blob: 46b6fdb31271ea9c03591d0ba2949f5579599eec [file] [log] [blame]
/*
* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Jeremy Hayes <jeremy@lunarg.com>
* Author: Charles Giessen <charles@lunarg.com>
*/
#if defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_XCB_KHR)
#include <X11/Xutil.h>
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
#include <linux/input.h>
#include "xdg-shell-client-header.h"
#include "xdg-decoration-client-header.h"
#endif
#include <cassert>
#include <cinttypes>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <csignal>
#include <sstream>
#include <iostream>
#include <memory>
#define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 1
#define VULKAN_HPP_NO_EXCEPTIONS
#define VULKAN_HPP_TYPESAFE_CONVERSION 1
// Volk requires VK_NO_PROTOTYPES before including vulkan.hpp
#define VK_NO_PROTOTYPES
#include <vulkan/vulkan.hpp>
#define VOLK_IMPLEMENTATION
#include "volk.h"
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
#include "linmath.h"
#ifndef NDEBUG
#define VERIFY(x) assert(x)
#else
#define VERIFY(x) ((void)(x))
#endif
#define APP_SHORT_NAME "vkcubepp"
// Allow a maximum of two outstanding presentation operations.
constexpr uint32_t FRAME_LAG = 2;
#ifdef _WIN32
#define ERR_EXIT(err_msg, err_class) \
do { \
if (!suppress_popups) MessageBox(nullptr, err_msg, err_class, MB_OK); \
exit(1); \
} while (0)
#else
#define ERR_EXIT(err_msg, err_class) \
do { \
printf("%s\n", err_msg); \
fflush(stdout); \
exit(1); \
} while (0)
#endif
struct texture_object {
vk::Sampler sampler;
vk::Image image;
vk::Buffer buffer;
vk::ImageLayout imageLayout{vk::ImageLayout::eUndefined};
vk::MemoryAllocateInfo mem_alloc;
vk::DeviceMemory mem;
vk::ImageView view;
uint32_t tex_width{0};
uint32_t tex_height{0};
};
static char const *const tex_files[] = {"lunarg.ppm"};
static int validation_error = 0;
struct vktexcube_vs_uniform {
// Must start with MVP
float mvp[4][4];
float position[12 * 3][4];
float attr[12 * 3][4];
};
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
// clang-format off
static const float g_vertex_buffer_data[] = {
-1.0f,-1.0f,-1.0f, // -X side
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // -Z side
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // -Y side
1.0f,-1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f,-1.0f, // +Y side
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f, // +X side
1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f, 1.0f, 1.0f, // +Z side
-1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
};
static const float g_uv_buffer_data[] = {
0.0f, 1.0f, // -X side
1.0f, 1.0f,
1.0f, 0.0f,
1.0f, 0.0f,
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f, // -Z side
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 0.0f,
1.0f, 0.0f, // -Y side
1.0f, 1.0f,
0.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f, // +Y side
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f, // +X side
0.0f, 0.0f,
0.0f, 1.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f,
0.0f, 0.0f, // +Z side
0.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f,
};
// clang-format on
struct SwapchainImageResources {
vk::Image image;
vk::CommandBuffer cmd;
vk::CommandBuffer graphics_to_present_cmd;
vk::ImageView view;
vk::Buffer uniform_buffer;
vk::DeviceMemory uniform_memory;
void *uniform_memory_ptr = nullptr;
vk::Framebuffer framebuffer;
vk::DescriptorSet descriptor_set;
};
struct Demo {
void build_image_ownership_cmd(const SwapchainImageResources &swapchain_image_resource);
vk::Bool32 check_layers(const std::vector<const char *> &check_names, const std::vector<vk::LayerProperties> &layers);
void cleanup();
void destroy_swapchain_related_resources();
void create_device();
void destroy_texture(texture_object &tex_objs);
