| /* |
| * Copyright (c) 2015-2019 The Khronos Group Inc. |
| * Copyright (c) 2015-2019 Valve Corporation |
| * Copyright (c) 2015-2019 LunarG, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * Author: Chia-I Wu <olv@lunarg.com> |
| * Author: Courtney Goeltzenleuchter <courtney@LunarG.com> |
| * Author: Ian Elliott <ian@LunarG.com> |
| * Author: Ian Elliott <ianelliott@google.com> |
| * Author: Jon Ashburn <jon@lunarg.com> |
| * Author: Gwan-gyeong Mun <elongbug@gmail.com> |
| * Author: Tony Barbour <tony@LunarG.com> |
| * Author: Bill Hollings <bill.hollings@brenwill.com> |
| */ |
| |
| #define _GNU_SOURCE |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <stdbool.h> |
| #include <assert.h> |
| #include <signal.h> |
| #include <errno.h> |
| #if defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_XCB_KHR) |
| #include <X11/Xutil.h> |
| #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) |
| #include <linux/input.h> |
| #include "xdg-shell-client-header.h" |
| #include "xdg-decoration-client-header.h" |
| #endif |
| |
| #ifdef _WIN32 |
| #ifdef _MSC_VER |
| #pragma comment(linker, "/subsystem:windows") |
| #endif // MSVC |
| #define APP_NAME_STR_LEN 80 |
| #endif // _WIN32 |
| |
| // Volk requires VK_NO_PROTOTYPES before including vulkan.h |
| #define VK_NO_PROTOTYPES |
| #include <vulkan/vulkan.h> |
| #define VOLK_IMPLEMENTATION |
| #include "volk.h" |
| |
| #include "linmath.h" |
| #include "object_type_string_helper.h" |
| |
| #include "gettime.h" |
| #include "inttypes.h" |
| #define MILLION 1000000L |
| #define BILLION 1000000000L |
| |
| #define DEMO_TEXTURE_COUNT 1 |
| #define APP_SHORT_NAME "vkcube" |
| #define APP_LONG_NAME "Vulkan Cube" |
| |
| // Allow a maximum of two outstanding presentation operations. |
| #define FRAME_LAG 2 |
| |
| #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) |
| |
| #if defined(NDEBUG) && defined(__GNUC__) |
| #define U_ASSERT_ONLY __attribute__((unused)) |
| #else |
| #define U_ASSERT_ONLY |
| #endif |
| |
| #if defined(__GNUC__) |
| #define UNUSED __attribute__((unused)) |
| #else |
| #define UNUSED |
| #endif |
| |
| #ifdef _WIN32 |
| bool in_callback = false; |
| #define ERR_EXIT(err_msg, err_class) \ |
| do { \ |
| if (!demo->suppress_popups) MessageBox(NULL, err_msg, err_class, MB_OK); \ |
| exit(1); \ |
| } while (0) |
| void DbgMsg(char *fmt, ...) { |
| va_list va; |
| va_start(va, fmt); |
| vprintf(fmt, va); |
| va_end(va); |
| fflush(stdout); |
| } |
| |
| #elif defined __ANDROID__ |
| #include <android/log.h> |
| #define ERR_EXIT(err_msg, err_class) \ |
| do { \ |
| ((void)__android_log_print(ANDROID_LOG_INFO, "Vulkan Cube", err_msg)); \ |
| exit(1); \ |
| } while (0) |
| #ifdef VARARGS_WORKS_ON_ANDROID |
| void DbgMsg(const char *fmt, ...) { |
| va_list va; |
| va_start(va, fmt); |
| __android_log_print(ANDROID_LOG_INFO, "Vulkan Cube", fmt, va); |
| va_end(va); |
| } |
| #else // VARARGS_WORKS_ON_ANDROID |
| #define DbgMsg(fmt, ...) \ |
| do { \ |
| ((void)__android_log_print(ANDROID_LOG_INFO, "Vulkan Cube", fmt, ##__VA_ARGS__)); \ |
| } while (0) |
| #endif // VARARGS_WORKS_ON_ANDROID |
| #else |
| #define ERR_EXIT(err_msg, err_class) \ |
| do { \ |
| printf("%s\n", err_msg); \ |
| fflush(stdout); \ |
| exit(1); \ |
| } while (0) |
| void DbgMsg(char *fmt, ...) { |
| va_list va; |
| va_start(va, fmt); |
| vprintf(fmt, va); |
| va_end(va); |
| fflush(stdout); |
| } |
| #endif |
| |
| /* |
| * structure to track all objects related to a texture. |
| */ |
| struct texture_object { |
| VkSampler sampler; |
| |
| VkImage image; |
| VkBuffer buffer; |
| VkImageLayout imageLayout; |
| |
| VkMemoryAllocateInfo mem_alloc; |
| VkDeviceMemory mem; |
| VkImageView view; |
| int32_t tex_width, tex_height; |
| }; |
| |
| static char *tex_files[] = {"lunarg.ppm"}; |
| |
| static int validation_error = 0; |
| |
| struct vktexcube_vs_uniform { |
| // Must start with MVP |
| float mvp[4][4]; |
| float position[12 * 3][4]; |
| float attr[12 * 3][4]; |
| }; |
| |
| //-------------------------------------------------------------------------------------- |
| // Mesh and VertexFormat Data |
| //-------------------------------------------------------------------------------------- |
| // clang-format off |
| static const float g_vertex_buffer_data[] = { |
| -1.0f,-1.0f,-1.0f, // -X side |
| -1.0f,-1.0f, 1.0f, |
| -1.0f, 1.0f, 1.0f, |
| -1.0f, 1.0f, 1.0f, |
| -1.0f, 1.0f,-1.0f, |
| -1.0f,-1.0f,-1.0f, |
| |
| -1.0f,-1.0f,-1.0f, // -Z side |
| 1.0f, 1.0f,-1.0f, |
| 1.0f,-1.0f,-1.0f, |
| -1.0f,-1.0f,-1.0f, |
| -1.0f, 1.0f,-1.0f, |
| 1.0f, 1.0f,-1.0f, |
| |
| -1.0f,-1.0f,-1.0f, // -Y side |
| 1.0f,-1.0f,-1.0f, |
| 1.0f,-1.0f, 1.0f, |
| -1.0f,-1.0f,-1.0f, |
| 1.0f,-1.0f, 1.0f, |
| -1.0f,-1.0f, 1.0f, |
| |
| -1.0f, 1.0f,-1.0f, // +Y side |
| -1.0f, 1.0f, 1.0f, |
| 1.0f, 1.0f, 1.0f, |
| -1.0f, 1.0f,-1.0f, |
| 1.0f, 1.0f, 1.0f, |
| 1.0f, 1.0f,-1.0f, |
| |
| 1.0f, 1.0f,-1.0f, // +X side |
| 1.0f, 1.0f, 1.0f, |
| 1.0f,-1.0f, 1.0f, |
| 1.0f,-1.0f, 1.0f, |
| 1.0f,-1.0f,-1.0f, |
| 1.0f, 1.0f,-1.0f, |
| |
| -1.0f, 1.0f, 1.0f, // +Z side |
| -1.0f,-1.0f, 1.0f, |
| 1.0f, 1.0f, 1.0f, |
| -1.0f,-1.0f, 1.0f, |
| 1.0f,-1.0f, 1.0f, |
| 1.0f, 1.0f, 1.0f, |
| }; |
| |
| static const float g_uv_buffer_data[] = { |
| 0.0f, 1.0f, // -X side |
| 1.0f, 1.0f, |
| 1.0f, 0.0f, |
| 1.0f, 0.0f, |
| 0.0f, 0.0f, |
| 0.0f, 1.0f, |
| |
| 1.0f, 1.0f, // -Z side |
| 0.0f, 0.0f, |
| 0.0f, 1.0f, |
| 1.0f, 1.0f, |
| 1.0f, 0.0f, |
| 0.0f, 0.0f, |
| |
| 1.0f, 0.0f, // -Y side |
| 1.0f, 1.0f, |
| 0.0f, 1.0f, |
| 1.0f, 0.0f, |
| 0.0f, 1.0f, |
| 0.0f, 0.0f, |
| |
| 1.0f, 0.0f, // +Y side |
| 0.0f, 0.0f, |
| 0.0f, 1.0f, |
| 1.0f, 0.0f, |
| 0.0f, 1.0f, |
| 1.0f, 1.0f, |
| |
| 1.0f, 0.0f, // +X side |
| 0.0f, 0.0f, |
| 0.0f, 1.0f, |
| 0.0f, 1.0f, |
| 1.0f, 1.0f, |
| 1.0f, 0.0f, |
| |
| 0.0f, 0.0f, // +Z side |
| 0.0f, 1.0f, |
| 1.0f, 0.0f, |
| 0.0f, 1.0f, |
| 1.0f, 1.0f, |
| 1.0f, 0.0f, |
| }; |
| // clang-format on |
| |
| void dumpMatrix(const char *note, mat4x4 MVP) { |
| int i; |
| |
| printf("%s: \n", note); |
| for (i = 0; i < 4; i++) { |
| printf("%f, %f, %f, %f\n", MVP[i][0], MVP[i][1], MVP[i][2], MVP[i][3]); |
| } |
| printf("\n"); |
| fflush(stdout); |
| } |
| |
| void dumpVec4(const char *note, vec4 vector) { |
| printf("%s: \n", note); |
| printf("%f, %f, %f, %f\n", vector[0], vector[1], vector[2], vector[3]); |
| printf("\n"); |
| fflush(stdout); |
| } |
| |
| char const *to_string(VkPhysicalDeviceType const type) { |
| switch (type) { |
| case VK_PHYSICAL_DEVICE_TYPE_OTHER: |
| return "Other"; |
| case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: |
| return "IntegratedGpu"; |
| case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: |
| return "DiscreteGpu"; |
| case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: |
| return "VirtualGpu"; |
| case VK_PHYSICAL_DEVICE_TYPE_CPU: |
| return "Cpu"; |
| default: |
| return "Unknown"; |
| } |
| } |
| |
| typedef struct { |
| VkImage image; |
| VkCommandBuffer cmd; |
| VkCommandBuffer graphics_to_present_cmd; |
| VkImageView view; |
| VkBuffer uniform_buffer; |
| VkDeviceMemory uniform_memory; |
| void *uniform_memory_ptr; |
| VkFramebuffer framebuffer; |
| VkDescriptorSet descriptor_set; |
| } SwapchainImageResources; |
| |
| struct demo { |
| #if defined(VK_USE_PLATFORM_WIN32_KHR) |
| #define APP_NAME_STR_LEN 80 |
| HINSTANCE connection; // hInstance - Windows Instance |
| char name[APP_NAME_STR_LEN]; // Name to put on the window/icon |
| HWND window; // hWnd - window handle |
| POINT minsize; // minimum window size |
| #elif defined(VK_USE_PLATFORM_XLIB_KHR) |
| Display *display; |
| Window xlib_window; |
| Atom xlib_wm_delete_window; |
| #elif defined(VK_USE_PLATFORM_XCB_KHR) |
| Display *display; |
| xcb_connection_t *connection; |
| xcb_screen_t *screen; |
| xcb_window_t xcb_window; |
| xcb_intern_atom_reply_t *atom_wm_delete_window; |
| #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) |
| struct wl_display *display; |
| struct wl_registry *registry; |
| struct wl_compositor *compositor; |
| struct wl_surface *window; |
| struct xdg_wm_base *xdg_wm_base; |
| struct zxdg_decoration_manager_v1 *xdg_decoration_mgr; |
| struct zxdg_toplevel_decoration_v1 *toplevel_decoration; |
| struct xdg_surface *xdg_surface; |
| int xdg_surface_has_been_configured; |
| struct xdg_toplevel *xdg_toplevel; |
| struct wl_seat *seat; |
| struct wl_pointer *pointer; |
| struct wl_keyboard *keyboard; |
| #elif defined(VK_USE_PLATFORM_DIRECTFB_EXT) |
| IDirectFB *dfb; |
| IDirectFBSurface *window; |
| IDirectFBEventBuffer *event_buffer; |
| #elif defined(VK_USE_PLATFORM_ANDROID_KHR) |
| struct ANativeWindow *window; |
| #elif defined(VK_USE_PLATFORM_METAL_EXT) |
| void *caMetalLayer; |
| #elif defined(VK_USE_PLATFORM_SCREEN_QNX) |
| screen_context_t screen_context; |
| screen_window_t screen_window; |
| screen_event_t screen_event; |
| #endif |
| |
| VkSurfaceKHR surface; |
| bool prepared; |
| bool use_staging_buffer; |
| bool separate_present_queue; |
| bool is_minimized; |
| bool invalid_gpu_selection; |
| int32_t gpu_number; |
| |
| bool VK_KHR_incremental_present_enabled; |
| |
| bool VK_GOOGLE_display_timing_enabled; |
| bool syncd_with_actual_presents; |
| uint64_t refresh_duration; |
| uint64_t refresh_duration_multiplier; |
| uint64_t target_IPD; // image present duration (inverse of frame rate) |
| uint64_t prev_desired_present_time; |
| uint32_t next_present_id; |
| uint32_t last_early_id; // 0 if no early images |
| uint32_t last_late_id; // 0 if no late images |
| |
| VkInstance inst; |
| VkPhysicalDevice gpu; |
| VkDevice device; |
| VkQueue graphics_queue; |
| VkQueue present_queue; |
| uint32_t graphics_queue_family_index; |
| uint32_t present_queue_family_index; |
| VkSemaphore image_acquired_semaphores[FRAME_LAG]; |
| VkSemaphore draw_complete_semaphores[FRAME_LAG]; |
| VkSemaphore image_ownership_semaphores[FRAME_LAG]; |
| VkPhysicalDeviceProperties gpu_props; |
| VkQueueFamilyProperties *queue_props; |
| VkPhysicalDeviceMemoryProperties memory_properties; |
| |
| uint32_t enabled_extension_count; |
| uint32_t enabled_layer_count; |
| char *extension_names[64]; |
| char *enabled_layers[64]; |
| |
| int width, height; |
| VkFormat format; |
| VkColorSpaceKHR color_space; |
| |
| uint32_t swapchainImageCount; |
| VkSwapchainKHR swapchain; |
| SwapchainImageResources *swapchain_image_resources; |
| VkPresentModeKHR presentMode; |
| VkFence fences[FRAME_LAG]; |
| int frame_index; |
| bool first_swapchain_frame; |
| |
| VkCommandPool cmd_pool; |
| VkCommandPool present_cmd_pool; |
| |
| struct { |
| VkFormat format; |
| |
| VkImage image; |
| VkMemoryAllocateInfo mem_alloc; |
| VkDeviceMemory mem; |
| VkImageView view; |
| } depth; |
| |
| struct texture_object textures[DEMO_TEXTURE_COUNT]; |
| struct texture_object staging_texture; |
| |
| VkCommandBuffer cmd; // Buffer for initialization commands |
| VkPipelineLayout pipeline_layout; |
| VkDescriptorSetLayout desc_layout; |
| VkPipelineCache pipelineCache; |
| VkRenderPass render_pass; |
| VkPipeline pipeline; |
| |
| mat4x4 projection_matrix; |
| mat4x4 view_matrix; |
| mat4x4 model_matrix; |
| |
| float spin_angle; |
| float spin_increment; |
| bool pause; |
| |
| VkShaderModule vert_shader_module; |
| VkShaderModule frag_shader_module; |
| |
| VkDescriptorPool desc_pool; |
| |
| bool quit; |
| int32_t curFrame; |
| int32_t frameCount; |
| bool validate; |
| bool validate_checks_disabled; |
| bool use_break; |
| bool suppress_popups; |
| bool force_errors; |
| |
| VkDebugUtilsMessengerEXT dbg_messenger; |
| |
| uint32_t current_buffer; |
| uint32_t queue_family_count; |
| }; |
| |
| VKAPI_ATTR VkBool32 VKAPI_CALL debug_messenger_callback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, |
| VkDebugUtilsMessageTypeFlagsEXT messageType, |
| const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData, |
| void *pUserData) { |
| char prefix[64] = ""; |
| char *message = (char *)malloc(strlen(pCallbackData->pMessage) + 5000); |
| assert(message); |
| struct demo *demo = (struct demo *)pUserData; |
| |
| if (demo->use_break) { |
| #ifndef WIN32 |
| raise(SIGTRAP); |
| #else |
| DebugBreak(); |
| #endif |
| } |
| |
| if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT) { |
