkHeadlessSurfaceCreateInfoEXT create_info{VK_STRUCTURE_TYPE_HEADLESS_SURFACE_CREATE_INFO_EXT};
ASSERT_EQ(VK_SUCCESS, CreateHeadlessSurfaceEXT(instance.inst, &create_info, nullptr, &surface));
for (uint32_t dev = 0; dev < device_count; ++dev) {
std::vector<VkSurfaceFormatKHR> props{};
uint32_t count_1 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats(physical_devices[dev], surface, &count_1, nullptr));
ASSERT_NE(0, count_1);
props.resize(count_1);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats(physical_devices[dev], surface, &count_1, props.data()));
ASSERT_NE(0, count_1);
VkPhysicalDeviceSurfaceInfo2KHR info{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR, nullptr, surface};
std::vector<VkSurfaceFormat2KHR> props2{};
uint32_t count_2 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats2(physical_devices[dev], &info, &count_2, nullptr));
ASSERT_EQ(count_1, count_2);
props2.resize(count_2, VkSurfaceFormat2KHR{VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceSurfaceFormats2(physical_devices[dev], &info, &count_2, props2.data()));
ASSERT_EQ(count_1, count_2);
ASSERT_TRUE(CompareSurfaceFormatsData(props, props2));
}
DestroySurfaceKHR(instance.inst, surface, nullptr);
}
//
// VK_KHR_display
//
// Test vkGetPhysicalDeviceDisplayPropertiesKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevDispPropsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceDisplayProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayProperties, nullptr);
}
// Test vkGetPhysicalDeviceDisplayPropertiesKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevDispPropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceDisplayProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayProperties, nullptr);
}
VkDisplayKHR CreateRandomDisplay() { return (VkDisplayKHR)(((rand() % 0xFFFFFFFBull) << 12) * (rand() % 0xFFFFFFFull) + 1); }
VkDisplayModeKHR CreateRandomDisplayMode() {
return (VkDisplayModeKHR)(((rand() % 0xFFFFFFFBull) << 12) * (rand() % 0xFFFFFFFull) + 1);
}
// Fill in random but valid data into the display property data struct for the current physical device
static void FillInRandomDisplayPropData(std::vector<VkDisplayPropertiesKHR>& props) {
props.resize((rand() % 5) + 1);
for (uint32_t i = 0; i < props.size(); ++i) {
props[i].display = CreateRandomDisplay();
props[i].physicalDimensions.width = static_cast<uint32_t>((rand() % 0xFFF) + 1);
props[i].physicalDimensions.height = static_cast<uint32_t>((rand() % 0xFFF) + 1);
props[i].physicalResolution.width = static_cast<uint32_t>((rand() % 0xFFF) + 1);
props[i].physicalResolution.height = static_cast<uint32_t>((rand() % 0xFFF) + 1);
props[i].supportedTransforms = static_cast<VkSurfaceTransformFlagsKHR>((rand() % 0xFFE) + 1);
props[i].planeReorderPossible = rand() % 2 > 0 ? VK_TRUE : VK_FALSE;
props[i].persistentContent = rand() % 2 > 0 ? VK_TRUE : VK_FALSE;
}
}
// Compare the display property data structs
static bool CompareDisplayPropData(const std::vector<VkDisplayPropertiesKHR>& props1,
const std::vector<VkDisplayPropertiesKHR>& props2) {
if (props1.size() != props2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < props1.size(); ++i) {
equal = equal && props1[i].display == props2[i].display;
equal = equal && props1[i].physicalDimensions.width == props2[i].physicalDimensions.width;
equal = equal && props1[i].physicalDimensions.height == props2[i].physicalDimensions.height;
equal = equal && props1[i].physicalResolution.width == props2[i].physicalResolution.width;
equal = equal && props1[i].physicalResolution.height == props2[i].physicalResolution.height;
equal = equal && props1[i].supportedTransforms == props2[i].supportedTransforms;
equal = equal && props1[i].planeReorderPossible == props2[i].planeReorderPossible;
equal = equal && props1[i].persistentContent == props2[i].persistentContent;
}
return equal;
}
// Test vGetPhysicalDeviceDisplayPropertiesKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevDispPropsKHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomDisplayPropData(env.get_test_icd(0).physical_devices.back().display_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceDisplayProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkDisplayPropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_device, &prop_count, nullptr));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().display_properties.size(), prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_device, &prop_count, props.data()));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().display_properties.size(), prop_count);
ASSERT_TRUE(CompareDisplayPropData(props, env.get_test_icd(0).physical_devices.back().display_properties));
}
// Test vkGetPhysicalDeviceDisplayPropertiesKHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevDispPropsKHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomDisplayPropData(cur_dev.display_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysicalDeviceDisplayProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayProperties, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
std::vector<VkDisplayPropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_devices[dev], &prop_count, nullptr));
if (icd == 1) {
// For this extension, if no support exists (like for ICD 1), the value of 0 should be returned by the
// loader.
ASSERT_EQ(0, prop_count);
} else {
ASSERT_EQ(cur_dev.display_properties.size(), prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_devices[dev], &prop_count, props.data()));
ASSERT_EQ(cur_dev.display_properties.size(), prop_count);
ASSERT_TRUE(CompareDisplayPropData(props, cur_dev.display_properties));
}
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
// Test vkGetPhysicalDeviceDisplayPlanePropertiesKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevDispPlanePropsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceDisplayPlaneProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayPlaneProperties, nullptr);
}
// Test vkGetPhysicalDeviceDisplayPlanePropertiesKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevDispPlanePropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceDisplayPlaneProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayPlaneProperties, nullptr);
}
// Fill in random but valid data into the display plane property data struct for the current physical device
static void FillInRandomDisplayPlanePropData(std::vector<VkDisplayPlanePropertiesKHR>& props) {
props.resize((rand() % 5) + 1);
for (uint32_t i = 0; i < props.size(); ++i) {
props[i].currentDisplay = CreateRandomDisplay();
props[i].currentStackIndex = static_cast<uint32_t>((rand() % 0xFFF) + (rand() % 0xFFF) + 1);
}
}
// Compare the display plane property data structs
static bool CompareDisplayPlanePropData(const std::vector<VkDisplayPlanePropertiesKHR>& props1,
const std::vector<VkDisplayPlanePropertiesKHR>& props2) {
if (props1.size() != props2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < props1.size(); ++i) {
equal = equal && props1[i].currentDisplay == props2[i].currentDisplay;
equal = equal && props1[i].currentStackIndex == props2[i].currentStackIndex;
}
return equal;
}
// Test vGetPhysicalDeviceDisplayPlanePropertiesKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevDispPlanePropsKHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomDisplayPlanePropData(env.get_test_icd(0).physical_devices.back().display_plane_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceDisplayPlaneProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayPlaneProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkDisplayPlanePropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties(physical_device, &prop_count, nullptr));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().display_plane_properties.size(), prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties(physical_device, &prop_count, props.data()));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().display_plane_properties.size(), prop_count);
ASSERT_TRUE(CompareDisplayPlanePropData(props, env.get_test_icd(0).physical_devices.back().display_plane_properties));
}
// Test vkGetPhysicalDeviceDisplayPlanePropertiesKHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevDispPlanePropsKHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomDisplayPlanePropData(cur_dev.display_plane_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate();
auto GetPhysicalDeviceDisplayPlaneProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayPlaneProperties, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
std::vector<VkDisplayPlanePropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties(physical_devices[dev], &prop_count, nullptr));
if (icd == 1) {
// For this extension, if no support exists (like for ICD 1), the value of 0 should be returned by the
// loader.