void draw();
void draw_build_cmd(const SwapchainImageResources &swapchain_image_resource);
void prepare_init_cmd();
void flush_init_cmd();
void init(int argc, char **argv);
void init_connection();
void init_vk();
void init_vk_swapchain();
void prepare();
void prepare_buffers();
void prepare_cube_data_buffers();
void prepare_depth();
void prepare_descriptor_layout();
void prepare_descriptor_pool();
void prepare_descriptor_set();
void prepare_framebuffers();
vk::ShaderModule prepare_shader_module(const uint32_t *code, size_t size);
vk::ShaderModule prepare_vs();
vk::ShaderModule prepare_fs();
void prepare_pipeline();
void prepare_render_pass();
void prepare_texture_image(const char *filename, texture_object &tex_obj, vk::ImageTiling tiling, vk::ImageUsageFlags usage,
vk::MemoryPropertyFlags required_props);
void prepare_texture_buffer(const char *filename, texture_object &tex_obj);
void prepare_textures();
void resize();
void create_surface();
void set_image_layout(vk::Image image, vk::ImageAspectFlags aspectMask, vk::ImageLayout oldLayout, vk::ImageLayout newLayout,
vk::AccessFlags srcAccessMask, vk::PipelineStageFlags src_stages, vk::PipelineStageFlags dest_stages);
void update_data_buffer();
bool loadTexture(const char *filename, uint8_t *rgba_data, vk::SubresourceLayout &layout, uint32_t &width, uint32_t &height);
bool memory_type_from_properties(uint32_t typeBits, vk::MemoryPropertyFlags requirements_mask, uint32_t &typeIndex);
vk::SurfaceFormatKHR pick_surface_format(const std::vector<vk::SurfaceFormatKHR> &surface_formats);
static VKAPI_ATTR VkBool32 VKAPI_CALL debug_messenger_callback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
void *pUserData);
#if defined(VK_USE_PLATFORM_WIN32_KHR)
void run();
void create_window();
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
void create_xlib_window();
void handle_xlib_event(const XEvent *event);
void run_xlib();
#elif defined(VK_USE_PLATFORM_XCB_KHR)
void handle_xcb_event(const xcb_generic_event_t *event);
void run_xcb();
void create_xcb_window();
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
void run();
void create_window();
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
void handle_directfb_event(const DFBInputEvent *event);
void run_directfb();
void create_directfb_window();
#elif defined(VK_USE_PLATFORM_METAL_EXT)
void run();
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
vk::Result create_display_surface();
void run_display();
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
void run();
void create_window();
#endif
std::string name = "vkcubepp"; // Name to put on the window/icon
#if defined(VK_USE_PLATFORM_WIN32_KHR)
HINSTANCE connection = nullptr; // hInstance - Windows Instance
HWND window = nullptr; // hWnd - window handle
POINT minsize = {0, 0}; // minimum window size
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
Window xlib_window = 0;
Atom xlib_wm_delete_window = 0;
Display *display = nullptr;
#elif defined(VK_USE_PLATFORM_XCB_KHR)
xcb_window_t xcb_window = 0;
xcb_screen_t *screen = nullptr;
xcb_connection_t *connection = nullptr;
xcb_intern_atom_reply_t *atom_wm_delete_window = nullptr;
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
wl_display *display = nullptr;
wl_registry *registry = nullptr;
wl_compositor *compositor = nullptr;
wl_surface *window = nullptr;
xdg_wm_base *wm_base = nullptr;
zxdg_decoration_manager_v1 *xdg_decoration_mgr = nullptr;
zxdg_toplevel_decoration_v1 *toplevel_decoration = nullptr;
xdg_surface *window_surface = nullptr;
bool xdg_surface_has_been_configured = false;
xdg_toplevel *window_toplevel = nullptr;
wl_seat *seat = nullptr;
wl_pointer *pointer = nullptr;
wl_keyboard *keyboard = nullptr;
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