| strcat(prefix, "VERBOSE : "); |
| } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) { |
| strcat(prefix, "INFO : "); |
| } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) { |
| strcat(prefix, "WARNING : "); |
| } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { |
| strcat(prefix, "ERROR : "); |
| } |
| |
| if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT) { |
| strcat(prefix, "GENERAL"); |
| } else { |
| if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT) { |
| strcat(prefix, "VALIDATION"); |
| validation_error = 1; |
| } |
| if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT) { |
| if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT) { |
| strcat(prefix, "|"); |
| } |
| strcat(prefix, "PERFORMANCE"); |
| } |
| } |
| |
| sprintf(message, "%s - Message Id Number: %d | Message Id Name: %s\n\t%s\n", prefix, pCallbackData->messageIdNumber, |
| pCallbackData->pMessageIdName == NULL ? "" : pCallbackData->pMessageIdName, pCallbackData->pMessage); |
| if (pCallbackData->objectCount > 0) { |
| char tmp_message[500]; |
| sprintf(tmp_message, "\n\tObjects - %d\n", pCallbackData->objectCount); |
| strcat(message, tmp_message); |
| for (uint32_t object = 0; object < pCallbackData->objectCount; ++object) { |
| sprintf(tmp_message, "\t\tObject[%d] - %s", object, string_VkObjectType(pCallbackData->pObjects[object].objectType)); |
| strcat(message, tmp_message); |
| |
| VkObjectType t = pCallbackData->pObjects[object].objectType; |
| if (t == VK_OBJECT_TYPE_INSTANCE || t == VK_OBJECT_TYPE_PHYSICAL_DEVICE || t == VK_OBJECT_TYPE_DEVICE || |
| t == VK_OBJECT_TYPE_COMMAND_BUFFER || t == VK_OBJECT_TYPE_QUEUE) { |
| sprintf(tmp_message, ", Handle %p", (void *)(uintptr_t)(pCallbackData->pObjects[object].objectHandle)); |
| strcat(message, tmp_message); |
| } else { |
| sprintf(tmp_message, ", Handle Ox%" PRIx64, (pCallbackData->pObjects[object].objectHandle)); |
| strcat(message, tmp_message); |
| } |
| |
| if (NULL != pCallbackData->pObjects[object].pObjectName && strlen(pCallbackData->pObjects[object].pObjectName) > 0) { |
| sprintf(tmp_message, ", Name \"%s\"", pCallbackData->pObjects[object].pObjectName); |
| strcat(message, tmp_message); |
| } |
| sprintf(tmp_message, "\n"); |
| strcat(message, tmp_message); |
| } |
| } |
| if (pCallbackData->cmdBufLabelCount > 0) { |
| char tmp_message[500]; |
| sprintf(tmp_message, "\n\tCommand Buffer Labels - %d\n", pCallbackData->cmdBufLabelCount); |
| strcat(message, tmp_message); |
| for (uint32_t cmd_buf_label = 0; cmd_buf_label < pCallbackData->cmdBufLabelCount; ++cmd_buf_label) { |
| sprintf(tmp_message, "\t\tLabel[%d] - %s { %f, %f, %f, %f}\n", cmd_buf_label, |
| pCallbackData->pCmdBufLabels[cmd_buf_label].pLabelName, pCallbackData->pCmdBufLabels[cmd_buf_label].color[0], |
| pCallbackData->pCmdBufLabels[cmd_buf_label].color[1], pCallbackData->pCmdBufLabels[cmd_buf_label].color[2], |
| pCallbackData->pCmdBufLabels[cmd_buf_label].color[3]); |
| strcat(message, tmp_message); |
| } |
| } |
| |
| #ifdef _WIN32 |
| |
| in_callback = true; |
| if (!demo->suppress_popups) MessageBox(NULL, message, "Alert", MB_OK); |
| in_callback = false; |
| |
| #elif defined(ANDROID) |
| |
| if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) { |
| __android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message); |
| } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) { |
| __android_log_print(ANDROID_LOG_WARN, APP_SHORT_NAME, "%s", message); |
| } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { |
| __android_log_print(ANDROID_LOG_ERROR, APP_SHORT_NAME, "%s", message); |
| } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT) { |
| __android_log_print(ANDROID_LOG_VERBOSE, APP_SHORT_NAME, "%s", message); |
| } else { |
| __android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message); |
| } |
| |
| #else |
| |
| printf("%s\n", message); |
| fflush(stdout); |
| |
| #endif |
| |
| free(message); |
| |
| // Don't bail out, but keep going. |
| return false; |
| } |
| |
| bool ActualTimeLate(uint64_t desired, uint64_t actual, uint64_t rdur) { |
| // The desired time was the earliest time that the present should have |
| // occured. In almost every case, the actual time should be later than the |
| // desired time. We should only consider the actual time "late" if it is |
| // after "desired + rdur". |
| if (actual <= desired) { |
| // The actual time was before or equal to the desired time. This will |
| // probably never happen, but in case it does, return false since the |
| // present was obviously NOT late. |
| return false; |
| } |
| uint64_t deadline = desired + rdur; |
| if (actual > deadline) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| bool CanPresentEarlier(uint64_t earliest, uint64_t actual, uint64_t margin, uint64_t rdur) { |
| if (earliest < actual) { |
| // Consider whether this present could have occured earlier. Make sure |
| // that earliest time was at least 2msec earlier than actual time, and |
| // that the margin was at least 2msec: |
| uint64_t diff = actual - earliest; |
| if ((diff >= (2 * MILLION)) && (margin >= (2 * MILLION))) { |
| // This present could have occured earlier because both: 1) the |
| // earliest time was at least 2 msec before actual time, and 2) the |
| // margin was at least 2msec. |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Forward declarations: |
| static void demo_resize(struct demo *demo); |
| static void demo_create_surface(struct demo *demo); |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| #define DECORATE_PRINTF(_fmt_argnum, _first_param_num) __attribute__((format(printf, _fmt_argnum, _first_param_num))) |
| #else |
| #define DECORATE_PRINTF(_fmt_num, _first_param_num) |
| #endif |
| |
| DECORATE_PRINTF(4, 5) |
| static void demo_name_object(struct demo *demo, VkObjectType object_type, uint64_t vulkan_handle, const char *format, ...) { |
| if (!demo->validate) { |
| return; |
| } |
| VkResult U_ASSERT_ONLY err; |
| char name[1024]; |
| va_list argptr; |
| va_start(argptr, format); |
| vsnprintf(name, sizeof(name), format, argptr); |
| va_end(argptr); |
| name[sizeof(name) - 1] = '\0'; |
| |
| VkDebugUtilsObjectNameInfoEXT obj_name = { |
| .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT, |
| .pNext = NULL, |
| .objectType = object_type, |
| .objectHandle = vulkan_handle, |
| .pObjectName = name, |
| }; |
| err = vkSetDebugUtilsObjectNameEXT(demo->device, &obj_name); |
| assert(!err); |
| } |
| |
| DECORATE_PRINTF(4, 5) |
| static void demo_push_cb_label(struct demo *demo, VkCommandBuffer cb, const float *color, const char *format, ...) { |
| if (!demo->validate) { |
| return; |
| } |
| char name[1024]; |
| va_list argptr; |
| va_start(argptr, format); |
| vsnprintf(name, sizeof(name), format, argptr); |
| va_end(argptr); |
| name[sizeof(name) - 1] = '\0'; |
| |
| VkDebugUtilsLabelEXT label = { |
| .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT, |
| .pNext = NULL, |
| .pLabelName = name, |
| }; |
| if (color) { |
| memcpy(label.color, color, sizeof(label.color)); |
| } |
| |
| vkCmdBeginDebugUtilsLabelEXT(cb, &label); |
| } |
| |
| static void demo_pop_cb_label(struct demo *demo, VkCommandBuffer cb) { |
| if (!demo->validate) { |
| return; |
| } |
| vkCmdEndDebugUtilsLabelEXT(cb); |
| } |
| |
| static bool memory_type_from_properties(struct demo *demo, uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) { |
| // Search memtypes to find first index with those properties |
| for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) { |
| if ((typeBits & 1) == 1) { |
| // Type is available, does it match user properties? |
| if ((demo->memory_properties.memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) { |
| *typeIndex = i; |
| return true; |
| } |
| } |
| typeBits >>= 1; |
| } |
| // No memory types matched, return failure |
| return false; |
| } |
| |
| static void demo_flush_init_cmd(struct demo *demo) { |
| VkResult U_ASSERT_ONLY err; |
| |
| // This function could get called twice if the texture uses a staging buffer |
| // In that case the second call should be ignored |
| if (demo->cmd == VK_NULL_HANDLE) return; |
| |
| err = vkEndCommandBuffer(demo->cmd); |
| assert(!err); |
| |
| VkFence fence; |
| VkFenceCreateInfo fence_ci = {.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext = NULL, .flags = 0}; |
| if (demo->force_errors) { |
| // Remove sType to intentionally force validation layer errors. |
| fence_ci.sType = 0; |
| } |
| err = vkCreateFence(demo->device, &fence_ci, NULL, &fence); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_FENCE, (uint64_t)fence, "InitFence"); |
| |
| const VkCommandBuffer cmd_bufs[] = {demo->cmd}; |
| VkSubmitInfo submit_info = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, |
| .pNext = NULL, |
| .waitSemaphoreCount = 0, |
| .pWaitSemaphores = NULL, |
| .pWaitDstStageMask = NULL, |
| .commandBufferCount = 1, |
| .pCommandBuffers = cmd_bufs, |
| .signalSemaphoreCount = 0, |
| .pSignalSemaphores = NULL}; |
| |
| err = vkQueueSubmit(demo->graphics_queue, 1, &submit_info, fence); |
| assert(!err); |
| |
| err = vkWaitForFences(demo->device, 1, &fence, VK_TRUE, UINT64_MAX); |
| assert(!err); |
| |
| vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, cmd_bufs); |
| vkDestroyFence(demo->device, fence, NULL); |
| demo->cmd = VK_NULL_HANDLE; |
| } |
| |
| static void demo_set_image_layout(struct demo *demo, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout old_image_layout, |
| VkImageLayout new_image_layout, VkAccessFlagBits srcAccessMask, VkPipelineStageFlags src_stages, |
| VkPipelineStageFlags dest_stages) { |
| assert(demo->cmd); |
| |
| VkImageMemoryBarrier image_memory_barrier = {.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, |
| .pNext = NULL, |
| .srcAccessMask = srcAccessMask, |
| .dstAccessMask = 0, |
| .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, |
| .oldLayout = old_image_layout, |
| .newLayout = new_image_layout, |
| .image = image, |
| .subresourceRange = {aspectMask, 0, 1, 0, 1}}; |
| |
| switch (new_image_layout) { |
| case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: |
| /* Make sure anything that was copying from this image has completed */ |
| image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: |
| image_memory_barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: |
| image_memory_barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: |
| image_memory_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: |
| image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; |
| break; |
| |
| case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: |
| image_memory_barrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; |
| break; |
| |
| default: |
| image_memory_barrier.dstAccessMask = 0; |
| break; |
| } |
| |
| VkImageMemoryBarrier *pmemory_barrier = &image_memory_barrier; |
| |
| vkCmdPipelineBarrier(demo->cmd, src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); |
| } |
| |
| static void demo_draw_build_cmd(struct demo *demo, VkCommandBuffer cmd_buf) { |
| const VkCommandBufferBeginInfo cmd_buf_info = { |
| .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, |
| .pNext = NULL, |
| .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, |
| .pInheritanceInfo = NULL, |
| }; |
| const VkClearValue clear_values[2] = { |
| [0] = {.color.float32 = {0.2f, 0.2f, 0.2f, 0.2f}}, |
| [1] = {.depthStencil = {1.0f, 0}}, |
| }; |
| const VkRenderPassBeginInfo rp_begin = { |
| .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, |
| .pNext = NULL, |
| .renderPass = demo->render_pass, |
| .framebuffer = demo->swapchain_image_resources[demo->current_buffer].framebuffer, |
| .renderArea.offset.x = 0, |
| .renderArea.offset.y = 0, |
| .renderArea.extent.width = demo->width, |
| .renderArea.extent.height = demo->height, |
| .clearValueCount = 2, |
| .pClearValues = clear_values, |
| }; |
| VkResult U_ASSERT_ONLY err; |
| |
| err = vkBeginCommandBuffer(cmd_buf, &cmd_buf_info); |
| |
| demo_name_object(demo, VK_OBJECT_TYPE_COMMAND_BUFFER, (uint64_t)cmd_buf, "CubeDrawCommandBuf"); |
| |
| const float begin_color[4] = {0.4f, 0.3f, 0.2f, 0.1f}; |
| demo_push_cb_label(demo, cmd_buf, begin_color, "DrawBegin"); |
| |
| assert(!err); |