ASSERT_EQ(0, prop_count);
} else {
ASSERT_EQ(cur_dev.display_plane_properties.size(), prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS,
GetPhysicalDeviceDisplayPlaneProperties(physical_devices[dev], &prop_count, props.data()));
ASSERT_EQ(cur_dev.display_plane_properties.size(), prop_count);
ASSERT_TRUE(CompareDisplayPlanePropData(props, cur_dev.display_plane_properties));
}
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
// Test vkGetDisplayPlaneSupportedDisplaysKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, GetDispPlaneSupDispsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetDisplayPlaneSupportedDisplays = reinterpret_cast<PFN_vkGetDisplayPlaneSupportedDisplaysKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneSupportedDisplaysKHR"));
ASSERT_EQ(GetDisplayPlaneSupportedDisplays, nullptr);
}
// Test vkGetDisplayPlaneSupportedDisplaysKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, GetDispPlaneSupDispsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetDisplayPlaneSupportedDisplays = reinterpret_cast<PFN_vkGetDisplayPlaneSupportedDisplaysKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneSupportedDisplaysKHR"));
ASSERT_EQ(GetDisplayPlaneSupportedDisplays, nullptr);
}
// Fill in random but valid data into the display plane property data struct for the current physical device
static void GenerateRandomDisplays(std::vector<VkDisplayKHR>& disps) {
disps.resize((rand() % 5) + 1);
for (uint32_t i = 0; i < disps.size(); ++i) {
disps[i] = CreateRandomDisplay();
}
}
// Compare the display plane property data structs
static bool CompareDisplays(const std::vector<VkDisplayKHR>& disps1, const std::vector<VkDisplayKHR>& disps2) {
if (disps1.size() != disps2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < disps1.size(); ++i) {
equal = equal && disps1[i] == disps2[i];
}
return equal;
}
// Test vGetDisplayPlaneSupportedDisplaysKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, GetDispPlaneSupDispsKHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
GenerateRandomDisplays(env.get_test_icd(0).physical_devices.back().displays);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto GetDisplayPlaneSupportedDisplays = reinterpret_cast<PFN_vkGetDisplayPlaneSupportedDisplaysKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneSupportedDisplaysKHR"));
ASSERT_NE(GetDisplayPlaneSupportedDisplays, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkDisplayKHR> disps{};
uint32_t disp_count = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneSupportedDisplays(physical_device, 0, &disp_count, nullptr));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().displays.size(), disp_count);
disps.resize(disp_count);
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneSupportedDisplays(physical_device, 0, &disp_count, disps.data()));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().displays.size(), disp_count);
ASSERT_TRUE(CompareDisplays(disps, env.get_test_icd(0).physical_devices.back().displays));
}
// Test vkGetDisplayPlaneSupportedDisplaysKHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, GetDispPlaneSupDispsKHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
GenerateRandomDisplays(cur_dev.displays);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate();
auto GetDisplayPlaneSupportedDisplays = reinterpret_cast<PFN_vkGetDisplayPlaneSupportedDisplaysKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneSupportedDisplaysKHR"));
ASSERT_NE(GetDisplayPlaneSupportedDisplays, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
std::vector<VkDisplayKHR> disps{};
uint32_t disp_count = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneSupportedDisplays(physical_devices[dev], 0, &disp_count, nullptr));
if (icd == 1) {
// For this extension, if no support exists (like for ICD 1), the value of 0 should be returned by the
// loader.
ASSERT_EQ(0, disp_count);
} else {
ASSERT_EQ(cur_dev.displays.size(), disp_count);
disps.resize(disp_count);
ASSERT_EQ(VK_SUCCESS,
GetDisplayPlaneSupportedDisplays(physical_devices[dev], 0, &disp_count, disps.data()));
ASSERT_EQ(cur_dev.displays.size(), disp_count);
ASSERT_TRUE(CompareDisplays(disps, cur_dev.displays));
}
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
// Test vkGetDisplayModePropertiesKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, GetDispModePropsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetDisplayModeProperties = reinterpret_cast<PFN_vkGetDisplayModePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModePropertiesKHR"));
ASSERT_EQ(GetDisplayModeProperties, nullptr);
}
// Test vkGetDisplayModePropertiesKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, GetDispModePropsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetDisplayModeProperties = reinterpret_cast<PFN_vkGetDisplayModePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModePropertiesKHR"));
ASSERT_EQ(GetDisplayModeProperties, nullptr);
}
// Fill in random but valid data into the display mode properties data struct for the current physical device
static void GenerateRandomDisplayModeProps(std::vector<VkDisplayModePropertiesKHR>& disps) {
disps.resize((rand() % 5) + 1);
for (uint32_t i = 0; i < disps.size(); ++i) {
disps[i].displayMode = CreateRandomDisplayMode();
disps[i].parameters.visibleRegion.width = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
disps[i].parameters.visibleRegion.height = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
disps[i].parameters.refreshRate = 1 << (rand() % 8);
}
}
// Compare the display mode properties data structs
static bool CompareDisplayModeProps(const std::vector<VkDisplayModePropertiesKHR>& disps1,
const std::vector<VkDisplayModePropertiesKHR>& disps2) {
if (disps1.size() != disps2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < disps1.size(); ++i) {
equal = equal && disps1[i].displayMode == disps2[i].displayMode;
equal = equal && disps1[i].parameters.visibleRegion.width == disps2[i].parameters.visibleRegion.width;
equal = equal && disps1[i].parameters.visibleRegion.height == disps2[i].parameters.visibleRegion.height;
equal = equal && disps1[i].parameters.refreshRate == disps2[i].parameters.refreshRate;
}
return equal;
}
// Test vGetDisplayModePropertiesKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, GetDispModePropsKHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
GenerateRandomDisplayModeProps(env.get_test_icd(0).physical_devices.back().display_mode_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto GetDisplayModeProperties = reinterpret_cast<PFN_vkGetDisplayModePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModePropertiesKHR"));
ASSERT_NE(GetDisplayModeProperties, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkDisplayModePropertiesKHR> props{};
uint32_t props_count = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties(physical_device, VK_NULL_HANDLE, &props_count, nullptr));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().display_mode_properties.size(), props_count);
props.resize(props_count);
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties(physical_device, VK_NULL_HANDLE, &props_count, props.data()));
ASSERT_EQ(env.get_test_icd(0).physical_devices.back().display_mode_properties.size(), props_count);
ASSERT_TRUE(CompareDisplayModeProps(props, env.get_test_icd(0).physical_devices.back().display_mode_properties));
}
// Test vkGetDisplayModePropertiesKHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, GetDispModePropsKHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
GenerateRandomDisplayModeProps(cur_dev.display_mode_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate();
auto GetDisplayModeProperties = reinterpret_cast<PFN_vkGetDisplayModePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModePropertiesKHR"));
ASSERT_NE(GetDisplayModeProperties, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
uint32_t props_count = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties(physical_devices[dev], VK_NULL_HANDLE, &props_count, nullptr));
if (icd == 1) {
// For this extension, if no support exists (like for ICD 1), the value of 0 should be returned by the
// loader.