IDirectFB *dfb = nullptr;
IDirectFBSurface *window = nullptr;
IDirectFBEventBuffer *event_buffer = nullptr;
#elif defined(VK_USE_PLATFORM_METAL_EXT)
void *caMetalLayer;
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
screen_context_t screen_context = nullptr;
screen_window_t screen_window = nullptr;
screen_event_t screen_event = nullptr;
#endif
vk::SurfaceKHR surface;
bool prepared = false;
bool use_staging_buffer = false;
bool separate_present_queue = false;
bool invalid_gpu_selection = false;
int32_t gpu_number = 0;
vk::Instance inst;
vk::DebugUtilsMessengerEXT debug_messenger;
vk::PhysicalDevice gpu;
vk::Device device;
vk::Queue graphics_queue;
vk::Queue present_queue;
uint32_t graphics_queue_family_index = 0;
uint32_t present_queue_family_index = 0;
std::array<vk::Semaphore, FRAME_LAG> image_acquired_semaphores;
std::array<vk::Semaphore, FRAME_LAG> draw_complete_semaphores;
std::array<vk::Semaphore, FRAME_LAG> image_ownership_semaphores;
vk::PhysicalDeviceProperties gpu_props;
std::vector<vk::QueueFamilyProperties> queue_props;
vk::PhysicalDeviceMemoryProperties memory_properties;
std::vector<const char *> enabled_instance_extensions;
std::vector<const char *> enabled_layers;
std::vector<const char *> enabled_device_extensions;
uint32_t width = 0;
uint32_t height = 0;
vk::Format format;
vk::ColorSpaceKHR color_space;
vk::SwapchainKHR swapchain;
std::vector<SwapchainImageResources> swapchain_image_resources;
vk::PresentModeKHR presentMode = vk::PresentModeKHR::eFifo;
std::array<vk::Fence, FRAME_LAG> fences;
uint32_t frame_index = 0;
vk::CommandPool cmd_pool;
vk::CommandPool present_cmd_pool;
struct {
vk::Format format;
vk::Image image;
vk::MemoryAllocateInfo mem_alloc;
vk::DeviceMemory mem;
vk::ImageView view;
} depth;
static int32_t const texture_count = 1;
std::array<texture_object, texture_count> textures;
texture_object staging_texture;
struct {
vk::Buffer buf;
vk::MemoryAllocateInfo mem_alloc;
vk::DeviceMemory mem;
vk::DescriptorBufferInfo buffer_info;
} uniform_data;
vk::CommandBuffer cmd; // Buffer for initialization commands
vk::PipelineLayout pipeline_layout;
vk::DescriptorSetLayout desc_layout;
vk::PipelineCache pipelineCache;
vk::RenderPass render_pass;
vk::Pipeline pipeline;
mat4x4 projection_matrix = {};
mat4x4 view_matrix = {};
mat4x4 model_matrix = {};
float spin_angle = 0.0f;
float spin_increment = 0.0f;
bool pause = false;
vk::ShaderModule vert_shader_module;
vk::ShaderModule frag_shader_module;
vk::DescriptorPool desc_pool;
vk::DescriptorSet desc_set;
std::vector<vk::Framebuffer> framebuffers;
bool quit = false;
uint32_t curFrame = 0;
uint32_t frameCount = 0;
bool validate = false;
bool in_callback = false;
bool use_debug_messenger = false;
bool use_break = false;
bool suppress_popups = false;
bool force_errors = false;
bool is_minimized = false;
uint32_t current_buffer = 0;
};
#ifdef _WIN32
// MS-Windows event handling function:
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam);
#endif
#if defined(VK_USE_PLATFORM_WAYLAND_KHR)
static void pointer_handle_enter(void *data, struct wl_pointer *pointer, uint32_t serial, struct wl_surface *surface, wl_fixed_t sx,
wl_fixed_t sy) {}
static void pointer_handle_leave(void *data, struct wl_pointer *pointer, uint32_t serial, struct wl_surface *surface) {}
static void pointer_handle_motion(void *data, struct wl_pointer *pointer, uint32_t time, wl_fixed_t sx, wl_fixed_t sy) {}
static void pointer_handle_button(void *data, struct wl_pointer *wl_pointer, uint32_t serial, uint32_t time, uint32_t button,
uint32_t state) {
Demo &demo = *static_cast<Demo *>(data);
if (button == BTN_LEFT && state == WL_POINTER_BUTTON_STATE_PRESSED) {
xdg_toplevel_move(demo.window_toplevel, demo.seat, serial);
}
}