| vkCmdBeginRenderPass(cmd_buf, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); |
| |
| const float renderpass_color[4] = {8.4f, 7.3f, 6.2f, 7.1f}; |
| demo_push_cb_label(demo, cmd_buf, renderpass_color, "InsideRenderPass"); |
| |
| vkCmdBindPipeline(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline); |
| vkCmdBindDescriptorSets(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline_layout, 0, 1, |
| &demo->swapchain_image_resources[demo->current_buffer].descriptor_set, 0, NULL); |
| VkViewport viewport; |
| memset(&viewport, 0, sizeof(viewport)); |
| float viewport_dimension; |
| if (demo->width < demo->height) { |
| viewport_dimension = (float)demo->width; |
| viewport.y = (demo->height - demo->width) / 2.0f; |
| } else { |
| viewport_dimension = (float)demo->height; |
| viewport.x = (demo->width - demo->height) / 2.0f; |
| } |
| viewport.height = viewport_dimension; |
| viewport.width = viewport_dimension; |
| viewport.minDepth = (float)0.0f; |
| viewport.maxDepth = (float)1.0f; |
| vkCmdSetViewport(cmd_buf, 0, 1, &viewport); |
| |
| VkRect2D scissor; |
| memset(&scissor, 0, sizeof(scissor)); |
| scissor.extent.width = demo->width; |
| scissor.extent.height = demo->height; |
| scissor.offset.x = 0; |
| scissor.offset.y = 0; |
| vkCmdSetScissor(cmd_buf, 0, 1, &scissor); |
| |
| const float draw_color[4] = {-0.4f, -0.3f, -0.2f, -0.1f}; |
| demo_push_cb_label(demo, cmd_buf, draw_color, "ActualDraw"); |
| vkCmdDraw(cmd_buf, 12 * 3, 1, 0, 0); |
| demo_pop_cb_label(demo, cmd_buf); |
| |
| // Note that ending the renderpass changes the image's layout from |
| // COLOR_ATTACHMENT_OPTIMAL to PRESENT_SRC_KHR |
| vkCmdEndRenderPass(cmd_buf); |
| demo_pop_cb_label(demo, cmd_buf); |
| |
| if (demo->separate_present_queue) { |
| // We have to transfer ownership from the graphics queue family to the |
| // present queue family to be able to present. Note that we don't have |
| // to transfer from present queue family back to graphics queue family at |
| // the start of the next frame because we don't care about the image's |
| // contents at that point. |
| VkImageMemoryBarrier image_ownership_barrier = {.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, |
| .pNext = NULL, |
| .srcAccessMask = 0, |
| .dstAccessMask = 0, |
| .oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, |
| .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, |
| .srcQueueFamilyIndex = demo->graphics_queue_family_index, |
| .dstQueueFamilyIndex = demo->present_queue_family_index, |
| .image = demo->swapchain_image_resources[demo->current_buffer].image, |
| .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; |
| |
| vkCmdPipelineBarrier(cmd_buf, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, |
| NULL, 1, &image_ownership_barrier); |
| } |
| demo_pop_cb_label(demo, cmd_buf); |
| err = vkEndCommandBuffer(cmd_buf); |
| assert(!err); |
| } |
| |
| void demo_build_image_ownership_cmd(struct demo *demo, int i) { |
| VkResult U_ASSERT_ONLY err; |
| |
| const VkCommandBufferBeginInfo cmd_buf_info = { |
| .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, |
| .pNext = NULL, |
| .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, |
| .pInheritanceInfo = NULL, |
| }; |
| err = vkBeginCommandBuffer(demo->swapchain_image_resources[i].graphics_to_present_cmd, &cmd_buf_info); |
| assert(!err); |
| |
| VkImageMemoryBarrier image_ownership_barrier = {.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, |
| .pNext = NULL, |
| .srcAccessMask = 0, |
| .dstAccessMask = 0, |
| .oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, |
| .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, |
| .srcQueueFamilyIndex = demo->graphics_queue_family_index, |
| .dstQueueFamilyIndex = demo->present_queue_family_index, |
| .image = demo->swapchain_image_resources[i].image, |
| .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; |
| |
| vkCmdPipelineBarrier(demo->swapchain_image_resources[i].graphics_to_present_cmd, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, |
| VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, &image_ownership_barrier); |
| err = vkEndCommandBuffer(demo->swapchain_image_resources[i].graphics_to_present_cmd); |
| assert(!err); |
| } |
| |
| void demo_update_data_buffer(struct demo *demo) { |
| mat4x4 MVP, Model, VP; |
| int matrixSize = sizeof(MVP); |
| |
| mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix); |
| |
| // Rotate around the Y axis |
| mat4x4_dup(Model, demo->model_matrix); |
| mat4x4_rotate_Y(demo->model_matrix, Model, (float)degreesToRadians(demo->spin_angle)); |
| mat4x4_orthonormalize(demo->model_matrix, demo->model_matrix); |
| mat4x4_mul(MVP, VP, demo->model_matrix); |
| |
| memcpy(demo->swapchain_image_resources[demo->current_buffer].uniform_memory_ptr, (const void *)&MVP[0][0], matrixSize); |
| } |
| |
| void DemoUpdateTargetIPD(struct demo *demo) { |
| // Look at what happened to previous presents, and make appropriate |
| // adjustments in timing: |
| VkResult U_ASSERT_ONLY err; |
| VkPastPresentationTimingGOOGLE *past = NULL; |
| uint32_t count = 0; |
| |
| err = vkGetPastPresentationTimingGOOGLE(demo->device, demo->swapchain, &count, NULL); |
| assert(!err); |
| if (count) { |
| past = (VkPastPresentationTimingGOOGLE *)malloc(sizeof(VkPastPresentationTimingGOOGLE) * count); |
| assert(past); |
| err = vkGetPastPresentationTimingGOOGLE(demo->device, demo->swapchain, &count, past); |
| assert(!err); |
| |
| bool early = false; |
| bool late = false; |
| bool calibrate_next = false; |
| for (uint32_t i = 0; i < count; i++) { |
| if (!demo->syncd_with_actual_presents) { |
| // This is the first time that we've received an |
| // actualPresentTime for this swapchain. In order to not |
| // perceive these early frames as "late", we need to sync-up |
| // our future desiredPresentTime's with the |
| // actualPresentTime(s) that we're receiving now. |
| calibrate_next = true; |
| |
| // So that we don't suspect any pending presents as late, |
| // record them all as suspected-late presents: |
| demo->last_late_id = demo->next_present_id - 1; |
| demo->last_early_id = 0; |
| demo->syncd_with_actual_presents = true; |
| break; |
| } else if (CanPresentEarlier(past[i].earliestPresentTime, past[i].actualPresentTime, past[i].presentMargin, |
| demo->refresh_duration)) { |
| // This image could have been presented earlier. We don't want |
| // to decrease the target_IPD until we've seen early presents |
| // for at least two seconds. |
| if (demo->last_early_id == past[i].presentID) { |
| // We've now seen two seconds worth of early presents. |
| // Flag it as such, and reset the counter: |
| early = true; |
| demo->last_early_id = 0; |
| } else if (demo->last_early_id == 0) { |
| // This is the first early present we've seen. |
| // Calculate the presentID for two seconds from now. |
| uint64_t lastEarlyTime = past[i].actualPresentTime + (2 * BILLION); |
| uint32_t howManyPresents = (uint32_t)((lastEarlyTime - past[i].actualPresentTime) / demo->target_IPD); |
| demo->last_early_id = past[i].presentID + howManyPresents; |
| } else { |
| // We are in the midst of a set of early images, |
| // and so we won't do anything. |
| } |
| late = false; |
| demo->last_late_id = 0; |
| } else if (ActualTimeLate(past[i].desiredPresentTime, past[i].actualPresentTime, demo->refresh_duration)) { |
| // This image was presented after its desired time. Since |
| // there's a delay between calling vkQueuePresentKHR and when |
| // we get the timing data, several presents may have been late. |
| // Thus, we need to threat all of the outstanding presents as |
| // being likely late, so that we only increase the target_IPD |
| // once for all of those presents. |
| if ((demo->last_late_id == 0) || (demo->last_late_id < past[i].presentID)) { |
| late = true; |
| // Record the last suspected-late present: |
| demo->last_late_id = demo->next_present_id - 1; |
| } else { |
| // We are in the midst of a set of likely-late images, |
| // and so we won't do anything. |
| } |
| early = false; |
| demo->last_early_id = 0; |
| } else { |
| // Since this image was not presented early or late, reset |
| // any sets of early or late presentIDs: |
| early = false; |
| late = false; |
| calibrate_next = true; |
| demo->last_early_id = 0; |
| demo->last_late_id = 0; |
| } |
| } |
| |
| if (early) { |
| // Since we've seen at least two-seconds worth of presnts that |
| // could have occured earlier than desired, let's decrease the |
| // target_IPD (i.e. increase the frame rate): |
| // |
| // TODO(ianelliott): Try to calculate a better target_IPD based |
| // on the most recently-seen present (this is overly-simplistic). |
| demo->refresh_duration_multiplier--; |
| if (demo->refresh_duration_multiplier == 0) { |
| // This should never happen, but in case it does, don't |
| // try to go faster. |
| demo->refresh_duration_multiplier = 1; |
| } |
| demo->target_IPD = demo->refresh_duration * demo->refresh_duration_multiplier; |
| } |
| if (late) { |
| // Since we found a new instance of a late present, we want to |
| // increase the target_IPD (i.e. decrease the frame rate): |
| // |
| // TODO(ianelliott): Try to calculate a better target_IPD based |
| // on the most recently-seen present (this is overly-simplistic). |
| demo->refresh_duration_multiplier++; |
| demo->target_IPD = demo->refresh_duration * demo->refresh_duration_multiplier; |
| } |
| |
| if (calibrate_next) { |
| int64_t multiple = demo->next_present_id - past[count - 1].presentID; |
| demo->prev_desired_present_time = (past[count - 1].actualPresentTime + (multiple * demo->target_IPD)); |
| } |
| free(past); |
| } |
| } |
| |
| static void demo_draw(struct demo *demo) { |
| VkResult U_ASSERT_ONLY err; |
| |
| // Ensure no more than FRAME_LAG renderings are outstanding |
| vkWaitForFences(demo->device, 1, &demo->fences[demo->frame_index], VK_TRUE, UINT64_MAX); |
| vkResetFences(demo->device, 1, &demo->fences[demo->frame_index]); |
| |
| do { |
| // Get the index of the next available swapchain image: |
| err = vkAcquireNextImageKHR(demo->device, demo->swapchain, UINT64_MAX, demo->image_acquired_semaphores[demo->frame_index], |
| VK_NULL_HANDLE, &demo->current_buffer); |
| |
| if (err == VK_ERROR_OUT_OF_DATE_KHR) { |
| // demo->swapchain is out of date (e.g. the window was resized) and |
| // must be recreated: |
| demo_resize(demo); |
| } else if (err == VK_SUBOPTIMAL_KHR) { |
| // demo->swapchain is not as optimal as it could be, but the platform's |
| // presentation engine will still present the image correctly. |
| break; |
| } else if (err == VK_ERROR_SURFACE_LOST_KHR) { |
| vkDestroySurfaceKHR(demo->inst, demo->surface, NULL); |
| demo_create_surface(demo); |
| demo_resize(demo); |
| } else { |
| assert(!err); |
| } |
| } while (err != VK_SUCCESS); |
| |
| demo_update_data_buffer(demo); |
| |
| if (demo->VK_GOOGLE_display_timing_enabled) { |
| // Look at what happened to previous presents, and make appropriate |
| // adjustments in timing: |
| DemoUpdateTargetIPD(demo); |
| |
| // Note: a real application would position its geometry to that it's in |
| // the correct locatoin for when the next image is presented. It might |
| // also wait, so that there's less latency between any input and when |
| // the next image is rendered/presented. This demo program is so |
| // simple that it doesn't do either of those. |
| } |
| |
| // Wait for the image acquired semaphore to be signaled to ensure |
| // that the image won't be rendered to until the presentation |
| // engine has fully released ownership to the application, and it is |
| // okay to render to the image. |
| VkPipelineStageFlags pipe_stage_flags; |
| VkSubmitInfo submit_info; |
| submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| submit_info.pNext = NULL; |
| pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| submit_info.pWaitDstStageMask = &pipe_stage_flags; |
| submit_info.waitSemaphoreCount = 1; |
| submit_info.pWaitSemaphores = &demo->image_acquired_semaphores[demo->frame_index]; |
| submit_info.commandBufferCount = 1; |
| submit_info.pCommandBuffers = &demo->swapchain_image_resources[demo->current_buffer].cmd; |
| submit_info.signalSemaphoreCount = 1; |
| submit_info.pSignalSemaphores = &demo->draw_complete_semaphores[demo->frame_index]; |