ASSERT_EQ(0, props_count);
} else {
std::vector<VkDisplayModePropertiesKHR> props{};
ASSERT_EQ(cur_dev.display_mode_properties.size(), props_count);
props.resize(props_count);
ASSERT_EQ(VK_SUCCESS,
GetDisplayModeProperties(physical_devices[dev], VK_NULL_HANDLE, &props_count, props.data()));
ASSERT_EQ(cur_dev.display_mode_properties.size(), props_count);
ASSERT_TRUE(CompareDisplayModeProps(props, cur_dev.display_mode_properties));
}
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
// Test vkCreateDisplayModeKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, GetDispModesKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto CreateDisplayMode =
reinterpret_cast<PFN_vkCreateDisplayModeKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkCreateDisplayModeKHR"));
ASSERT_EQ(CreateDisplayMode, nullptr);
}
// Test vkCreateDisplayModeKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, GetDispModesKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto CreateDisplayMode =
reinterpret_cast<PFN_vkCreateDisplayModeKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkCreateDisplayModeKHR"));
ASSERT_EQ(CreateDisplayMode, nullptr);
}
// Compare the display modes
static bool CompareDisplayModes(const VkDisplayModeKHR& disps1, VkDisplayModeKHR& disps2) { return disps1 == disps2; }
// Test vkCreateDisplayModeKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, GetDispModesKHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
env.get_test_icd(0).physical_devices.back().display_mode = CreateRandomDisplayMode();
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto CreateDisplayMode =
reinterpret_cast<PFN_vkCreateDisplayModeKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkCreateDisplayModeKHR"));
ASSERT_NE(CreateDisplayMode, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkDisplayModeKHR mode{};
VkDisplayModeCreateInfoKHR create_info{VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR};
ASSERT_EQ(VK_SUCCESS, CreateDisplayMode(physical_device, VK_NULL_HANDLE, &create_info, nullptr, &mode));
ASSERT_TRUE(CompareDisplayModes(mode, env.get_test_icd(0).physical_devices.back().display_mode));
}
// Test vkCreateDisplayModeKHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, GetDispModesKHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
cur_dev.display_mode = CreateRandomDisplayMode();
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate();
auto CreateDisplayMode =
reinterpret_cast<PFN_vkCreateDisplayModeKHR>(instance.functions->vkGetInstanceProcAddr(instance, "vkCreateDisplayModeKHR"));
ASSERT_NE(CreateDisplayMode, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
VkDisplayModeKHR mode{};
VkDisplayModeCreateInfoKHR create_info{VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR};
if (icd == 1) {
// Unsupported ICD should return initialization failed (instead of crash)
ASSERT_EQ(VK_ERROR_INITIALIZATION_FAILED,
CreateDisplayMode(physical_devices[dev], VK_NULL_HANDLE, &create_info, nullptr, &mode));
} else {
ASSERT_EQ(VK_SUCCESS,
CreateDisplayMode(physical_devices[dev], VK_NULL_HANDLE, &create_info, nullptr, &mode));
ASSERT_TRUE(CompareDisplayModes(mode, cur_dev.display_mode));
}
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
// Test vkGetDisplayPlaneCapabilitiesKHR where nothing supports it.
TEST(LoaderInstPhysDevExts, GetDispPlaneCapsKHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_EQ(GetDisplayPlaneCapabilities, nullptr);
}
// Test vkGetDisplayPlaneCapabilitiesKHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, GetDispPlaneCapsKHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_EQ(GetDisplayPlaneCapabilities, nullptr);
}
// Fill in random but valid data into the display plane caps for the current physical device
static void GenerateRandomDisplayPlaneCaps(VkDisplayPlaneCapabilitiesKHR& caps) {
caps.supportedAlpha = static_cast<VkDisplayPlaneAlphaFlagsKHR>((rand() % 0xFFFFFFF) + 1);
caps.minSrcPosition.x = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.minSrcPosition.y = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxSrcPosition.x = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxSrcPosition.y = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.minSrcExtent.width = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.minSrcExtent.height = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxSrcExtent.width = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxSrcExtent.height = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.minDstPosition.x = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.minDstPosition.y = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxDstPosition.x = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxDstPosition.y = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.minDstExtent.width = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.minDstExtent.height = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxDstExtent.width = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
caps.maxDstExtent.height = static_cast<uint32_t>((rand() % 0xFFFFFFF) + 1);
}
// Compare the display plane caps
static bool CompareDisplayPlaneCaps(const VkDisplayPlaneCapabilitiesKHR& caps1, VkDisplayPlaneCapabilitiesKHR& caps2,
bool supported = true) {
bool equal = true;
if (supported) {
equal = equal && caps1.supportedAlpha == caps2.supportedAlpha;
equal = equal && caps1.minSrcPosition.x == caps2.minSrcPosition.x;
equal = equal && caps1.minSrcPosition.y == caps2.minSrcPosition.y;
equal = equal && caps1.maxSrcPosition.x == caps2.maxSrcPosition.x;
equal = equal && caps1.maxSrcPosition.y == caps2.maxSrcPosition.y;
equal = equal && caps1.minSrcExtent.width == caps2.minSrcExtent.width;
equal = equal && caps1.minSrcExtent.height == caps2.minSrcExtent.height;
equal = equal && caps1.maxSrcExtent.width == caps2.maxSrcExtent.width;
equal = equal && caps1.maxSrcExtent.height == caps2.maxSrcExtent.height;
equal = equal && caps1.minDstPosition.x == caps2.minDstPosition.x;
equal = equal && caps1.minDstPosition.y == caps2.minDstPosition.y;
equal = equal && caps1.maxDstPosition.x == caps2.maxDstPosition.x;
equal = equal && caps1.maxDstPosition.y == caps2.maxDstPosition.y;
equal = equal && caps1.minDstExtent.width == caps2.minDstExtent.width;
equal = equal && caps1.minDstExtent.height == caps2.minDstExtent.height;
equal = equal && caps1.maxDstExtent.width == caps2.maxDstExtent.width;
equal = equal && caps1.maxDstExtent.height == caps2.maxDstExtent.height;
} else {
equal = equal && caps1.supportedAlpha == 0;
equal = equal && caps1.minSrcPosition.x == 0;
equal = equal && caps1.minSrcPosition.y == 0;
equal = equal && caps1.maxSrcPosition.x == 0;
equal = equal && caps1.maxSrcPosition.y == 0;
equal = equal && caps1.minSrcExtent.width == 0;
equal = equal && caps1.minSrcExtent.height == 0;
equal = equal && caps1.maxSrcExtent.width == 0;
equal = equal && caps1.maxSrcExtent.height == 0;
equal = equal && caps1.minDstPosition.x == 0;
equal = equal && caps1.minDstPosition.y == 0;
equal = equal && caps1.maxDstPosition.x == 0;
equal = equal && caps1.maxDstPosition.y == 0;
equal = equal && caps1.minDstExtent.width == 0;
equal = equal && caps1.minDstExtent.height == 0;
equal = equal && caps1.maxDstExtent.width == 0;
equal = equal && caps1.maxDstExtent.height == 0;
}
return equal;
}
// Test vkGetDisplayPlaneCapabilitiesKHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, GetDispPlaneCapsKHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({});