static void pointer_handle_axis(void *data, struct wl_pointer *wl_pointer, uint32_t time, uint32_t axis, wl_fixed_t value) {}
static const struct wl_pointer_listener pointer_listener = {
pointer_handle_enter, pointer_handle_leave, pointer_handle_motion, pointer_handle_button, pointer_handle_axis,
};
static void keyboard_handle_keymap(void *data, struct wl_keyboard *keyboard, uint32_t format, int fd, uint32_t size) {}
static void keyboard_handle_enter(void *data, struct wl_keyboard *keyboard, uint32_t serial, struct wl_surface *surface,
struct wl_array *keys) {}
static void keyboard_handle_leave(void *data, struct wl_keyboard *keyboard, uint32_t serial, struct wl_surface *surface) {}
static void keyboard_handle_key(void *data, struct wl_keyboard *keyboard, uint32_t serial, uint32_t time, uint32_t key,
uint32_t state) {
if (state != WL_KEYBOARD_KEY_STATE_RELEASED) return;
Demo &demo = *static_cast<Demo *>(data);
switch (key) {
case KEY_ESC: // Escape
demo.quit = true;
break;
case KEY_LEFT: // left arrow key
demo.spin_angle -= demo.spin_increment;
break;
case KEY_RIGHT: // right arrow key
demo.spin_angle += demo.spin_increment;
break;
case KEY_SPACE: // space bar
demo.pause = !demo.pause;
break;
}
}
static void keyboard_handle_modifiers(void *data, wl_keyboard *keyboard, uint32_t serial, uint32_t mods_depressed,
uint32_t mods_latched, uint32_t mods_locked, uint32_t group) {}
static const struct wl_keyboard_listener keyboard_listener = {
keyboard_handle_keymap, keyboard_handle_enter, keyboard_handle_leave, keyboard_handle_key, keyboard_handle_modifiers,
};
static void seat_handle_capabilities(void *data, wl_seat *seat, uint32_t caps) {
// Subscribe to pointer events
Demo &demo = *static_cast<Demo *>(data);
if ((caps & WL_SEAT_CAPABILITY_POINTER) && !demo.pointer) {
demo.pointer = wl_seat_get_pointer(seat);
wl_pointer_add_listener(demo.pointer, &pointer_listener, &demo);
} else if (!(caps & WL_SEAT_CAPABILITY_POINTER) && demo.pointer) {
wl_pointer_destroy(demo.pointer);
demo.pointer = nullptr;
}
// Subscribe to keyboard events
if (caps & WL_SEAT_CAPABILITY_KEYBOARD) {
demo.keyboard = wl_seat_get_keyboard(seat);
wl_keyboard_add_listener(demo.keyboard, &keyboard_listener, &demo);
} else if (!(caps & WL_SEAT_CAPABILITY_KEYBOARD) && demo.keyboard) {
wl_keyboard_destroy(demo.keyboard);
demo.keyboard = nullptr;
}
}
static const wl_seat_listener seat_listener = {
seat_handle_capabilities,
};
static void wm_base_ping(void *data, xdg_wm_base *xdg_wm_base, uint32_t serial) { xdg_wm_base_pong(xdg_wm_base, serial); }
static const struct xdg_wm_base_listener wm_base_listener = {wm_base_ping};
static void registry_handle_global(void *data, wl_registry *registry, uint32_t id, const char *interface, uint32_t version) {
Demo &demo = *static_cast<Demo *>(data);
// pickup wayland objects when they appear
if (strcmp(interface, wl_compositor_interface.name) == 0) {
demo.compositor = (wl_compositor *)wl_registry_bind(registry, id, &wl_compositor_interface, 1);
} else if (strcmp(interface, xdg_wm_base_interface.name) == 0) {
demo.wm_base = (xdg_wm_base *)wl_registry_bind(registry, id, &xdg_wm_base_interface, 1);
xdg_wm_base_add_listener(demo.wm_base, &wm_base_listener, nullptr);
} else if (strcmp(interface, wl_seat_interface.name) == 0) {
demo.seat = (wl_seat *)wl_registry_bind(registry, id, &wl_seat_interface, 1);
wl_seat_add_listener(demo.seat, &seat_listener, &demo);
} else if (strcmp(interface, zxdg_decoration_manager_v1_interface.name) == 0) {
demo.xdg_decoration_mgr =
(zxdg_decoration_manager_v1 *)wl_registry_bind(registry, id, &zxdg_decoration_manager_v1_interface, 1);
}
}
static void registry_handle_global_remove(void *data, wl_registry *registry, uint32_t name) {}