| err = vkQueueSubmit(demo->graphics_queue, 1, &submit_info, demo->fences[demo->frame_index]); |
| assert(!err); |
| |
| if (demo->separate_present_queue) { |
| // If we are using separate queues, change image ownership to the |
| // present queue before presenting, waiting for the draw complete |
| // semaphore and signalling the ownership released semaphore when finished |
| VkFence nullFence = VK_NULL_HANDLE; |
| pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| submit_info.waitSemaphoreCount = 1; |
| submit_info.pWaitSemaphores = &demo->draw_complete_semaphores[demo->frame_index]; |
| submit_info.commandBufferCount = 1; |
| submit_info.pCommandBuffers = &demo->swapchain_image_resources[demo->current_buffer].graphics_to_present_cmd; |
| submit_info.signalSemaphoreCount = 1; |
| submit_info.pSignalSemaphores = &demo->image_ownership_semaphores[demo->frame_index]; |
| err = vkQueueSubmit(demo->present_queue, 1, &submit_info, nullFence); |
| assert(!err); |
| } |
| |
| // If we are using separate queues we have to wait for image ownership, |
| // otherwise wait for draw complete |
| VkPresentInfoKHR present = { |
| .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, |
| .pNext = NULL, |
| .waitSemaphoreCount = 1, |
| .pWaitSemaphores = (demo->separate_present_queue) ? &demo->image_ownership_semaphores[demo->frame_index] |
| : &demo->draw_complete_semaphores[demo->frame_index], |
| .swapchainCount = 1, |
| .pSwapchains = &demo->swapchain, |
| .pImageIndices = &demo->current_buffer, |
| }; |
| |
| VkRectLayerKHR rect; |
| VkPresentRegionKHR region; |
| VkPresentRegionsKHR regions; |
| if (demo->VK_KHR_incremental_present_enabled) { |
| // If using VK_KHR_incremental_present, we provide a hint of the region |
| // that contains changed content relative to the previously-presented |
| // image. The implementation can use this hint in order to save |
| // work/power (by only copying the region in the hint). The |
| // implementation is free to ignore the hint though, and so we must |
| // ensure that the entire image has the correctly-drawn content. |
| uint32_t eighthOfWidth = demo->width / 8; |
| uint32_t eighthOfHeight = demo->height / 8; |
| |
| if (demo->first_swapchain_frame) { |
| rect.offset.x = 0; |
| rect.offset.y = 0; |
| rect.extent.width = demo->width; |
| rect.extent.height = demo->height; |
| } else { |
| rect.offset.x = eighthOfWidth; |
| rect.offset.y = eighthOfHeight; |
| rect.extent.width = eighthOfWidth * 6; |
| rect.extent.height = eighthOfHeight * 6; |
| } |
| rect.layer = 0; |
| |
| region.rectangleCount = 1; |
| region.pRectangles = ▭ |
| |
| regions.sType = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR; |
| regions.pNext = present.pNext; |
| regions.swapchainCount = present.swapchainCount; |
| regions.pRegions = ®ion; |
| present.pNext = ®ions; |
| } |
| |
| if (demo->VK_GOOGLE_display_timing_enabled) { |
| VkPresentTimeGOOGLE ptime; |
| if (demo->prev_desired_present_time == 0) { |
| // This must be the first present for this swapchain. |
| // |
| // We don't know where we are relative to the presentation engine's |
| // display's refresh cycle. We also don't know how long rendering |
| // takes. Let's make a grossly-simplified assumption that the |
| // desiredPresentTime should be half way between now and |
| // now+target_IPD. We will adjust over time. |
| uint64_t curtime = getTimeInNanoseconds(); |
| if (curtime == 0) { |
| // Since we didn't find out the current time, don't give a |
| // desiredPresentTime: |
| ptime.desiredPresentTime = 0; |
| } else { |
| ptime.desiredPresentTime = curtime + (demo->target_IPD >> 1); |
| } |
| } else { |
| ptime.desiredPresentTime = (demo->prev_desired_present_time + demo->target_IPD); |
| } |
| ptime.presentID = demo->next_present_id++; |
| demo->prev_desired_present_time = ptime.desiredPresentTime; |
| |
| VkPresentTimesInfoGOOGLE present_time = { |
| .sType = VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE, |
| .pNext = present.pNext, |
| .swapchainCount = present.swapchainCount, |
| .pTimes = &ptime, |
| }; |
| if (demo->VK_GOOGLE_display_timing_enabled) { |
| present.pNext = &present_time; |
| } |
| } |
| |
| err = vkQueuePresentKHR(demo->present_queue, &present); |
| demo->frame_index += 1; |
| demo->frame_index %= FRAME_LAG; |
| demo->first_swapchain_frame = false; |
| |
| if (err == VK_ERROR_OUT_OF_DATE_KHR) { |
| // demo->swapchain is out of date (e.g. the window was resized) and |
| // must be recreated: |
| demo_resize(demo); |
| } else if (err == VK_SUBOPTIMAL_KHR) { |
| // SUBOPTIMAL could be due to a resize |
| VkSurfaceCapabilitiesKHR surfCapabilities; |
| err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(demo->gpu, demo->surface, &surfCapabilities); |
| assert(!err); |
| if (surfCapabilities.currentExtent.width != (uint32_t)demo->width || |
| surfCapabilities.currentExtent.height != (uint32_t)demo->height) { |
| demo_resize(demo); |
| } |
| } else if (err == VK_ERROR_SURFACE_LOST_KHR) { |
| vkDestroySurfaceKHR(demo->inst, demo->surface, NULL); |
| demo_create_surface(demo); |
| demo_resize(demo); |
| } else { |
| assert(!err); |
| } |
| } |
| |
| static void demo_prepare_buffers(struct demo *demo) { |
| VkResult U_ASSERT_ONLY err; |
| VkSwapchainKHR oldSwapchain = demo->swapchain; |
| |
| // Check the surface capabilities and formats |
| VkSurfaceCapabilitiesKHR surfCapabilities; |
| err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(demo->gpu, demo->surface, &surfCapabilities); |
| assert(!err); |
| |
| uint32_t presentModeCount; |
| err = vkGetPhysicalDeviceSurfacePresentModesKHR(demo->gpu, demo->surface, &presentModeCount, NULL); |
| assert(!err); |
| VkPresentModeKHR *presentModes = (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR)); |
| assert(presentModes); |
| err = vkGetPhysicalDeviceSurfacePresentModesKHR(demo->gpu, demo->surface, &presentModeCount, presentModes); |
| assert(!err); |
| |
| VkExtent2D swapchainExtent; |
| // width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF. |
| if (surfCapabilities.currentExtent.width == 0xFFFFFFFF) { |
| // If the surface size is undefined, the size is set to the size |
| // of the images requested, which must fit within the minimum and |
| // maximum values. |
| swapchainExtent.width = demo->width; |
| swapchainExtent.height = demo->height; |
| |
| if (swapchainExtent.width < surfCapabilities.minImageExtent.width) { |
| swapchainExtent.width = surfCapabilities.minImageExtent.width; |
| } else if (swapchainExtent.width > surfCapabilities.maxImageExtent.width) { |
| swapchainExtent.width = surfCapabilities.maxImageExtent.width; |
| } |
| |
| if (swapchainExtent.height < surfCapabilities.minImageExtent.height) { |
| swapchainExtent.height = surfCapabilities.minImageExtent.height; |
| } else if (swapchainExtent.height > surfCapabilities.maxImageExtent.height) { |
| swapchainExtent.height = surfCapabilities.maxImageExtent.height; |
| } |
| } else { |
| // If the surface size is defined, the swap chain size must match |
| swapchainExtent = surfCapabilities.currentExtent; |
| demo->width = surfCapabilities.currentExtent.width; |
| demo->height = surfCapabilities.currentExtent.height; |
| } |
| |
| if (surfCapabilities.maxImageExtent.width == 0 || surfCapabilities.maxImageExtent.height == 0) { |
| demo->is_minimized = true; |
| return; |
| } else { |
| demo->is_minimized = false; |
| } |
| |
| // The FIFO present mode is guaranteed by the spec to be supported |
| // and to have no tearing. It's a great default present mode to use. |
| VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR; |
| |
| // There are times when you may wish to use another present mode. The |
| // following code shows how to select them, and the comments provide some |
| // reasons you may wish to use them. |
| // |
| // It should be noted that Vulkan 1.0 doesn't provide a method for |
| // synchronizing rendering with the presentation engine's display. There |
| // is a method provided for throttling rendering with the display, but |
| // there are some presentation engines for which this method will not work. |
| // If an application doesn't throttle its rendering, and if it renders much |
| // faster than the refresh rate of the display, this can waste power on |
| // mobile devices. That is because power is being spent rendering images |
| // that may never be seen. |
| |
| // VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care about |
| // tearing, or have some way of synchronizing their rendering with the |
| // display. |
| // VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that |
| // generally render a new presentable image every refresh cycle, but are |
| // occasionally early. In this case, the application wants the new image |
| // to be displayed instead of the previously-queued-for-presentation image |
| // that has not yet been displayed. |
| // VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally |
| // render a new presentable image every refresh cycle, but are occasionally |
| // late. In this case (perhaps because of stuttering/latency concerns), |
| // the application wants the late image to be immediately displayed, even |
| // though that may mean some tearing. |
| |
| if (demo->presentMode != swapchainPresentMode) { |
| for (size_t i = 0; i < presentModeCount; ++i) { |
| if (presentModes[i] == demo->presentMode) { |
| swapchainPresentMode = demo->presentMode; |
| break; |
| } |
| } |
| } |
| if (swapchainPresentMode != demo->presentMode) { |
| ERR_EXIT("Present mode specified is not supported\n", "Present mode unsupported"); |
| } |
| |
| // Determine the number of VkImages to use in the swap chain. |
| // Application desires to acquire 3 images at a time for triple |
| // buffering |
| uint32_t desiredNumOfSwapchainImages = 3; |
| if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) { |
| desiredNumOfSwapchainImages = surfCapabilities.minImageCount; |
| } |
| // If maxImageCount is 0, we can ask for as many images as we want; |
| // otherwise we're limited to maxImageCount |
| if ((surfCapabilities.maxImageCount > 0) && (desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) { |
| // Application must settle for fewer images than desired: |
| desiredNumOfSwapchainImages = surfCapabilities.maxImageCount; |
| } |
| |
| VkSurfaceTransformFlagsKHR preTransform; |
| if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { |
| preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| } else { |
| preTransform = surfCapabilities.currentTransform; |
| } |
| |
| // Find a supported composite alpha mode - one of these is guaranteed to be set |
| VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
| VkCompositeAlphaFlagBitsKHR compositeAlphaFlags[4] = { |
| VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, |
| VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR, |
| VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR, |
| VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR, |
| }; |
| for (uint32_t i = 0; i < ARRAY_SIZE(compositeAlphaFlags); i++) { |
| if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlags[i]) { |
| compositeAlpha = compositeAlphaFlags[i]; |
| break; |
| } |
| } |
| |
| VkSwapchainCreateInfoKHR swapchain_ci = { |
| .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, |
| .pNext = NULL, |
| .surface = demo->surface, |
| .minImageCount = desiredNumOfSwapchainImages, |
| .imageFormat = demo->format, |
| .imageColorSpace = demo->color_space, |
| .imageExtent = |
| { |
| .width = swapchainExtent.width, |
| .height = swapchainExtent.height, |
| }, |
| .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, |
| .preTransform = preTransform, |
| .compositeAlpha = compositeAlpha, |
| .imageArrayLayers = 1, |
| .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, |
| .queueFamilyIndexCount = 0, |
| .pQueueFamilyIndices = NULL, |
| .presentMode = swapchainPresentMode, |
| .oldSwapchain = oldSwapchain, |
| .clipped = true, |
| }; |
| uint32_t i; |
| err = vkCreateSwapchainKHR(demo->device, &swapchain_ci, NULL, &demo->swapchain); |
| assert(!err); |
| |
| // If we just re-created an existing swapchain, we should destroy the old |
| // swapchain at this point. |