GenerateRandomDisplayPlaneCaps(env.get_test_icd(0).physical_devices.back().display_plane_capabilities);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_NE(GetDisplayPlaneCapabilities, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkDisplayPlaneCapabilitiesKHR caps{};
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneCapabilities(physical_device, 0, 0, &caps));
ASSERT_TRUE(CompareDisplayPlaneCaps(caps, env.get_test_icd(0).physical_devices.back().display_plane_capabilities));
}
// Test vkGetDisplayPlaneCapabilitiesKHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, GetDispPlaneCapsKHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
GenerateRandomDisplayPlaneCaps(cur_dev.display_plane_capabilities);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_DISPLAY_EXTENSION_NAME);
instance.CheckCreate();
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_NE(GetDisplayPlaneCapabilities, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
VkDisplayPlaneCapabilitiesKHR caps{};
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneCapabilities(physical_devices[dev], 0, 0, &caps));
ASSERT_TRUE(CompareDisplayPlaneCaps(caps, cur_dev.display_plane_capabilities, icd != 1));
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
//
// VK_KHR_get_display_properties2
//
// Test vkGetPhysicalDeviceDisplayProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevDispProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceDisplayProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayProperties2KHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayProperties2, nullptr);
}
// Test vkGetPhysicalDeviceDisplayProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevDispProps2KHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceDisplayProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayProperties2KHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayProperties2, nullptr);
}
// Compare the display property data structs
static bool CompareDisplayPropData(const std::vector<VkDisplayPropertiesKHR>& props1,
const std::vector<VkDisplayProperties2KHR>& props2) {
if (props1.size() != props2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < props1.size(); ++i) {
equal = equal && props1[i].display == props2[i].displayProperties.display;
equal = equal && props1[i].physicalDimensions.width == props2[i].displayProperties.physicalDimensions.width;
equal = equal && props1[i].physicalDimensions.height == props2[i].displayProperties.physicalDimensions.height;
equal = equal && props1[i].physicalResolution.width == props2[i].displayProperties.physicalResolution.width;
equal = equal && props1[i].physicalResolution.height == props2[i].displayProperties.physicalResolution.height;
equal = equal && props1[i].supportedTransforms == props2[i].displayProperties.supportedTransforms;
equal = equal && props1[i].planeReorderPossible == props2[i].displayProperties.planeReorderPossible;
equal = equal && props1[i].persistentContent == props2[i].displayProperties.persistentContent;
}
return equal;
}
// Test vGetPhysicalDeviceDisplayProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevDispProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_DISPLAY_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME};
env.get_test_icd(0).add_instance_extensions({first_ext, second_ext});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomDisplayPropData(env.get_test_icd(0).physical_devices.back().display_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceDisplayProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayProperties, nullptr);
auto GetPhysicalDeviceDisplayProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayProperties2KHR"));
ASSERT_NE(GetPhysicalDeviceDisplayProperties2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkDisplayPropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_device, &prop_count, nullptr));
ASSERT_NE(0, prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_device, &prop_count, props.data()));
std::vector<VkDisplayProperties2KHR> props2{};
uint32_t prop_count_2 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties2(physical_device, &prop_count_2, nullptr));
ASSERT_EQ(prop_count, prop_count_2);
props2.resize(prop_count_2, {VK_STRUCTURE_TYPE_DISPLAY_PROPERTIES_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties2(physical_device, &prop_count_2, props2.data()));
ASSERT_EQ(prop_count, prop_count_2);
ASSERT_TRUE(CompareDisplayPropData(props, props2));
}
// Test vkGetPhysicalDeviceDisplayProperties2KHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevDispProps2KHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomDisplayPropData(cur_dev.display_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceDisplayProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayProperties, nullptr);
auto GetPhysicalDeviceDisplayProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayProperties2KHR"));
ASSERT_NE(GetPhysicalDeviceDisplayProperties2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
std::vector<VkDisplayPropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_devices[dev], &prop_count, nullptr));
ASSERT_NE(0, prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties(physical_devices[dev], &prop_count, props.data()));
std::vector<VkDisplayProperties2KHR> props2{};
uint32_t prop_count_2 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties2(physical_devices[dev], &prop_count_2, nullptr));
ASSERT_EQ(prop_count, prop_count_2);
props2.resize(prop_count_2, {VK_STRUCTURE_TYPE_DISPLAY_PROPERTIES_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayProperties2(physical_devices[dev], &prop_count_2, props2.data()));
ASSERT_EQ(prop_count, prop_count_2);
ASSERT_TRUE(CompareDisplayPropData(props, props2));
}
}
// Test vkGetPhysicalDeviceDisplayPlaneProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, PhysDevDispPlaneProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetPhysicalDeviceDisplayPlaneProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlaneProperties2KHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayPlaneProperties2, nullptr);
}
// Test vkGetPhysicalDeviceDisplayPlaneProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, PhysDevDispPlaneProps2KHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetPhysicalDeviceDisplayPlaneProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlaneProperties2KHR"));
ASSERT_EQ(GetPhysicalDeviceDisplayPlaneProperties2, nullptr);
}
// Compare the display plane property data structs
static bool CompareDisplayPlanePropData(const std::vector<VkDisplayPlanePropertiesKHR>& props1,
const std::vector<VkDisplayPlaneProperties2KHR>& props2) {
if (props1.size() != props2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < props1.size(); ++i) {
equal = equal && props1[i].currentDisplay == props2[i].displayPlaneProperties.currentDisplay;
equal = equal && props1[i].currentStackIndex == props2[i].displayPlaneProperties.currentStackIndex;
}
return equal;
}
// Test vGetPhysicalDeviceDisplayPlaneProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, PhysDevDispPlaneProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_DISPLAY_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME};
env.get_test_icd(0).add_instance_extensions({first_ext, second_ext});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomDisplayPlanePropData(env.get_test_icd(0).physical_devices.back().display_plane_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceDisplayPlaneProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayPlaneProperties, nullptr);