static const wl_registry_listener registry_listener = {registry_handle_global, registry_handle_global_remove};
#endif
void Demo::build_image_ownership_cmd(const SwapchainImageResources &swapchain_image_resource) {
auto result = swapchain_image_resource.graphics_to_present_cmd.begin(
vk::CommandBufferBeginInfo().setFlags(vk::CommandBufferUsageFlagBits::eSimultaneousUse));
VERIFY(result == vk::Result::eSuccess);
auto const image_ownership_barrier =
vk::ImageMemoryBarrier()
.setSrcAccessMask(vk::AccessFlags())
.setDstAccessMask(vk::AccessFlags())
.setOldLayout(vk::ImageLayout::ePresentSrcKHR)
.setNewLayout(vk::ImageLayout::ePresentSrcKHR)
.setSrcQueueFamilyIndex(graphics_queue_family_index)
.setDstQueueFamilyIndex(present_queue_family_index)
.setImage(swapchain_image_resource.image)
.setSubresourceRange(vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
swapchain_image_resource.graphics_to_present_cmd.pipelineBarrier(vk::PipelineStageFlagBits::eBottomOfPipe,
vk::PipelineStageFlagBits::eBottomOfPipe,
vk::DependencyFlagBits(), {}, {}, image_ownership_barrier);
result = swapchain_image_resource.graphics_to_present_cmd.end();
VERIFY(result == vk::Result::eSuccess);
}
vk::Bool32 Demo::check_layers(const std::vector<const char *> &check_names, const std::vector<vk::LayerProperties> &layers) {
for (const auto &name : check_names) {
vk::Bool32 found = VK_FALSE;
for (const auto &layer : layers) {
if (!strcmp(name, layer.layerName)) {
found = VK_TRUE;
break;
}
}
if (!found) {
fprintf(stderr, "Cannot find layer: %s\n", name);
return 0;
}
}
return VK_TRUE;
}
void Demo::cleanup() {
prepared = false;
auto result = device.waitIdle();
VERIFY(result == vk::Result::eSuccess);
if (!is_minimized) {
destroy_swapchain_related_resources();
}
// Wait for fences from present operations
for (uint32_t i = 0; i < FRAME_LAG; i++) {
device.destroyFence(fences[i]);
device.destroySemaphore(image_acquired_semaphores[i]);
device.destroySemaphore(draw_complete_semaphores[i]);
if (separate_present_queue) {
device.destroySemaphore(image_ownership_semaphores[i]);
}
}
device.destroySwapchainKHR(swapchain);
device.destroy();
inst.destroySurfaceKHR(surface);
#if defined(VK_USE_PLATFORM_XLIB_KHR)
XDestroyWindow(display, xlib_window);
XCloseDisplay(display);
#elif defined(VK_USE_PLATFORM_XCB_KHR)
xcb_destroy_window(connection, xcb_window);
xcb_disconnect(connection);
free(atom_wm_delete_window);
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
if (keyboard) wl_keyboard_destroy(keyboard);
if (pointer) wl_pointer_destroy(pointer);
if (seat) wl_seat_destroy(seat);
xdg_toplevel_destroy(window_toplevel);
xdg_surface_destroy(window_surface);
wl_surface_destroy(window);
xdg_wm_base_destroy(wm_base);
if (xdg_decoration_mgr) {
zxdg_toplevel_decoration_v1_destroy(toplevel_decoration);
zxdg_decoration_manager_v1_destroy(xdg_decoration_mgr);
}
wl_compositor_destroy(compositor);
wl_registry_destroy(registry);
wl_display_disconnect(display);
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
event_buffer->Release(event_buffer);
window->Release(window);
dfb->Release(dfb);
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
screen_destroy_event(screen_event);
screen_destroy_window(screen_window);
screen_destroy_context(screen_context);
#endif
if (use_debug_messenger) {
inst.destroyDebugUtilsMessengerEXT(debug_messenger);
}
inst.destroy();
}
void Demo::create_device() {
float priorities = 0.0;
std::vector<vk::DeviceQueueCreateInfo> queues;
queues.push_back(vk::DeviceQueueCreateInfo().setQueueFamilyIndex(graphics_queue_family_index).setQueuePriorities(priorities));
if (separate_present_queue) {
queues.push_back(
vk::DeviceQueueCreateInfo().setQueueFamilyIndex(present_queue_family_index).setQueuePriorities(priorities));
}