| // Note: destroying the swapchain also cleans up all its associated |
| // presentable images once the platform is done with them. |
| if (oldSwapchain != VK_NULL_HANDLE) { |
| vkDestroySwapchainKHR(demo->device, oldSwapchain, NULL); |
| } |
| |
| err = vkGetSwapchainImagesKHR(demo->device, demo->swapchain, &demo->swapchainImageCount, NULL); |
| assert(!err); |
| |
| VkImage *swapchainImages = (VkImage *)malloc(demo->swapchainImageCount * sizeof(VkImage)); |
| assert(swapchainImages); |
| err = vkGetSwapchainImagesKHR(demo->device, demo->swapchain, &demo->swapchainImageCount, swapchainImages); |
| assert(!err); |
| |
| demo->swapchain_image_resources = |
| (SwapchainImageResources *)malloc(sizeof(SwapchainImageResources) * demo->swapchainImageCount); |
| assert(demo->swapchain_image_resources); |
| |
| for (i = 0; i < demo->swapchainImageCount; i++) { |
| demo_name_object(demo, VK_OBJECT_TYPE_IMAGE, (uint64_t)swapchainImages[i], "SwapchainImage(%u)", i); |
| } |
| for (i = 0; i < demo->swapchainImageCount; i++) { |
| VkImageViewCreateInfo color_image_view = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, |
| .pNext = NULL, |
| .format = demo->format, |
| .components = |
| { |
| .r = VK_COMPONENT_SWIZZLE_IDENTITY, |
| .g = VK_COMPONENT_SWIZZLE_IDENTITY, |
| .b = VK_COMPONENT_SWIZZLE_IDENTITY, |
| .a = VK_COMPONENT_SWIZZLE_IDENTITY, |
| }, |
| .subresourceRange = |
| {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1}, |
| .viewType = VK_IMAGE_VIEW_TYPE_2D, |
| .flags = 0, |
| }; |
| |
| demo->swapchain_image_resources[i].image = swapchainImages[i]; |
| |
| color_image_view.image = demo->swapchain_image_resources[i].image; |
| |
| err = vkCreateImageView(demo->device, &color_image_view, NULL, &demo->swapchain_image_resources[i].view); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t)demo->swapchain_image_resources[i].view, "SwapchainView(%u)", |
| i); |
| } |
| |
| if (demo->VK_GOOGLE_display_timing_enabled) { |
| VkRefreshCycleDurationGOOGLE rc_dur; |
| err = vkGetRefreshCycleDurationGOOGLE(demo->device, demo->swapchain, &rc_dur); |
| assert(!err); |
| demo->refresh_duration = rc_dur.refreshDuration; |
| |
| demo->syncd_with_actual_presents = false; |
| // Initially target 1X the refresh duration: |
| demo->target_IPD = demo->refresh_duration; |
| demo->refresh_duration_multiplier = 1; |
| demo->prev_desired_present_time = 0; |
| demo->next_present_id = 1; |
| } |
| |
| if (NULL != swapchainImages) { |
| free(swapchainImages); |
| } |
| |
| if (NULL != presentModes) { |
| free(presentModes); |
| } |
| } |
| |
| static void demo_prepare_depth(struct demo *demo) { |
| const VkFormat depth_format = VK_FORMAT_D16_UNORM; |
| const VkImageCreateInfo image = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, |
| .pNext = NULL, |
| .imageType = VK_IMAGE_TYPE_2D, |
| .format = depth_format, |
| .extent = {demo->width, demo->height, 1}, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .samples = VK_SAMPLE_COUNT_1_BIT, |
| .tiling = VK_IMAGE_TILING_OPTIMAL, |
| .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, |
| .flags = 0, |
| }; |
| |
| VkImageViewCreateInfo view = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, |
| .pNext = NULL, |
| .image = VK_NULL_HANDLE, |
| .format = depth_format, |
| .subresourceRange = |
| {.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1}, |
| .flags = 0, |
| .viewType = VK_IMAGE_VIEW_TYPE_2D, |
| }; |
| |
| if (demo->force_errors) { |
| // Intentionally force a bad pNext value to generate a validation layer error |
| view.pNext = ℑ |
| } |
| |
| VkMemoryRequirements mem_reqs; |
| VkResult U_ASSERT_ONLY err; |
| bool U_ASSERT_ONLY pass; |
| |
| demo->depth.format = depth_format; |
| |
| /* create image */ |
| err = vkCreateImage(demo->device, &image, NULL, &demo->depth.image); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_IMAGE, (uint64_t)demo->depth.image, "DepthImage"); |
| |
| vkGetImageMemoryRequirements(demo->device, demo->depth.image, &mem_reqs); |
| assert(!err); |
| |
| demo->depth.mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| demo->depth.mem_alloc.pNext = NULL; |
| demo->depth.mem_alloc.allocationSize = mem_reqs.size; |
| demo->depth.mem_alloc.memoryTypeIndex = 0; |
| |
| pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
| &demo->depth.mem_alloc.memoryTypeIndex); |
| assert(pass); |
| |
| /* allocate memory */ |
| err = vkAllocateMemory(demo->device, &demo->depth.mem_alloc, NULL, &demo->depth.mem); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_DEVICE_MEMORY, (uint64_t)demo->depth.mem, "DepthMem"); |
| |
| /* bind memory */ |
| err = vkBindImageMemory(demo->device, demo->depth.image, demo->depth.mem, 0); |
| assert(!err); |
| |
| /* create image view */ |
| view.image = demo->depth.image; |
| err = vkCreateImageView(demo->device, &view, NULL, &demo->depth.view); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t)demo->depth.view, "DepthView"); |
| } |
| |
| /* Convert ppm image data from header file into RGBA texture image */ |
| #include "lunarg.ppm.h" |
| bool loadTexture(const char *filename, uint8_t *rgba_data, VkSubresourceLayout *layout, int32_t *width, int32_t *height) { |
| (void)filename; |
| char *cPtr; |
| cPtr = (char *)lunarg_ppm; |
| if ((unsigned char *)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "P6\n", 3)) { |
| return false; |
| } |
| while (strncmp(cPtr++, "\n", 1)) |
| ; |
| sscanf(cPtr, "%u %u", width, height); |
| if (rgba_data == NULL) { |
| return true; |
| } |
| while (strncmp(cPtr++, "\n", 1)) |
| ; |
| if ((unsigned char *)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "255\n", 4)) { |
| return false; |
| } |
| while (strncmp(cPtr++, "\n", 1)) |
| ; |
| for (int y = 0; y < *height; y++) { |
| uint8_t *rowPtr = rgba_data; |
| for (int x = 0; x < *width; x++) { |
| memcpy(rowPtr, cPtr, 3); |
| rowPtr[3] = 255; /* Alpha of 1 */ |
| rowPtr += 4; |
| cPtr += 3; |
| } |
| rgba_data += layout->rowPitch; |
| } |
| return true; |
| } |
| |
| static void demo_prepare_texture_buffer(struct demo *demo, const char *filename, struct texture_object *tex_obj) { |
| int32_t tex_width; |
| int32_t tex_height; |
| VkResult U_ASSERT_ONLY err; |
| bool U_ASSERT_ONLY pass; |
| |
| if (!loadTexture(filename, NULL, NULL, &tex_width, &tex_height)) { |
| ERR_EXIT("Failed to load textures", "Load Texture Failure"); |
| } |
| |
| tex_obj->tex_width = tex_width; |
| tex_obj->tex_height = tex_height; |
| |
| const VkBufferCreateInfo buffer_create_info = {.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, |
| .pNext = NULL, |
| .flags = 0, |
| .size = tex_width * tex_height * 4, |
| .usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT, |
| .sharingMode = VK_SHARING_MODE_EXCLUSIVE, |
| .queueFamilyIndexCount = 0, |
| .pQueueFamilyIndices = NULL}; |
| |
| err = vkCreateBuffer(demo->device, &buffer_create_info, NULL, &tex_obj->buffer); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_BUFFER, (uint64_t)tex_obj->buffer, "TexBuffer(%s)", filename); |
| |
| VkMemoryRequirements mem_reqs; |
| vkGetBufferMemoryRequirements(demo->device, tex_obj->buffer, &mem_reqs); |
| |
| tex_obj->mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| tex_obj->mem_alloc.pNext = NULL; |
| tex_obj->mem_alloc.allocationSize = mem_reqs.size; |
| tex_obj->mem_alloc.memoryTypeIndex = 0; |
| |
| VkFlags requirements = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
| pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, requirements, &tex_obj->mem_alloc.memoryTypeIndex); |
| assert(pass); |
| |
| err = vkAllocateMemory(demo->device, &tex_obj->mem_alloc, NULL, &(tex_obj->mem)); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_DEVICE_MEMORY, (uint64_t)tex_obj->mem, "TexBufMemory(%s)", filename); |
| |
| /* bind memory */ |
| err = vkBindBufferMemory(demo->device, tex_obj->buffer, tex_obj->mem, 0); |
| assert(!err); |
| |
| VkSubresourceLayout layout; |
| memset(&layout, 0, sizeof(layout)); |
| layout.rowPitch = tex_width * 4; |
| |
| void *data; |
| err = vkMapMemory(demo->device, tex_obj->mem, 0, tex_obj->mem_alloc.allocationSize, 0, &data); |
| assert(!err); |
| |
| if (!loadTexture(filename, data, &layout, &tex_width, &tex_height)) { |
| fprintf(stderr, "Error loading texture: %s\n", filename); |
| } |
| |
| vkUnmapMemory(demo->device, tex_obj->mem); |
| } |
| |
| static void demo_prepare_texture_image(struct demo *demo, const char *filename, struct texture_object *tex_obj, |
| VkImageTiling tiling, VkImageUsageFlags usage, VkFlags required_props) { |
| const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM; |
| int32_t tex_width; |
| int32_t tex_height; |
| VkResult U_ASSERT_ONLY err; |
| bool U_ASSERT_ONLY pass; |
| |
| if (!loadTexture(filename, NULL, NULL, &tex_width, &tex_height)) { |
| ERR_EXIT("Failed to load textures", "Load Texture Failure"); |
| } |
| |
| tex_obj->tex_width = tex_width; |
| tex_obj->tex_height = tex_height; |
| |
| const VkImageCreateInfo image_create_info = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, |
| .pNext = NULL, |
| .imageType = VK_IMAGE_TYPE_2D, |
| .format = tex_format, |
| .extent = {tex_width, tex_height, 1}, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .samples = VK_SAMPLE_COUNT_1_BIT, |
| .tiling = tiling, |
| .usage = usage, |
| .flags = 0, |
| .initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED, |
| }; |
| |
| VkMemoryRequirements mem_reqs; |
| |
| err = vkCreateImage(demo->device, &image_create_info, NULL, &tex_obj->image); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_IMAGE, (uint64_t)tex_obj->image, "TexImage(%s)", filename); |
| |
| vkGetImageMemoryRequirements(demo->device, tex_obj->image, &mem_reqs); |
| |
| tex_obj->mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| tex_obj->mem_alloc.pNext = NULL; |
| tex_obj->mem_alloc.allocationSize = mem_reqs.size; |
| tex_obj->mem_alloc.memoryTypeIndex = 0; |
| |
| pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, required_props, &tex_obj->mem_alloc.memoryTypeIndex); |
| assert(pass); |
| |
| /* allocate memory */ |
| err = vkAllocateMemory(demo->device, &tex_obj->mem_alloc, NULL, &(tex_obj->mem)); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_DEVICE_MEMORY, (uint64_t)tex_obj->mem, "TexImageMem(%s)", filename); |
| |
| /* bind memory */ |
| err = vkBindImageMemory(demo->device, tex_obj->image, tex_obj->mem, 0); |
| assert(!err); |
| |
| if (required_props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { |
| const VkImageSubresource subres = { |
| .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, |
| .mipLevel = 0, |
| .arrayLayer = 0, |
| }; |
| VkSubresourceLayout layout; |
| void *data; |
| |
| vkGetImageSubresourceLayout(demo->device, tex_obj->image, &subres, &layout); |
| |
| err = vkMapMemory(demo->device, tex_obj->mem, 0, tex_obj->mem_alloc.allocationSize, 0, &data); |
| assert(!err); |
| |
| if (!loadTexture(filename, data, &layout, &tex_width, &tex_height)) { |
| fprintf(stderr, "Error loading texture: %s\n", filename); |
| } |
| |
| vkUnmapMemory(demo->device, tex_obj->mem); |
| } |
| |
| tex_obj->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
| } |
| |
| static void demo_destroy_texture(struct demo *demo, struct texture_object *tex_objs) { |
| /* clean up staging resources */ |
| vkFreeMemory(demo->device, tex_objs->mem, NULL); |
| if (tex_objs->image) vkDestroyImage(demo->device, tex_objs->image, NULL); |
| if (tex_objs->buffer) vkDestroyBuffer(demo->device, tex_objs->buffer, NULL); |
| } |
| |
| static void demo_prepare_textures(struct demo *demo) { |
| const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM; |
| VkFormatProperties props; |
| uint32_t i; |
| |
| vkGetPhysicalDeviceFormatProperties(demo->gpu, tex_format, &props); |
| |
| for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { |
| VkResult U_ASSERT_ONLY err; |
| |
| if ((props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) && !demo->use_staging_buffer) { |
| demo_push_cb_label(demo, demo->cmd, NULL, "DirectTexture(%u)", i); |
| /* Device can texture using linear textures */ |
| demo_prepare_texture_image(demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_SAMPLED_BIT, |
| VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); |