auto GetPhysicalDeviceDisplayPlaneProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlaneProperties2KHR"));
ASSERT_NE(GetPhysicalDeviceDisplayPlaneProperties2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkDisplayPlanePropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties(physical_device, &prop_count, nullptr));
ASSERT_NE(0, prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties(physical_device, &prop_count, props.data()));
std::vector<VkDisplayPlaneProperties2KHR> props2{};
uint32_t prop_count2 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties2(physical_device, &prop_count2, nullptr));
ASSERT_EQ(prop_count, prop_count2);
props2.resize(prop_count2, {VK_STRUCTURE_TYPE_DISPLAY_PLANE_PROPERTIES_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties2(physical_device, &prop_count2, props2.data()));
ASSERT_TRUE(CompareDisplayPlanePropData(props, props2));
}
// Test vkGetPhysicalDeviceDisplayPlaneProperties2KHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, PhysDevDispPlaneProps2KHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
FillInRandomDisplayPlanePropData(cur_dev.display_plane_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetPhysicalDeviceDisplayPlaneProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlanePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlanePropertiesKHR"));
ASSERT_NE(GetPhysicalDeviceDisplayPlaneProperties, nullptr);
auto GetPhysicalDeviceDisplayPlaneProperties2 = reinterpret_cast<PFN_vkGetPhysicalDeviceDisplayPlaneProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceDisplayPlaneProperties2KHR"));
ASSERT_NE(GetPhysicalDeviceDisplayPlaneProperties2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
std::vector<VkDisplayPlanePropertiesKHR> props{};
uint32_t prop_count = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties(physical_devices[dev], &prop_count, nullptr));
ASSERT_NE(0, prop_count);
props.resize(prop_count);
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties(physical_devices[dev], &prop_count, props.data()));
std::vector<VkDisplayPlaneProperties2KHR> props2{};
uint32_t prop_count2 = 0;
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties2(physical_devices[dev], &prop_count2, nullptr));
ASSERT_EQ(prop_count, prop_count2);
props2.resize(prop_count2, {VK_STRUCTURE_TYPE_DISPLAY_PLANE_PROPERTIES_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceDisplayPlaneProperties2(physical_devices[dev], &prop_count2, props2.data()));
ASSERT_TRUE(CompareDisplayPlanePropData(props, props2));
}
}
// Test vkGetDisplayModeProperties2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, GetDispModeProps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetDisplayModeProperties2 = reinterpret_cast<PFN_vkGetDisplayModeProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModeProperties2KHR"));
ASSERT_EQ(GetDisplayModeProperties2, nullptr);
}
// Test vkGetDisplayModeProperties2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, GetDispModeProps2KHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetDisplayModeProperties2 = reinterpret_cast<PFN_vkGetDisplayModeProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModeProperties2KHR"));
ASSERT_EQ(GetDisplayModeProperties2, nullptr);
}
// Compare the display mode properties data structs
static bool CompareDisplayModeProps(const std::vector<VkDisplayModePropertiesKHR>& disps1,
const std::vector<VkDisplayModeProperties2KHR>& disps2) {
if (disps1.size() != disps2.size()) return false;
bool equal = true;
for (uint32_t i = 0; i < disps1.size(); ++i) {
equal = equal && disps1[i].displayMode == disps2[i].displayModeProperties.displayMode;
equal = equal && disps1[i].parameters.visibleRegion.width == disps2[i].displayModeProperties.parameters.visibleRegion.width;
equal =
equal && disps1[i].parameters.visibleRegion.height == disps2[i].displayModeProperties.parameters.visibleRegion.height;
equal = equal && disps1[i].parameters.refreshRate == disps2[i].displayModeProperties.parameters.refreshRate;
}
return equal;
}
// Test vGetDisplayModeProperties2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, GetDispModeProps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_DISPLAY_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME};
env.get_test_icd(0).add_instance_extensions({first_ext, second_ext});
env.get_test_icd(0).physical_devices.push_back({});
GenerateRandomDisplayModeProps(env.get_test_icd(0).physical_devices.back().display_mode_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetDisplayModeProperties = reinterpret_cast<PFN_vkGetDisplayModePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModePropertiesKHR"));
ASSERT_NE(GetDisplayModeProperties, nullptr);
auto GetDisplayModeProperties2 = reinterpret_cast<PFN_vkGetDisplayModeProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModeProperties2KHR"));
ASSERT_NE(GetDisplayModeProperties2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
std::vector<VkDisplayModePropertiesKHR> props{};
uint32_t props_count1 = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties(physical_device, VK_NULL_HANDLE, &props_count1, nullptr));
ASSERT_NE(0, props_count1);
props.resize(props_count1);
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties(physical_device, VK_NULL_HANDLE, &props_count1, props.data()));
std::vector<VkDisplayModeProperties2KHR> props2{};
uint32_t props_count2 = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties2(physical_device, VK_NULL_HANDLE, &props_count2, nullptr));
ASSERT_EQ(props_count1, props_count2);
props2.resize(props_count2, {VK_STRUCTURE_TYPE_DISPLAY_MODE_PROPERTIES_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties2(physical_device, VK_NULL_HANDLE, &props_count2, props2.data()));
ASSERT_TRUE(CompareDisplayModeProps(props, props2));
}
// Test vkGetDisplayModeProperties2KHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, GetDispModeProps2KHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
GenerateRandomDisplayModeProps(cur_dev.display_mode_properties);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetDisplayModeProperties = reinterpret_cast<PFN_vkGetDisplayModePropertiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModePropertiesKHR"));
ASSERT_NE(GetDisplayModeProperties, nullptr);
auto GetDisplayModeProperties2 = reinterpret_cast<PFN_vkGetDisplayModeProperties2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayModeProperties2KHR"));
ASSERT_NE(GetDisplayModeProperties2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
std::vector<VkDisplayModePropertiesKHR> props{};
uint32_t props_count1 = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties(physical_devices[dev], VK_NULL_HANDLE, &props_count1, nullptr));
ASSERT_NE(0, props_count1);
props.resize(props_count1);
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties(physical_devices[dev], VK_NULL_HANDLE, &props_count1, props.data()));
std::vector<VkDisplayModeProperties2KHR> props2{};
uint32_t props_count2 = 0;
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties2(physical_devices[dev], VK_NULL_HANDLE, &props_count2, nullptr));
ASSERT_EQ(props_count1, props_count2);
props2.resize(props_count2, {VK_STRUCTURE_TYPE_DISPLAY_MODE_PROPERTIES_2_KHR});
ASSERT_EQ(VK_SUCCESS, GetDisplayModeProperties2(physical_devices[dev], VK_NULL_HANDLE, &props_count2, props2.data()));
ASSERT_TRUE(CompareDisplayModeProps(props, props2));
}
}
// Test vkGetDisplayPlaneCapabilities2KHR where nothing supports it.