auto deviceInfo = vk::DeviceCreateInfo().setQueueCreateInfos(queues).setPEnabledExtensionNames(enabled_device_extensions);
auto device_return = gpu.createDevice(deviceInfo);
VERIFY(device_return.result == vk::Result::eSuccess);
device = device_return.value;
VULKAN_HPP_DEFAULT_DISPATCHER.init(device);
}
void Demo::destroy_texture(texture_object &tex_objs) {
// clean up staging resources
device.freeMemory(tex_objs.mem);
if (tex_objs.image) device.destroyImage(tex_objs.image);
if (tex_objs.buffer) device.destroyBuffer(tex_objs.buffer);
}
void Demo::draw() {
// Ensure no more than FRAME_LAG renderings are outstanding
const vk::Result wait_result = device.waitForFences(fences[frame_index], VK_TRUE, UINT64_MAX);
VERIFY(wait_result == vk::Result::eSuccess || wait_result == vk::Result::eTimeout);
device.resetFences({fences[frame_index]});
vk::Result acquire_result;
do {
acquire_result =
device.acquireNextImageKHR(swapchain, UINT64_MAX, image_acquired_semaphores[frame_index], vk::Fence(), &current_buffer);
if (acquire_result == vk::Result::eErrorOutOfDateKHR) {
// demo.swapchain is out of date (e.g. the window was resized) and
// must be recreated:
resize();
} else if (acquire_result == vk::Result::eSuboptimalKHR) {
// swapchain is not as optimal as it could be, but the platform's
// presentation engine will still present the image correctly.
break;
} else if (acquire_result == vk::Result::eErrorSurfaceLostKHR) {
inst.destroySurfaceKHR(surface);
create_surface();
resize();
} else {
VERIFY(acquire_result == vk::Result::eSuccess);
}
} while (acquire_result != vk::Result::eSuccess);
update_data_buffer();
// Wait for the image acquired semaphore to be signaled to ensure
// that the image won't be rendered to until the presentation
// engine has fully released ownership to the application, and it is
// okay to render to the image.
vk::PipelineStageFlags const pipe_stage_flags = vk::PipelineStageFlagBits::eColorAttachmentOutput;
auto submit_result = graphics_queue.submit(vk::SubmitInfo()
.setWaitDstStageMask(pipe_stage_flags)
.setWaitSemaphores(image_acquired_semaphores[frame_index])
.setCommandBuffers(swapchain_image_resources[current_buffer].cmd)
.setSignalSemaphores(draw_complete_semaphores[frame_index]),
fences[frame_index]);
VERIFY(submit_result == vk::Result::eSuccess);
if (separate_present_queue) {
// If we are using separate queues, change image ownership to the
// present queue before presenting, waiting for the draw complete
// semaphore and signalling the ownership released semaphore when
// finished
auto change_owner_result =
present_queue.submit(vk::SubmitInfo()
.setWaitDstStageMask(pipe_stage_flags)
.setWaitSemaphores(draw_complete_semaphores[frame_index])
.setCommandBuffers(swapchain_image_resources[current_buffer].graphics_to_present_cmd)
.setSignalSemaphores(image_ownership_semaphores[frame_index]));
VERIFY(change_owner_result == vk::Result::eSuccess);
}
const auto presentInfo = vk::PresentInfoKHR()
.setWaitSemaphores(separate_present_queue ? image_ownership_semaphores[frame_index]
: draw_complete_semaphores[frame_index])
.setSwapchains(swapchain)
.setImageIndices(current_buffer);
// If we are using separate queues we have to wait for image ownership,
// otherwise wait for draw complete
auto present_result = present_queue.presentKHR(&presentInfo);
frame_index += 1;
frame_index %= FRAME_LAG;
if (present_result == vk::Result::eErrorOutOfDateKHR) {
// swapchain is out of date (e.g. the window was resized) and
// must be recreated:
resize();
} else if (present_result == vk::Result::eSuboptimalKHR) {
// SUBOPTIMAL could be due to resize
vk::SurfaceCapabilitiesKHR surfCapabilities;
auto caps_result = gpu.getSurfaceCapabilitiesKHR(surface, &surfCapabilities);
VERIFY(caps_result == vk::Result::eSuccess);