| // Nothing in the pipeline needs to be complete to start, and don't allow fragment |
| // shader to run until layout transition completes |
| demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, |
| demo->textures[i].imageLayout, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); |
| demo->staging_texture.image = 0; |
| demo_pop_cb_label(demo, demo->cmd); // "DirectTexture" |
| } else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) { |
| /* Must use staging buffer to copy linear texture to optimized */ |
| demo_push_cb_label(demo, demo->cmd, NULL, "StagingTexture(%u)", i); |
| |
| memset(&demo->staging_texture, 0, sizeof(demo->staging_texture)); |
| demo_prepare_texture_buffer(demo, tex_files[i], &demo->staging_texture); |
| |
| demo_prepare_texture_image(demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_OPTIMAL, |
| (VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT), |
| VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); |
| |
| demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| VK_PIPELINE_STAGE_TRANSFER_BIT); |
| |
| demo_push_cb_label(demo, demo->cmd, NULL, "StagingBufferCopy(%u)", i); |
| |
| VkBufferImageCopy copy_region = { |
| .bufferOffset = 0, |
| .bufferRowLength = demo->staging_texture.tex_width, |
| .bufferImageHeight = demo->staging_texture.tex_height, |
| .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, |
| .imageOffset = {0, 0, 0}, |
| .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1}, |
| }; |
| |
| vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image, |
| VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region); |
| demo_pop_cb_label(demo, demo->cmd); // "StagingBufferCopy" |
| |
| demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, |
| demo->textures[i].imageLayout, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, |
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); |
| demo_pop_cb_label(demo, demo->cmd); // "StagingTexture" |
| |
| } else { |
| /* Can't support VK_FORMAT_R8G8B8A8_UNORM !? */ |
| assert(!"No support for R8G8B8A8_UNORM as texture image format"); |
| } |
| |
| const VkSamplerCreateInfo sampler = { |
| .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, |
| .pNext = NULL, |
| .magFilter = VK_FILTER_NEAREST, |
| .minFilter = VK_FILTER_NEAREST, |
| .mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST, |
| .addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, |
| .addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, |
| .addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, |
| .mipLodBias = 0.0f, |
| .anisotropyEnable = VK_FALSE, |
| .maxAnisotropy = 1, |
| .compareOp = VK_COMPARE_OP_NEVER, |
| .minLod = 0.0f, |
| .maxLod = 0.0f, |
| .borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE, |
| .unnormalizedCoordinates = VK_FALSE, |
| }; |
| |
| VkImageViewCreateInfo view = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, |
| .pNext = NULL, |
| .image = VK_NULL_HANDLE, |
| .viewType = VK_IMAGE_VIEW_TYPE_2D, |
| .format = tex_format, |
| .components = |
| { |
| VK_COMPONENT_SWIZZLE_IDENTITY, |
| VK_COMPONENT_SWIZZLE_IDENTITY, |
| VK_COMPONENT_SWIZZLE_IDENTITY, |
| VK_COMPONENT_SWIZZLE_IDENTITY, |
| }, |
| .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}, |
| .flags = 0, |
| }; |
| |
| /* create sampler */ |
| err = vkCreateSampler(demo->device, &sampler, NULL, &demo->textures[i].sampler); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_SAMPLER, (uint64_t)demo->textures[i].sampler, "Sampler(%u)", i); |
| |
| /* create image view */ |
| view.image = demo->textures[i].image; |
| err = vkCreateImageView(demo->device, &view, NULL, &demo->textures[i].view); |
| demo_name_object(demo, VK_OBJECT_TYPE_IMAGE_VIEW, (uint64_t)demo->textures[i].view, "TexImageView(%u)", i); |
| assert(!err); |
| } |
| } |
| |
| void demo_prepare_cube_data_buffers(struct demo *demo) { |
| VkBufferCreateInfo buf_info; |
| VkMemoryRequirements mem_reqs; |
| VkMemoryAllocateInfo mem_alloc; |
| mat4x4 MVP, VP; |
| VkResult U_ASSERT_ONLY err; |
| bool U_ASSERT_ONLY pass; |
| struct vktexcube_vs_uniform data; |
| |
| mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix); |
| mat4x4_mul(MVP, VP, demo->model_matrix); |
| memcpy(data.mvp, MVP, sizeof(MVP)); |
| // dumpMatrix("MVP", MVP); |
| |
| for (unsigned int i = 0; i < 12 * 3; i++) { |
| data.position[i][0] = g_vertex_buffer_data[i * 3]; |
| data.position[i][1] = g_vertex_buffer_data[i * 3 + 1]; |
| data.position[i][2] = g_vertex_buffer_data[i * 3 + 2]; |
| data.position[i][3] = 1.0f; |
| data.attr[i][0] = g_uv_buffer_data[2 * i]; |
| data.attr[i][1] = g_uv_buffer_data[2 * i + 1]; |
| data.attr[i][2] = 0; |
| data.attr[i][3] = 0; |
| } |
| |
| memset(&buf_info, 0, sizeof(buf_info)); |
| buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; |
| buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; |
| buf_info.size = sizeof(data); |
| |
| for (unsigned int i = 0; i < demo->swapchainImageCount; i++) { |
| err = vkCreateBuffer(demo->device, &buf_info, NULL, &demo->swapchain_image_resources[i].uniform_buffer); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_BUFFER, (uint64_t)demo->swapchain_image_resources[i].uniform_buffer, |
| "SwapchainUniformBuf(%u)", i); |
| |
| vkGetBufferMemoryRequirements(demo->device, demo->swapchain_image_resources[i].uniform_buffer, &mem_reqs); |
| |
| mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| mem_alloc.pNext = NULL; |
| mem_alloc.allocationSize = mem_reqs.size; |
| mem_alloc.memoryTypeIndex = 0; |
| |
| pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, |
| VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
| &mem_alloc.memoryTypeIndex); |
| assert(pass); |
| |
| err = vkAllocateMemory(demo->device, &mem_alloc, NULL, &demo->swapchain_image_resources[i].uniform_memory); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_DEVICE_MEMORY, (uint64_t)demo->swapchain_image_resources[i].uniform_memory, |
| "SwapchainUniformMem(%u)", i); |
| |
| err = vkMapMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, 0, VK_WHOLE_SIZE, 0, |
| &demo->swapchain_image_resources[i].uniform_memory_ptr); |
| assert(!err); |
| |
| memcpy(demo->swapchain_image_resources[i].uniform_memory_ptr, &data, sizeof data); |
| |
| err = vkBindBufferMemory(demo->device, demo->swapchain_image_resources[i].uniform_buffer, |
| demo->swapchain_image_resources[i].uniform_memory, 0); |
| assert(!err); |
| } |
| } |
| |
| static void demo_prepare_descriptor_layout(struct demo *demo) { |
| const VkDescriptorSetLayoutBinding layout_bindings[2] = { |
| [0] = |
| { |
| .binding = 0, |
| .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, |
| .descriptorCount = 1, |
| .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, |
| .pImmutableSamplers = NULL, |
| }, |
| [1] = |
| { |
| .binding = 1, |
| .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, |
| .descriptorCount = DEMO_TEXTURE_COUNT, |
| .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, |
| .pImmutableSamplers = NULL, |
| }, |
| }; |
| const VkDescriptorSetLayoutCreateInfo descriptor_layout = { |
| .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, |
| .pNext = NULL, |
| .bindingCount = 2, |
| .pBindings = layout_bindings, |
| }; |
| VkResult U_ASSERT_ONLY err; |
| |
| err = vkCreateDescriptorSetLayout(demo->device, &descriptor_layout, NULL, &demo->desc_layout); |
| assert(!err); |
| |
| const VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = { |
| .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, |
| .pNext = NULL, |
| .setLayoutCount = 1, |
| .pSetLayouts = &demo->desc_layout, |
| }; |
| |
| err = vkCreatePipelineLayout(demo->device, &pPipelineLayoutCreateInfo, NULL, &demo->pipeline_layout); |
| assert(!err); |
| } |
| |
| static void demo_prepare_render_pass(struct demo *demo) { |
| // The initial layout for the color and depth attachments will be LAYOUT_UNDEFINED |
| // because at the start of the renderpass, we don't care about their contents. |
| // At the start of the subpass, the color attachment's layout will be transitioned |
| // to LAYOUT_COLOR_ATTACHMENT_OPTIMAL and the depth stencil attachment's layout |
| // will be transitioned to LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL. At the end of |
| // the renderpass, the color attachment's layout will be transitioned to |
| // LAYOUT_PRESENT_SRC_KHR to be ready to present. This is all done as part of |
| // the renderpass, no barriers are necessary. |
| const VkAttachmentDescription attachments[2] = { |
| [0] = |
| { |
| .format = demo->format, |
| .flags = 0, |
| .samples = VK_SAMPLE_COUNT_1_BIT, |
| .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, |
| .storeOp = VK_ATTACHMENT_STORE_OP_STORE, |
| .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, |
| .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, |
| .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, |
| .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, |
| }, |
| [1] = |
| { |
| .format = demo->depth.format, |
| .flags = 0, |
| .samples = VK_SAMPLE_COUNT_1_BIT, |
| .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, |
| .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, |
| .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, |
| .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, |
| .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, |
| .finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, |
| }, |
| }; |
| const VkAttachmentReference color_reference = { |
| .attachment = 0, |
| .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, |
| }; |
| const VkAttachmentReference depth_reference = { |
| .attachment = 1, |
| .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, |
| }; |
| const VkSubpassDescription subpass = { |
| .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, |
| .flags = 0, |
| .inputAttachmentCount = 0, |
| .pInputAttachments = NULL, |
| .colorAttachmentCount = 1, |
| .pColorAttachments = &color_reference, |
| .pResolveAttachments = NULL, |
| .pDepthStencilAttachment = &depth_reference, |
| .preserveAttachmentCount = 0, |
| .pPreserveAttachments = NULL, |
| }; |
| |
| VkSubpassDependency attachmentDependencies[2] = { |
| [0] = |
| { |
| // Depth buffer is shared between swapchain images |
| .srcSubpass = VK_SUBPASS_EXTERNAL, |
| .dstSubpass = 0, |
| .srcStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, |
| .dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, |
| .srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, |
| .dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, |
| .dependencyFlags = 0, |
| }, |
| [1] = |
| { |
| // Image Layout Transition |
| .srcSubpass = VK_SUBPASS_EXTERNAL, |
| .dstSubpass = 0, |
| .srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, |
| .dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, |
| .srcAccessMask = 0, |
| .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT, |
| .dependencyFlags = 0, |
| }, |
| }; |
| |
| const VkRenderPassCreateInfo rp_info = { |
| .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, |
| .pNext = NULL, |
| .flags = 0, |
| .attachmentCount = 2, |
| .pAttachments = attachments, |
| .subpassCount = 1, |
| .pSubpasses = &subpass, |
| .dependencyCount = 2, |
| .pDependencies = attachmentDependencies, |
| }; |
| VkResult U_ASSERT_ONLY err; |
| |
| err = vkCreateRenderPass(demo->device, &rp_info, NULL, &demo->render_pass); |
| assert(!err); |
| } |
| |
| static VkShaderModule demo_prepare_shader_module(const char *name, struct demo *demo, const uint32_t *code, size_t size) { |
| VkShaderModule module; |
| VkShaderModuleCreateInfo moduleCreateInfo; |
| VkResult U_ASSERT_ONLY err; |
| |
| moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; |
| moduleCreateInfo.pNext = NULL; |
| moduleCreateInfo.flags = 0; |
| moduleCreateInfo.codeSize = size; |
| moduleCreateInfo.pCode = code; |
| |
| err = vkCreateShaderModule(demo->device, &moduleCreateInfo, NULL, &module); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_SHADER_MODULE, (uint64_t)module, "%s", name); |
| |
| return module; |
| } |
| |
| static void demo_prepare_vs(struct demo *demo) { |
| const uint32_t vs_code[] = { |
| #include "cube.vert.inc" |
| }; |
| demo->vert_shader_module = demo_prepare_shader_module("cube.vert", demo, vs_code, sizeof(vs_code)); |