TEST(LoaderInstPhysDevExts, GetDispPlaneCaps2KHRNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_EQ(GetDisplayPlaneCapabilities, nullptr);
}
// Test vkGetDisplayPlaneCapabilities2KHR where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, GetDispPlaneCaps2KHRNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_EQ(GetDisplayPlaneCapabilities, nullptr);
}
// Compare the display plane caps
static bool CompareDisplayPlaneCaps(const VkDisplayPlaneCapabilitiesKHR& caps1, VkDisplayPlaneCapabilities2KHR& caps2) {
bool equal = true;
equal = equal && caps1.supportedAlpha == caps2.capabilities.supportedAlpha;
equal = equal && caps1.minSrcPosition.x == caps2.capabilities.minSrcPosition.x;
equal = equal && caps1.minSrcPosition.y == caps2.capabilities.minSrcPosition.y;
equal = equal && caps1.maxSrcPosition.x == caps2.capabilities.maxSrcPosition.x;
equal = equal && caps1.maxSrcPosition.y == caps2.capabilities.maxSrcPosition.y;
equal = equal && caps1.minSrcExtent.width == caps2.capabilities.minSrcExtent.width;
equal = equal && caps1.minSrcExtent.height == caps2.capabilities.minSrcExtent.height;
equal = equal && caps1.maxSrcExtent.width == caps2.capabilities.maxSrcExtent.width;
equal = equal && caps1.maxSrcExtent.height == caps2.capabilities.maxSrcExtent.height;
equal = equal && caps1.minDstPosition.x == caps2.capabilities.minDstPosition.x;
equal = equal && caps1.minDstPosition.y == caps2.capabilities.minDstPosition.y;
equal = equal && caps1.maxDstPosition.x == caps2.capabilities.maxDstPosition.x;
equal = equal && caps1.maxDstPosition.y == caps2.capabilities.maxDstPosition.y;
equal = equal && caps1.minDstExtent.width == caps2.capabilities.minDstExtent.width;
equal = equal && caps1.minDstExtent.height == caps2.capabilities.minDstExtent.height;
equal = equal && caps1.maxDstExtent.width == caps2.capabilities.maxDstExtent.width;
equal = equal && caps1.maxDstExtent.height == caps2.capabilities.maxDstExtent.height;
return equal;
}
// Test vkGetDisplayPlaneCapabilities2KHR where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, GetDispPlaneCaps2KHRInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_DISPLAY_EXTENSION_NAME};
Extension second_ext{VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME};
env.get_test_icd(0).add_instance_extensions({first_ext, second_ext});
env.get_test_icd(0).physical_devices.push_back({});
FillInRandomDisplayPropData(env.get_test_icd(0).physical_devices.back().display_properties);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_NE(GetDisplayPlaneCapabilities, nullptr);
auto GetDisplayPlaneCapabilities2 = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilities2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilities2KHR"));
ASSERT_NE(GetDisplayPlaneCapabilities2, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkDisplayPlaneCapabilitiesKHR caps{};
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneCapabilities(physical_device, 0, 0, &caps));
VkDisplayPlaneCapabilities2KHR caps2{};
VkDisplayPlaneInfo2KHR info{VK_STRUCTURE_TYPE_DISPLAY_PLANE_INFO_2_KHR};
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneCapabilities2(physical_device, &info, &caps2));
ASSERT_TRUE(CompareDisplayPlaneCaps(caps, caps2));
}
// Test vkGetDisplayPlaneCapabilities2KHR where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, GetDispPlaneCaps2KHRMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
GenerateRandomDisplayPlaneCaps(cur_dev.display_plane_capabilities);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_KHR_GET_DISPLAY_PROPERTIES_2_EXTENSION_NAME});
instance.CheckCreate();
auto GetDisplayPlaneCapabilities = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilitiesKHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilitiesKHR"));
ASSERT_NE(GetDisplayPlaneCapabilities, nullptr);
auto GetDisplayPlaneCapabilities2 = reinterpret_cast<PFN_vkGetDisplayPlaneCapabilities2KHR>(
instance.functions->vkGetInstanceProcAddr(instance, "vkGetDisplayPlaneCapabilities2KHR"));
ASSERT_NE(GetDisplayPlaneCapabilities2, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkDisplayPlaneCapabilitiesKHR caps{};
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneCapabilities(physical_devices[dev], 0, 0, &caps));
VkDisplayPlaneCapabilities2KHR caps2{};
VkDisplayPlaneInfo2KHR info{VK_STRUCTURE_TYPE_DISPLAY_PLANE_INFO_2_KHR};
ASSERT_EQ(VK_SUCCESS, GetDisplayPlaneCapabilities2(physical_devices[dev], &info, &caps2));
CompareDisplayPlaneCaps(caps, caps2);
}
}
//
// VK_EXT_acquire_drm_display
//
// Test vkAcquireDrmDisplayEXT where nothing supports it.
TEST(LoaderInstPhysDevExts, AcquireDrmDisplayEXTNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto AcquireDrmDisplay =
reinterpret_cast<PFN_vkAcquireDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkAcquireDrmDisplayEXT"));
ASSERT_EQ(AcquireDrmDisplay, nullptr);
}
// Test vkAcquireDrmDisplayEXT where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, AcquireDrmDisplayEXTNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto AcquireDrmDisplay =
reinterpret_cast<PFN_vkAcquireDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkAcquireDrmDisplayEXT"));
ASSERT_EQ(AcquireDrmDisplay, nullptr);
}
// Test vkAcquireDrmDisplayEXT where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, AcquireDrmDisplayEXTInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_DISPLAY_EXTENSION_NAME};
Extension second_ext{VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME};
env.get_test_icd(0).add_instance_extensions({first_ext, second_ext});
env.get_test_icd(0).physical_devices.push_back({});
GenerateRandomDisplays(env.get_test_icd(0).physical_devices.back().displays);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto AcquireDrmDisplay =
reinterpret_cast<PFN_vkAcquireDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkAcquireDrmDisplayEXT"));
ASSERT_NE(AcquireDrmDisplay, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkDisplayKHR display = VK_NULL_HANDLE;
ASSERT_EQ(VK_SUCCESS, AcquireDrmDisplay(physical_device, 0, display));
}
// Test vkAcquireDrmDisplayEXT where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, AcquireDrmDisplayEXTMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
GenerateRandomDisplays(cur_dev.displays);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto AcquireDrmDisplay =
reinterpret_cast<PFN_vkAcquireDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkAcquireDrmDisplayEXT"));
ASSERT_NE(AcquireDrmDisplay, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
VkDisplayKHR display = VK_NULL_HANDLE;
if (icd == 1) {
// For this extension, if no support exists (like for ICD 1), the value of 0 should be returned by the
// loader.
ASSERT_EQ(VK_ERROR_INITIALIZATION_FAILED, AcquireDrmDisplay(physical_devices[dev], 0, display));
} else {
ASSERT_EQ(VK_SUCCESS, AcquireDrmDisplay(physical_devices[dev], 0, display));
}
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
// Test vkGetDrmDisplayEXT where nothing supports it.
TEST(LoaderInstPhysDevExts, GetDrmDisplayEXTNoSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.CheckCreate();
auto GetDrmDisplay =
reinterpret_cast<PFN_vkGetDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkGetDrmDisplayEXT"));
ASSERT_EQ(GetDrmDisplay, nullptr);
}
// Test vkGetDrmDisplayEXT where instance supports it, but nothing else.