if (surfCapabilities.currentExtent.width != width || surfCapabilities.currentExtent.height != height) {
resize();
}
} else if (present_result == vk::Result::eErrorSurfaceLostKHR) {
inst.destroySurfaceKHR(surface);
create_surface();
resize();
} else {
VERIFY(present_result == vk::Result::eSuccess);
}
}
void Demo::draw_build_cmd(const SwapchainImageResources &swapchain_image_resource) {
const auto commandBuffer = swapchain_image_resource.cmd;
vk::ClearValue const clearValues[2] = {vk::ClearColorValue(std::array<float, 4>({{0.2f, 0.2f, 0.2f, 0.2f}})),
vk::ClearDepthStencilValue(1.0f, 0u)};
auto result = commandBuffer.begin(vk::CommandBufferBeginInfo().setFlags(vk::CommandBufferUsageFlagBits::eSimultaneousUse));
VERIFY(result == vk::Result::eSuccess);
commandBuffer.beginRenderPass(vk::RenderPassBeginInfo()
.setRenderPass(render_pass)
.setFramebuffer(swapchain_image_resource.framebuffer)
.setRenderArea(vk::Rect2D(vk::Offset2D{}, vk::Extent2D(width, height)))
.setClearValueCount(2)
.setPClearValues(clearValues),
vk::SubpassContents::eInline);
commandBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
commandBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipeline_layout, 0, swapchain_image_resource.descriptor_set,
{});
float viewport_dimension;
float viewport_x = 0.0f;
float viewport_y = 0.0f;
if (width < height) {
viewport_dimension = static_cast<float>(width);
viewport_y = (height - width) / 2.0f;
} else {
viewport_dimension = static_cast<float>(height);
viewport_x = (width - height) / 2.0f;
}
commandBuffer.setViewport(0, vk::Viewport()
.setX(viewport_x)
.setY(viewport_y)
.setWidth(viewport_dimension)
.setHeight(viewport_dimension)
.setMinDepth(0.0f)
.setMaxDepth(1.0f));
commandBuffer.setScissor(0, vk::Rect2D(vk::Offset2D{}, vk::Extent2D(width, height)));
commandBuffer.draw(12 * 3, 1, 0, 0);
// Note that ending the renderpass changes the image's layout from
// COLOR_ATTACHMENT_OPTIMAL to PRESENT_SRC_KHR
commandBuffer.endRenderPass();
if (separate_present_queue) {
// We have to transfer ownership from the graphics queue family to
// the
// present queue family to be able to present. Note that we don't
// have
// to transfer from present queue family back to graphics queue
// family at
// the start of the next frame because we don't care about the
// image's
// contents at that point.
commandBuffer.pipelineBarrier(
vk::PipelineStageFlagBits::eBottomOfPipe, vk::PipelineStageFlagBits::eBottomOfPipe, vk::DependencyFlagBits(), {}, {},
vk::ImageMemoryBarrier()
.setSrcAccessMask(vk::AccessFlags())
.setDstAccessMask(vk::AccessFlags())
.setOldLayout(vk::ImageLayout::ePresentSrcKHR)
.setNewLayout(vk::ImageLayout::ePresentSrcKHR)
.setSrcQueueFamilyIndex(graphics_queue_family_index)
.setDstQueueFamilyIndex(present_queue_family_index)
.setImage(swapchain_image_resource.image)
.setSubresourceRange(vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)));
}
result = commandBuffer.end();
VERIFY(result == vk::Result::eSuccess);
}
void Demo::prepare_init_cmd() {
auto cmd_pool_return = device.createCommandPool(vk::CommandPoolCreateInfo().setQueueFamilyIndex(graphics_queue_family_index));
VERIFY(cmd_pool_return.result == vk::Result::eSuccess);
cmd_pool = cmd_pool_return.value;
auto cmd_return = device.allocateCommandBuffers(vk::CommandBufferAllocateInfo()
.setCommandPool(cmd_pool)
.setLevel(vk::CommandBufferLevel::ePrimary)
.setCommandBufferCount(1));
VERIFY(cmd_return.result == vk::Result::eSuccess);
cmd = cmd_return.value[0];
auto result = cmd.begin(vk::CommandBufferBeginInfo());
VERIFY(result == vk::Result::eSuccess);
}
void Demo::flush_init_cmd() {
auto result = cmd.end();
VERIFY(result == vk::Result::eSuccess);
auto fenceInfo = vk::FenceCreateInfo();
if (force_errors) {
// Remove sType to intentionally force validation layer errors.