| } |
| |
| static void demo_prepare_fs(struct demo *demo) { |
| const uint32_t fs_code[] = { |
| #include "cube.frag.inc" |
| }; |
| demo->frag_shader_module = demo_prepare_shader_module("cube.frag", demo, fs_code, sizeof(fs_code)); |
| } |
| |
| static void demo_prepare_pipeline(struct demo *demo) { |
| #define NUM_DYNAMIC_STATES 2 /*Viewport + Scissor*/ |
| |
| VkGraphicsPipelineCreateInfo pipeline; |
| VkPipelineCacheCreateInfo pipelineCache; |
| VkPipelineVertexInputStateCreateInfo vi; |
| VkPipelineInputAssemblyStateCreateInfo ia; |
| VkPipelineRasterizationStateCreateInfo rs; |
| VkPipelineColorBlendStateCreateInfo cb; |
| VkPipelineDepthStencilStateCreateInfo ds; |
| VkPipelineViewportStateCreateInfo vp; |
| VkPipelineMultisampleStateCreateInfo ms; |
| VkDynamicState dynamicStateEnables[NUM_DYNAMIC_STATES]; |
| VkPipelineDynamicStateCreateInfo dynamicState; |
| VkResult U_ASSERT_ONLY err; |
| |
| memset(dynamicStateEnables, 0, sizeof dynamicStateEnables); |
| memset(&dynamicState, 0, sizeof dynamicState); |
| dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; |
| dynamicState.pDynamicStates = dynamicStateEnables; |
| |
| memset(&pipeline, 0, sizeof(pipeline)); |
| pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; |
| pipeline.layout = demo->pipeline_layout; |
| |
| memset(&vi, 0, sizeof(vi)); |
| vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; |
| |
| memset(&ia, 0, sizeof(ia)); |
| ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; |
| ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; |
| |
| memset(&rs, 0, sizeof(rs)); |
| rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; |
| rs.polygonMode = VK_POLYGON_MODE_FILL; |
| rs.cullMode = VK_CULL_MODE_BACK_BIT; |
| rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; |
| rs.depthClampEnable = VK_FALSE; |
| rs.rasterizerDiscardEnable = VK_FALSE; |
| rs.depthBiasEnable = VK_FALSE; |
| rs.lineWidth = 1.0f; |
| |
| memset(&cb, 0, sizeof(cb)); |
| cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; |
| VkPipelineColorBlendAttachmentState att_state[1]; |
| memset(att_state, 0, sizeof(att_state)); |
| att_state[0].colorWriteMask = 0xf; |
| att_state[0].blendEnable = VK_FALSE; |
| cb.attachmentCount = 1; |
| cb.pAttachments = att_state; |
| |
| memset(&vp, 0, sizeof(vp)); |
| vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; |
| vp.viewportCount = 1; |
| dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT; |
| vp.scissorCount = 1; |
| dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR; |
| |
| memset(&ds, 0, sizeof(ds)); |
| ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; |
| ds.depthTestEnable = VK_TRUE; |
| ds.depthWriteEnable = VK_TRUE; |
| ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; |
| ds.depthBoundsTestEnable = VK_FALSE; |
| ds.back.failOp = VK_STENCIL_OP_KEEP; |
| ds.back.passOp = VK_STENCIL_OP_KEEP; |
| ds.back.compareOp = VK_COMPARE_OP_ALWAYS; |
| ds.stencilTestEnable = VK_FALSE; |
| ds.front = ds.back; |
| |
| memset(&ms, 0, sizeof(ms)); |
| ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; |
| ms.pSampleMask = NULL; |
| ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; |
| |
| demo_prepare_vs(demo); |
| demo_prepare_fs(demo); |
| |
| // Two stages: vs and fs |
| VkPipelineShaderStageCreateInfo shaderStages[2]; |
| memset(&shaderStages, 0, 2 * sizeof(VkPipelineShaderStageCreateInfo)); |
| |
| shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
| shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; |
| shaderStages[0].module = demo->vert_shader_module; |
| shaderStages[0].pName = "main"; |
| |
| shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; |
| shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; |
| shaderStages[1].module = demo->frag_shader_module; |
| shaderStages[1].pName = "main"; |
| |
| memset(&pipelineCache, 0, sizeof(pipelineCache)); |
| pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; |
| |
| err = vkCreatePipelineCache(demo->device, &pipelineCache, NULL, &demo->pipelineCache); |
| assert(!err); |
| |
| pipeline.pVertexInputState = &vi; |
| pipeline.pInputAssemblyState = &ia; |
| pipeline.pRasterizationState = &rs; |
| pipeline.pColorBlendState = &cb; |
| pipeline.pMultisampleState = &ms; |
| pipeline.pViewportState = &vp; |
| pipeline.pDepthStencilState = &ds; |
| pipeline.stageCount = ARRAY_SIZE(shaderStages); |
| pipeline.pStages = shaderStages; |
| pipeline.renderPass = demo->render_pass; |
| pipeline.pDynamicState = &dynamicState; |
| |
| err = vkCreateGraphicsPipelines(demo->device, demo->pipelineCache, 1, &pipeline, NULL, &demo->pipeline); |
| assert(!err); |
| |
| vkDestroyShaderModule(demo->device, demo->frag_shader_module, NULL); |
| vkDestroyShaderModule(demo->device, demo->vert_shader_module, NULL); |
| } |
| |
| static void demo_prepare_descriptor_pool(struct demo *demo) { |
| const VkDescriptorPoolSize type_counts[2] = { |
| [0] = |
| { |
| .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, |
| .descriptorCount = demo->swapchainImageCount, |
| }, |
| [1] = |
| { |
| .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, |
| .descriptorCount = demo->swapchainImageCount * DEMO_TEXTURE_COUNT, |
| }, |
| }; |
| const VkDescriptorPoolCreateInfo descriptor_pool = { |
| .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, |
| .pNext = NULL, |
| .maxSets = demo->swapchainImageCount, |
| .poolSizeCount = 2, |
| .pPoolSizes = type_counts, |
| }; |
| VkResult U_ASSERT_ONLY err; |
| |
| err = vkCreateDescriptorPool(demo->device, &descriptor_pool, NULL, &demo->desc_pool); |
| assert(!err); |
| } |
| |
| static void demo_prepare_descriptor_set(struct demo *demo) { |
| VkDescriptorImageInfo tex_descs[DEMO_TEXTURE_COUNT]; |
| VkWriteDescriptorSet writes[2]; |
| VkResult U_ASSERT_ONLY err; |
| |
| VkDescriptorSetAllocateInfo alloc_info = {.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, |
| .pNext = NULL, |
| .descriptorPool = demo->desc_pool, |
| .descriptorSetCount = 1, |
| .pSetLayouts = &demo->desc_layout}; |
| |
| VkDescriptorBufferInfo buffer_info; |
| buffer_info.offset = 0; |
| buffer_info.range = sizeof(struct vktexcube_vs_uniform); |
| |
| memset(&tex_descs, 0, sizeof(tex_descs)); |
| for (unsigned int i = 0; i < DEMO_TEXTURE_COUNT; i++) { |
| tex_descs[i].sampler = demo->textures[i].sampler; |
| tex_descs[i].imageView = demo->textures[i].view; |
| tex_descs[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
| } |
| |
| memset(&writes, 0, sizeof(writes)); |
| |
| writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
| writes[0].descriptorCount = 1; |
| writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
| writes[0].pBufferInfo = &buffer_info; |
| |
| writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
| writes[1].dstBinding = 1; |
| writes[1].descriptorCount = DEMO_TEXTURE_COUNT; |
| writes[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
| writes[1].pImageInfo = tex_descs; |
| |
| for (unsigned int i = 0; i < demo->swapchainImageCount; i++) { |
| err = vkAllocateDescriptorSets(demo->device, &alloc_info, &demo->swapchain_image_resources[i].descriptor_set); |
| assert(!err); |
| buffer_info.buffer = demo->swapchain_image_resources[i].uniform_buffer; |
| writes[0].dstSet = demo->swapchain_image_resources[i].descriptor_set; |
| writes[1].dstSet = demo->swapchain_image_resources[i].descriptor_set; |
| vkUpdateDescriptorSets(demo->device, 2, writes, 0, NULL); |
| } |
| } |
| |
| static void demo_prepare_framebuffers(struct demo *demo) { |
| VkImageView attachments[2]; |
| attachments[1] = demo->depth.view; |
| |
| const VkFramebufferCreateInfo fb_info = { |
| .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, |
| .pNext = NULL, |
| .renderPass = demo->render_pass, |
| .attachmentCount = 2, |
| .pAttachments = attachments, |
| .width = demo->width, |
| .height = demo->height, |
| .layers = 1, |
| }; |
| VkResult U_ASSERT_ONLY err; |
| uint32_t i; |
| |
| for (i = 0; i < demo->swapchainImageCount; i++) { |
| attachments[0] = demo->swapchain_image_resources[i].view; |
| err = vkCreateFramebuffer(demo->device, &fb_info, NULL, &demo->swapchain_image_resources[i].framebuffer); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_FRAMEBUFFER, (uint64_t)demo->swapchain_image_resources[i].framebuffer, |
| "Framebuffer(%u)", i); |
| } |
| } |
| |
| static void demo_prepare(struct demo *demo) { |
| demo_prepare_buffers(demo); |
| |
| if (demo->is_minimized) { |
| demo->prepared = false; |
| return; |
| } |
| |
| VkResult U_ASSERT_ONLY err; |
| if (demo->cmd_pool == VK_NULL_HANDLE) { |
| const VkCommandPoolCreateInfo cmd_pool_info = { |
| .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, |
| .pNext = NULL, |
| .queueFamilyIndex = demo->graphics_queue_family_index, |
| .flags = 0, |
| }; |
| err = vkCreateCommandPool(demo->device, &cmd_pool_info, NULL, &demo->cmd_pool); |
| assert(!err); |
| } |
| |
| const VkCommandBufferAllocateInfo cmd = { |
| .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, |
| .pNext = NULL, |
| .commandPool = demo->cmd_pool, |
| .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, |
| .commandBufferCount = 1, |
| }; |
| err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->cmd); |
| assert(!err); |
| demo_name_object(demo, VK_OBJECT_TYPE_COMMAND_BUFFER, (uint64_t)demo->cmd, "PrepareCB"); |
| VkCommandBufferBeginInfo cmd_buf_info = { |
| .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, |
| .pNext = NULL, |
| .flags = 0, |
| .pInheritanceInfo = NULL, |
| }; |
| err = vkBeginCommandBuffer(demo->cmd, &cmd_buf_info); |
| demo_push_cb_label(demo, demo->cmd, NULL, "Prepare"); |
| assert(!err); |
| |
| demo_prepare_depth(demo); |
| demo_prepare_textures(demo); |
| demo_prepare_cube_data_buffers(demo); |
| |
| demo_prepare_descriptor_layout(demo); |
| demo_prepare_render_pass(demo); |
| demo_prepare_pipeline(demo); |
| |
| for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { |
| err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->swapchain_image_resources[i].cmd); |
| assert(!err); |
| } |
| |
| if (demo->separate_present_queue) { |
| const VkCommandPoolCreateInfo present_cmd_pool_info = { |
| .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, |
| .pNext = NULL, |
| .queueFamilyIndex = demo->present_queue_family_index, |
| .flags = 0, |
| }; |
| err = vkCreateCommandPool(demo->device, &present_cmd_pool_info, NULL, &demo->present_cmd_pool); |
| assert(!err); |
| const VkCommandBufferAllocateInfo present_cmd_info = { |
| .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, |
| .pNext = NULL, |
| .commandPool = demo->present_cmd_pool, |
| .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, |
| .commandBufferCount = 1, |
| }; |
| for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { |
| err = vkAllocateCommandBuffers(demo->device, &present_cmd_info, |
| &demo->swapchain_image_resources[i].graphics_to_present_cmd); |
| assert(!err); |
| demo_build_image_ownership_cmd(demo, i); |
| demo_name_object(demo, VK_OBJECT_TYPE_COMMAND_BUFFER, |
| (uint64_t)demo->swapchain_image_resources[i].graphics_to_present_cmd, "GfxToPresent(%u)", i); |
| } |
| } |
| |
| demo_prepare_descriptor_pool(demo); |
| demo_prepare_descriptor_set(demo); |
| |
| demo_prepare_framebuffers(demo); |
| |
| for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { |
| demo->current_buffer = i; |
| demo_draw_build_cmd(demo, demo->swapchain_image_resources[i].cmd); |
| } |
| |
| /* |
| * Prepare functions above may generate pipeline commands |
| * that need to be flushed before beginning the render loop. |
| */ |
| demo_pop_cb_label(demo, demo->cmd); // "Prepare" |
| demo_flush_init_cmd(demo); |
| if (demo->staging_texture.buffer) { |
| demo_destroy_texture(demo, &demo->staging_texture); |
| } |
| |
| demo->current_buffer = 0; |
| demo->prepared = true; |
| demo->first_swapchain_frame = true; |
| } |
| |
| static void demo_cleanup(struct demo *demo) { |
| uint32_t i; |
| |
| demo->prepared = false; |
| vkDeviceWaitIdle(demo->device); |
| |
| // Wait for fences from present operations |
| for (i = 0; i < FRAME_LAG; i++) { |
| vkWaitForFences(demo->device, 1, &demo->fences[i], VK_TRUE, UINT64_MAX); |
| vkDestroyFence(demo->device, demo->fences[i], NULL); |