TEST(LoaderInstPhysDevExts, GetDrmDisplayEXTNoICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
env.get_test_icd(0).physical_devices.push_back({});
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extension(VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME);
instance.CheckCreate(VK_ERROR_EXTENSION_NOT_PRESENT);
auto GetDrmDisplay =
reinterpret_cast<PFN_vkGetDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkGetDrmDisplayEXT"));
ASSERT_EQ(GetDrmDisplay, nullptr);
}
// Test vkGetDrmDisplayEXT where instance and ICD supports it, but device does not support it.
TEST(LoaderInstPhysDevExts, GetDrmDisplayEXTInstanceAndICDSupport) {
FrameworkEnvironment env{};
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
Extension first_ext{VK_KHR_DISPLAY_EXTENSION_NAME};
Extension second_ext{VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME};
env.get_test_icd(0).add_instance_extensions({first_ext, second_ext});
env.get_test_icd(0).physical_devices.push_back({});
GenerateRandomDisplays(env.get_test_icd(0).physical_devices.back().displays);
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto GetDrmDisplay =
reinterpret_cast<PFN_vkGetDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkGetDrmDisplayEXT"));
ASSERT_NE(GetDrmDisplay, nullptr);
uint32_t driver_count = 1;
VkPhysicalDevice physical_device;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &driver_count, &physical_device));
ASSERT_EQ(driver_count, 1);
VkDisplayKHR display = VK_NULL_HANDLE;
ASSERT_EQ(VK_SUCCESS, GetDrmDisplay(physical_device, 0, 0, &display));
ASSERT_EQ(display, env.get_test_icd(0).physical_devices.back().displays[0]);
}
// Test vkGetDrmDisplayEXT where instance supports it with some ICDs that both support
// and don't support it:
// ICD 0 supports
// Physical device 0 does not
// Physical device 1 does
// Physical device 2 does not
// ICD 1 doesn't support
// Physical device 3 does not
// ICD 2 supports
// Physical device 4 does not
// Physical device 5 does not
// ICD 3 supports
// Physical device 6 does
TEST(LoaderInstPhysDevExts, GetDrmDisplayEXTMixed) {
FrameworkEnvironment env{};
const uint32_t max_icd_count = 4;
const uint32_t dev_counts[max_icd_count] = {3, 1, 2, 1};
const uint32_t max_phys_devs = 7;
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2));
auto& cur_icd = env.get_test_icd(icd);
cur_icd.icd_api_version = VK_API_VERSION_1_0;
cur_icd.add_instance_extension({VK_KHR_DISPLAY_EXTENSION_NAME});
// ICD 1 should not have 1.1
if (icd != 1) {
cur_icd.icd_api_version = VK_API_VERSION_1_1;
cur_icd.add_instance_extension({VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME});
}
uint32_t rand_vendor_id;
uint32_t rand_driver_vers;
FillInRandomICDInfo(rand_vendor_id, rand_driver_vers);
for (uint32_t dev = 0; dev < dev_counts[icd]; ++dev) {
uint32_t device_version = VK_API_VERSION_1_0;
cur_icd.physical_devices.push_back({});
auto& cur_dev = cur_icd.physical_devices.back();
cur_dev.extensions.push_back({VK_KHR_DISPLAY_EXTENSION_NAME, 0});
// 2nd device in ICD 0 and the one device in ICD 3 support the extension and 1.1
if ((icd == 0 && dev == 1) || icd == 3) {
cur_dev.extensions.push_back({VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME, 0});
device_version = VK_API_VERSION_1_1;
}
// Still set physical device properties (so we can determine if device is correct API version)
FillInRandomDeviceProps(cur_dev.properties, device_version, rand_vendor_id, rand_driver_vers);
GenerateRandomDisplays(cur_dev.displays);
}
}
InstWrapper instance(env.vulkan_functions);
instance.create_info.add_extensions({VK_KHR_DISPLAY_EXTENSION_NAME, VK_EXT_ACQUIRE_DRM_DISPLAY_EXTENSION_NAME});
instance.CheckCreate();
auto GetDrmDisplay =
reinterpret_cast<PFN_vkGetDrmDisplayEXT>(instance.functions->vkGetInstanceProcAddr(instance, "vkGetDrmDisplayEXT"));
ASSERT_NE(GetDrmDisplay, nullptr);
uint32_t device_count = max_phys_devs;
std::array<VkPhysicalDevice, max_phys_devs> physical_devices;
ASSERT_EQ(VK_SUCCESS, instance->vkEnumeratePhysicalDevices(instance, &device_count, physical_devices.data()));
ASSERT_EQ(device_count, max_phys_devs);
for (uint32_t dev = 0; dev < device_count; ++dev) {
VkPhysicalDeviceProperties pd_props{};
instance->vkGetPhysicalDeviceProperties(physical_devices[dev], &pd_props);
for (uint32_t icd = 0; icd < max_icd_count; ++icd) {
auto& cur_icd = env.get_test_icd(icd);
bool found = false;
for (uint32_t pd = 0; pd < dev_counts[icd]; ++pd) {
auto& cur_dev = cur_icd.physical_devices[pd];
// Find the ICD device matching the physical device we're looking at info for so we can compare the
// physical devices info with the returned info.
if (cur_dev.properties.apiVersion == pd_props.apiVersion && cur_dev.properties.deviceID == pd_props.deviceID &&
cur_dev.properties.deviceType == pd_props.deviceType &&
cur_dev.properties.driverVersion == pd_props.driverVersion &&
cur_dev.properties.vendorID == pd_props.vendorID) {
VkDisplayKHR display = VK_NULL_HANDLE;
if (icd == 1) {
// For this extension, if no support exists (like for ICD 1), the value of 0 should be returned by the
// loader.
ASSERT_EQ(VK_ERROR_INITIALIZATION_FAILED, GetDrmDisplay(physical_devices[dev], 0, 0, &display));
} else {
ASSERT_EQ(VK_SUCCESS, GetDrmDisplay(physical_devices[dev], 0, 0, &display));
ASSERT_EQ(display, cur_dev.displays[0]);
}
found = true;
break;
}
}
if (found) {
break;
}
}
}
}
TEST(LoaderInstPhysDevExts, DifferentInstanceExtensions) {
FrameworkEnvironment env{};
// Add 3 drivers each of which supports a different instance extension
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(0).add_instance_extension({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(0).physical_devices.push_back({"pd0", 7});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 0});
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(1).add_instance_extension({VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(1).physical_devices.push_back({"pd1", 0});
env.get_test_icd(1).physical_devices.back().extensions.push_back({VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME, 0});
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(2).add_instance_extension({VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME});
env.get_test_icd(2).physical_devices.push_back({"pd2", 1});
env.get_test_icd(2).physical_devices.back().extensions.push_back({VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, 0});
DebugUtilsLogger log{VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT};
InstWrapper inst{env.vulkan_functions};
inst.create_info.add_extensions({VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME,
VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME,
VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME});
FillDebugUtilsCreateDetails(inst.create_info, log);
inst.CheckCreate();
const uint32_t expected_device_count = 3;
auto physical_devices = inst.GetPhysDevs(expected_device_count);
auto GetPhysicalDeviceExternalBufferProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalBufferPropertiesKHR>(
inst.functions->vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceExternalBufferPropertiesKHR"));
auto GetPhysicalDeviceExternalSemaphoreProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalSemaphorePropertiesKHR>(
inst.functions->vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceExternalSemaphorePropertiesKHR"));
auto GetPhysicalDeviceExternalFenceProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceExternalFencePropertiesKHR>(
inst.functions->vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceExternalFencePropertiesKHR"));
ASSERT_NE(nullptr, GetPhysicalDeviceExternalBufferProperties);
ASSERT_NE(nullptr, GetPhysicalDeviceExternalSemaphoreProperties);
ASSERT_NE(nullptr, GetPhysicalDeviceExternalFenceProperties);
// The above are instance extensions, so shouldn't crash even if only one physical device supports each
// extension.