| vkDestroySemaphore(demo->device, demo->image_acquired_semaphores[i], NULL); |
| vkDestroySemaphore(demo->device, demo->draw_complete_semaphores[i], NULL); |
| if (demo->separate_present_queue) { |
| vkDestroySemaphore(demo->device, demo->image_ownership_semaphores[i], NULL); |
| } |
| } |
| |
| // If the window is currently minimized, demo_resize has already done some cleanup for us. |
| if (!demo->is_minimized) { |
| for (i = 0; i < demo->swapchainImageCount; i++) { |
| vkDestroyFramebuffer(demo->device, demo->swapchain_image_resources[i].framebuffer, NULL); |
| } |
| vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL); |
| |
| vkDestroyPipeline(demo->device, demo->pipeline, NULL); |
| vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL); |
| vkDestroyRenderPass(demo->device, demo->render_pass, NULL); |
| vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL); |
| vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL); |
| |
| for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { |
| vkDestroyImageView(demo->device, demo->textures[i].view, NULL); |
| vkDestroyImage(demo->device, demo->textures[i].image, NULL); |
| vkFreeMemory(demo->device, demo->textures[i].mem, NULL); |
| vkDestroySampler(demo->device, demo->textures[i].sampler, NULL); |
| } |
| vkDestroySwapchainKHR(demo->device, demo->swapchain, NULL); |
| |
| vkDestroyImageView(demo->device, demo->depth.view, NULL); |
| vkDestroyImage(demo->device, demo->depth.image, NULL); |
| vkFreeMemory(demo->device, demo->depth.mem, NULL); |
| |
| for (i = 0; i < demo->swapchainImageCount; i++) { |
| vkDestroyImageView(demo->device, demo->swapchain_image_resources[i].view, NULL); |
| vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->swapchain_image_resources[i].cmd); |
| vkDestroyBuffer(demo->device, demo->swapchain_image_resources[i].uniform_buffer, NULL); |
| vkUnmapMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory); |
| vkFreeMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, NULL); |
| } |
| free(demo->swapchain_image_resources); |
| free(demo->queue_props); |
| vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL); |
| |
| if (demo->separate_present_queue) { |
| vkDestroyCommandPool(demo->device, demo->present_cmd_pool, NULL); |
| } |
| } |
| vkDeviceWaitIdle(demo->device); |
| vkDestroyDevice(demo->device, NULL); |
| if (demo->validate) { |
| vkDestroyDebugUtilsMessengerEXT(demo->inst, demo->dbg_messenger, NULL); |
| } |
| vkDestroySurfaceKHR(demo->inst, demo->surface, NULL); |
| |
| #if defined(VK_USE_PLATFORM_XLIB_KHR) |
| XDestroyWindow(demo->display, demo->xlib_window); |
| XCloseDisplay(demo->display); |
| #elif defined(VK_USE_PLATFORM_XCB_KHR) |
| xcb_destroy_window(demo->connection, demo->xcb_window); |
| xcb_disconnect(demo->connection); |
| free(demo->atom_wm_delete_window); |
| #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) |
| if (demo->keyboard) wl_keyboard_destroy(demo->keyboard); |
| if (demo->pointer) wl_pointer_destroy(demo->pointer); |
| if (demo->seat) wl_seat_destroy(demo->seat); |
| xdg_toplevel_destroy(demo->xdg_toplevel); |
| xdg_surface_destroy(demo->xdg_surface); |
| wl_surface_destroy(demo->window); |
| xdg_wm_base_destroy(demo->xdg_wm_base); |
| if (demo->xdg_decoration_mgr) { |
| zxdg_toplevel_decoration_v1_destroy(demo->toplevel_decoration); |
| zxdg_decoration_manager_v1_destroy(demo->xdg_decoration_mgr); |
| } |
| wl_compositor_destroy(demo->compositor); |
| wl_registry_destroy(demo->registry); |
| wl_display_disconnect(demo->display); |
| #elif defined(VK_USE_PLATFORM_DIRECTFB_EXT) |
| demo->event_buffer->Release(demo->event_buffer); |
| demo->window->Release(demo->window); |
| demo->dfb->Release(demo->dfb); |
| #elif defined(VK_USE_PLATFORM_SCREEN_QNX) |
| screen_destroy_event(demo->screen_event); |
| screen_destroy_window(demo->screen_window); |
| screen_destroy_context(demo->screen_context); |
| #endif |
| |
| vkDestroyInstance(demo->inst, NULL); |
| } |
| |
| static void demo_resize(struct demo *demo) { |
| uint32_t i; |
| |
| // Don't react to resize until after first initialization. |
| if (!demo->prepared) { |
| if (demo->is_minimized) { |
| demo_prepare(demo); |
| } |
| return; |
| } |
| // In order to properly resize the window, we must re-create the swapchain |
| // AND redo the command buffers, etc. |
| // |
| // First, perform part of the demo_cleanup() function: |
| demo->prepared = false; |
| vkDeviceWaitIdle(demo->device); |
| |
| for (i = 0; i < demo->swapchainImageCount; i++) { |
| vkDestroyFramebuffer(demo->device, demo->swapchain_image_resources[i].framebuffer, NULL); |
| } |
| vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL); |
| |
| vkDestroyPipeline(demo->device, demo->pipeline, NULL); |
| vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL); |
| vkDestroyRenderPass(demo->device, demo->render_pass, NULL); |
| vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL); |
| vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL); |
| |
| for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { |
| vkDestroyImageView(demo->device, demo->textures[i].view, NULL); |
| vkDestroyImage(demo->device, demo->textures[i].image, NULL); |
| vkFreeMemory(demo->device, demo->textures[i].mem, NULL); |
| vkDestroySampler(demo->device, demo->textures[i].sampler, NULL); |
| } |
| |
| vkDestroyImageView(demo->device, demo->depth.view, NULL); |
| vkDestroyImage(demo->device, demo->depth.image, NULL); |
| vkFreeMemory(demo->device, demo->depth.mem, NULL); |
| |
| for (i = 0; i < demo->swapchainImageCount; i++) { |
| vkDestroyImageView(demo->device, demo->swapchain_image_resources[i].view, NULL); |
| vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->swapchain_image_resources[i].cmd); |
| vkDestroyBuffer(demo->device, demo->swapchain_image_resources[i].uniform_buffer, NULL); |
| vkUnmapMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory); |
| vkFreeMemory(demo->device, demo->swapchain_image_resources[i].uniform_memory, NULL); |
| } |
| vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL); |
| demo->cmd_pool = VK_NULL_HANDLE; |
| if (demo->separate_present_queue) { |
| vkDestroyCommandPool(demo->device, demo->present_cmd_pool, NULL); |
| } |
| free(demo->swapchain_image_resources); |
| |
| // Second, re-perform the demo_prepare() function, which will re-create the |
| // swapchain: |
| demo_prepare(demo); |
| } |
| |
| // On MS-Windows, make this a global, so it's available to WndProc() |
| struct demo demo; |
| |
| #if defined(VK_USE_PLATFORM_WIN32_KHR) |
| static void demo_run(struct demo *demo) { |
| if (!demo->prepared) return; |
| |
| demo_draw(demo); |
| demo->curFrame++; |
| if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) { |
| PostQuitMessage(validation_error); |
| } |
| } |
| |
| // MS-Windows event handling function: |
| LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { |
| switch (uMsg) { |
| case WM_CLOSE: |
| PostQuitMessage(validation_error); |
| break; |
| case WM_PAINT: |
| // The validation callback calls MessageBox which can generate paint |
| // events - don't make more Vulkan calls if we got here from the |
| // callback |
| if (!in_callback) { |
| demo_run(&demo); |
| } |
| break; |
| case WM_GETMINMAXINFO: // set window's minimum size |
| ((MINMAXINFO *)lParam)->ptMinTrackSize = demo.minsize; |
| return 0; |
| case WM_ERASEBKGND: |
| return 1; |
| case WM_SIZE: |
| // Resize the application to the new window size, except when |
| // it was minimized. Vulkan doesn't support images or swapchains |
| // with width=0 and height=0. |
| if (wParam != SIZE_MINIMIZED) { |
| demo.width = lParam & 0xffff; |
| demo.height = (lParam & 0xffff0000) >> 16; |
| demo_resize(&demo); |
| } |
| break; |
| case WM_KEYDOWN: |
| switch (wParam) { |
| case VK_ESCAPE: |
| PostQuitMessage(validation_error); |
| break; |
| case VK_LEFT: |
| demo.spin_angle -= demo.spin_increment; |
| break; |
| case VK_RIGHT: |
| demo.spin_angle += demo.spin_increment; |
| break; |
| case VK_SPACE: |
| demo.pause = !demo.pause; |
| break; |
| } |
| return 0; |
| default: |
| break; |
| } |
| return (DefWindowProc(hWnd, uMsg, wParam, lParam)); |
| } |
| |
| static void demo_create_window(struct demo *demo) { |
| WNDCLASSEX win_class; |
| |
| // Initialize the window class structure: |
| win_class.cbSize = sizeof(WNDCLASSEX); |
| win_class.style = CS_HREDRAW | CS_VREDRAW; |
| win_class.lpfnWndProc = WndProc; |
| win_class.cbClsExtra = 0; |
| win_class.cbWndExtra = 0; |
| win_class.hInstance = demo->connection; // hInstance |
| win_class.hIcon = LoadIcon(NULL, IDI_APPLICATION); |
| win_class.hCursor = LoadCursor(NULL, IDC_ARROW); |
| win_class.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH); |
| win_class.lpszMenuName = NULL; |
| win_class.lpszClassName = demo->name; |
| win_class.hIconSm = LoadIcon(NULL, IDI_WINLOGO); |
| // Register window class: |
| if (!RegisterClassEx(&win_class)) { |
| // It didn't work, so try to give a useful error: |
| printf("Unexpected error trying to start the application!\n"); |
| fflush(stdout); |
| exit(1); |
| } |
| // Create window with the registered class: |
| RECT wr = {0, 0, demo->width, demo->height}; |
| AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE); |
| demo->window = CreateWindowEx(0, |
| demo->name, // class name |
| demo->name, // app name |
| WS_OVERLAPPEDWINDOW | // window style |
| WS_VISIBLE | WS_SYSMENU, |
| 100, 100, // x/y coords |
| wr.right - wr.left, // width |
| wr.bottom - wr.top, // height |
| NULL, // handle to parent |
| NULL, // handle to menu |
| demo->connection, // hInstance |
| NULL); // no extra parameters |
| if (!demo->window) { |
| // It didn't work, so try to give a useful error: |
| printf("Cannot create a window in which to draw!\n"); |
| fflush(stdout); |
| exit(1); |
| } |
| // Window client area size must be at least 1 pixel high, to prevent crash. |
| demo->minsize.x = GetSystemMetrics(SM_CXMINTRACK); |
| demo->minsize.y = GetSystemMetrics(SM_CYMINTRACK) + 1; |
| } |
| #elif defined(VK_USE_PLATFORM_XLIB_KHR) |
| static void demo_create_xlib_window(struct demo *demo) { |
| const char *display_envar = getenv("DISPLAY"); |
| if (display_envar == NULL || display_envar[0] == '\0') { |
| printf("Environment variable DISPLAY requires a valid value.\nExiting ...\n"); |
| fflush(stdout); |
| exit(1); |
| } |
| |
| XInitThreads(); |
| demo->display = XOpenDisplay(NULL); |
| long visualMask = VisualScreenMask; |
| int numberOfVisuals; |
| XVisualInfo vInfoTemplate = {}; |
| vInfoTemplate.screen = DefaultScreen(demo->display); |
| XVisualInfo *visualInfo = XGetVisualInfo(demo->display, visualMask, &vInfoTemplate, &numberOfVisuals); |
| |
| Colormap colormap = |
| XCreateColormap(demo->display, RootWindow(demo->display, vInfoTemplate.screen), visualInfo->visual, AllocNone); |
| |
| XSetWindowAttributes windowAttributes = {}; |
| windowAttributes.colormap = colormap; |
| windowAttributes.background_pixel = 0xFFFFFFFF; |
| windowAttributes.border_pixel = 0; |
| windowAttributes.event_mask = KeyPressMask | KeyReleaseMask | StructureNotifyMask | ExposureMask; |
| |
| demo->xlib_window = XCreateWindow(demo->display, RootWindow(demo->display, vInfoTemplate.screen), 0, 0, demo->width, |
| demo->height, 0, visualInfo->depth, InputOutput, visualInfo->visual, |
| CWBackPixel | CWBorderPixel | CWEventMask | CWColormap, &windowAttributes); |
| |
| XSelectInput(demo->display, demo->xlib_window, ExposureMask | KeyPressMask); |
| XMapWindow(demo->display, demo->xlib_window); |
| XFlush(demo->display); |
| demo->xlib_wm_delete_window = XInternAtom(demo->display, "WM_DELETE_WINDOW", False); |
| } |
| static void demo_handle_xlib_event(struct demo *demo, const XEvent *event) { |
| switch (event->type) { |
| case ClientMessage: |
| if ((Atom)event->xclient.data.l[0] == demo->xlib_wm_delete_window) demo->quit = true; |
| break; |
| case KeyPress: |
| switch (event->xkey.keycode) { |
| case 0x9: // Escape |
| demo->quit = true; |
| break; |
| case 0x71: // left arrow key |
| demo->spin_angle -= demo->spin_increment; |
| break; |
| case 0x72: // right arrow key |
| demo->spin_angle += demo->spin_increment; |
| break; |
| case 0x41: // space bar |
| demo->pause = !demo->pause; |
| break; |
| } |
| break; |
| case ConfigureNotify: |
|