for (uint32_t dev = 0; dev < expected_device_count; ++dev) {
VkPhysicalDeviceExternalBufferInfo ext_buf_info{};
VkExternalBufferProperties ext_buf_props{};
VkPhysicalDeviceExternalSemaphoreInfo ext_sem_info{};
VkExternalSemaphoreProperties ext_sem_props{};
VkPhysicalDeviceExternalFenceInfo ext_fence_info{};
VkExternalFenceProperties ext_fence_props{};
GetPhysicalDeviceExternalBufferProperties(physical_devices[dev], &ext_buf_info, &ext_buf_props);
GetPhysicalDeviceExternalSemaphoreProperties(physical_devices[dev], &ext_sem_info, &ext_sem_props);
GetPhysicalDeviceExternalFenceProperties(physical_devices[dev], &ext_fence_info, &ext_fence_props);
}
}
TEST(LoaderInstPhysDevExts, DifferentPhysicalDeviceExtensions) {
FrameworkEnvironment env{};
// Add 3 drivers each of which supports a different physical device extension
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(0).physical_devices.push_back({"pd0", 7});
env.get_test_icd(0).physical_devices.back().extensions.push_back({VK_KHR_PERFORMANCE_QUERY_EXTENSION_NAME, 0});
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(1).physical_devices.push_back({"pd1", 0});
env.get_test_icd(1).physical_devices.back().extensions.push_back({VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME, 0});
env.add_icd(TestICDDetails(TEST_ICD_PATH_VERSION_2, VK_API_VERSION_1_0));
env.get_test_icd(2).physical_devices.push_back({"pd2", 1});
env.get_test_icd(2).physical_devices.back().extensions.push_back({VK_EXT_CALIBRATED_TIMESTAMPS_EXTENSION_NAME, 0});
DebugUtilsLogger log{VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT};
InstWrapper inst{env.vulkan_functions};
FillDebugUtilsCreateDetails(inst.create_info, log);
inst.CheckCreate();
const uint32_t expected_device_count = 3;
auto physical_devices = inst.GetPhysDevs(expected_device_count);
auto EnumeratePhysicalDeviceQueueFamilyPerformanceQueryCounters =
reinterpret_cast<PFN_vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR>(
inst.functions->vkGetInstanceProcAddr(inst, "vkEnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR"));
auto GetPhysicalDeviceMultisampleProperties = reinterpret_cast<PFN_vkGetPhysicalDeviceMultisamplePropertiesEXT>(
inst.functions->vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceMultisamplePropertiesEXT"));
auto GetPhysicalDeviceCalibrateableTimeDomains = reinterpret_cast<PFN_vkGetPhysicalDeviceCalibrateableTimeDomainsEXT>(
inst.functions->vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceCalibrateableTimeDomainsEXT"));
ASSERT_NE(nullptr, EnumeratePhysicalDeviceQueueFamilyPerformanceQueryCounters);
ASSERT_NE(nullptr, GetPhysicalDeviceMultisampleProperties);
ASSERT_NE(nullptr, GetPhysicalDeviceCalibrateableTimeDomains);
for (uint32_t dev = 0; dev < expected_device_count; ++dev) {
uint32_t extension_count = 0;
std::vector<VkExtensionProperties> device_extensions;
bool supports_query = false;
bool supports_samples = false;
bool supports_timestamps = false;
ASSERT_EQ(VK_SUCCESS,
inst->vkEnumerateDeviceExtensionProperties(physical_devices[dev], nullptr, &extension_count, nullptr));
ASSERT_GT(extension_count, 0U);
device_extensions.resize(extension_count);
ASSERT_EQ(VK_SUCCESS, inst->vkEnumerateDeviceExtensionProperties(physical_devices[dev], nullptr, &extension_count,
device_extensions.data()));
for (uint32_t ext = 0; ext < extension_count; ++ext) {
if (string_eq(VK_KHR_PERFORMANCE_QUERY_EXTENSION_NAME, &device_extensions[ext].extensionName[0])) {
supports_query = true;
}
if (string_eq(VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME, &device_extensions[ext].extensionName[0])) {
supports_samples = true;
}
if (string_eq(VK_EXT_CALIBRATED_TIMESTAMPS_EXTENSION_NAME, &device_extensions[ext].extensionName[0])) {
supports_timestamps = true;
}
}
// For physical device extensions, they should work for devices that support it and crash for those that don't.
if (supports_query) {
ASSERT_EQ(VK_SUCCESS, EnumeratePhysicalDeviceQueueFamilyPerformanceQueryCounters(physical_devices[dev], 0, nullptr,
nullptr, nullptr));
} else {
ASSERT_DEATH(
EnumeratePhysicalDeviceQueueFamilyPerformanceQueryCounters(physical_devices[dev], 0, nullptr, nullptr, nullptr),
"");
ASSERT_FALSE(
log.find("ICD associated with VkPhysicalDevice does not support "
"EnumeratePhysicalDeviceQueueFamilyPerformanceQueryCountersKHR"));
}
if (supports_samples) {
GetPhysicalDeviceMultisampleProperties(physical_devices[dev], VK_SAMPLE_COUNT_2_BIT, nullptr);
} else {
ASSERT_DEATH(GetPhysicalDeviceMultisampleProperties(physical_devices[dev], VK_SAMPLE_COUNT_2_BIT, nullptr), "");
ASSERT_FALSE(
log.find("ICD associated with VkPhysicalDevice does not support GetPhysicalDeviceMultisamplePropertiesEXT"));
}
if (supports_timestamps) {
ASSERT_EQ(VK_SUCCESS, GetPhysicalDeviceCalibrateableTimeDomains(physical_devices[dev], nullptr, nullptr));
} else {
ASSERT_DEATH(GetPhysicalDeviceCalibrateableTimeDomains(physical_devices[dev], nullptr, nullptr), "");
ASSERT_FALSE(
log.find("ICD associated with VkPhysicalDevice does not support GetPhysicalDeviceCalibrateableTimeDomainsEXT"));
}
}
}