fenceInfo.sType = vk::StructureType::eRenderPassBeginInfo;
}
auto fence_return = device.createFence(fenceInfo);
VERIFY(fence_return.result == vk::Result::eSuccess);
auto fence = fence_return.value;
result = graphics_queue.submit(vk::SubmitInfo().setCommandBuffers(cmd), fence);
VERIFY(result == vk::Result::eSuccess);
result = device.waitForFences(fence, VK_TRUE, UINT64_MAX);
VERIFY(result == vk::Result::eSuccess);
device.freeCommandBuffers(cmd_pool, cmd);
device.destroyFence(fence);
}
void Demo::init(int argc, char **argv) {
vec3 eye = {0.0f, 3.0f, 5.0f};
vec3 origin = {0, 0, 0};
vec3 up = {0.0f, 1.0f, 0.0};
presentMode = vk::PresentModeKHR::eFifo;
frameCount = UINT32_MAX;
width = 500;
height = 500;
/* Autodetect suitable / best GPU by default */
gpu_number = -1;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--use_staging") == 0) {
use_staging_buffer = true;
continue;
}
if ((strcmp(argv[i], "--present_mode") == 0) && (i < argc - 1)) {
presentMode = static_cast<vk::PresentModeKHR>(atoi(argv[i + 1]));
i++;
continue;
}
if (strcmp(argv[i], "--break") == 0) {
use_break = true;
continue;
}
if (strcmp(argv[i], "--validate") == 0) {
validate = true;
continue;
}
if (strcmp(argv[i], "--xlib") == 0) {
fprintf(stderr, "--xlib is deprecated and no longer does anything");
continue;
}
if (strcmp(argv[i], "--c") == 0 && frameCount == UINT32_MAX && i < argc - 1 &&
sscanf(argv[i + 1], "%" SCNu32, &frameCount) == 1) {
i++;
continue;
}
if (strcmp(argv[i], "--width") == 0) {
int32_t in_width = 0;
if (i < argc - 1 && sscanf(argv[i + 1], "%d", &in_width) == 1) {
if (in_width > 0) {
width = static_cast<uint32_t>(in_width);
i++;
continue;
} else {
ERR_EXIT("The --width parameter must be greater than 0", "User Error");
}
}
ERR_EXIT("The --width parameter must be followed by a number", "User Error");
}
if (strcmp(argv[i], "--height") == 0) {
int32_t in_height = 0;
if (i < argc - 1 && sscanf(argv[i + 1], "%d", &in_height) == 1) {
if (in_height > 0) {
height = static_cast<uint32_t>(in_height);
i++;
continue;
} else {
ERR_EXIT("The --height parameter must be greater than 0", "User Error");
}
}
ERR_EXIT("The --height parameter must be followed by a number", "User Error");
}
if (strcmp(argv[i], "--suppress_popups") == 0) {
suppress_popups = true;
continue;
}
if ((strcmp(argv[i], "--gpu_number") == 0) && (i < argc - 1)) {
gpu_number = atoi(argv[i + 1]);
if (gpu_number < 0) invalid_gpu_selection = true;
i++;
continue;
}
if (strcmp(argv[i], "--force_errors") == 0) {
force_errors = true;
continue;
}
std::stringstream usage;
usage << "Usage:\n " << APP_SHORT_NAME << "\t[--use_staging] [--validate]\n"
<< "\t[--break] [--c <framecount>] [--suppress_popups]\n"
<< "\t[--gpu_number <index of physical device>]\n"
<< "\t[--present_mode <present mode enum>]\n"
<< "\t[--width <width>] [--height <height>]\n"
<< "\t[--force_errors]\n"
<< "\t<present_mode_enum>\n"
<< "\t\tVK_PRESENT_MODE_IMMEDIATE_KHR = " << VK_PRESENT_MODE_IMMEDIATE_KHR << "\n"
<< "\t\tVK_PRESENT_MODE_MAILBOX_KHR = " << VK_PRESENT_MODE_MAILBOX_KHR << "\n"
<< "\t\tVK_PRESENT_MODE_FIFO_KHR = " << VK_PRESENT_MODE_FIFO_KHR << "\n"
<< "\t\tVK_PRESENT_MODE_FIFO_RELAXED_KHR = " << VK_PRESENT_MODE_FIFO_RELAXED_KHR << "\n";
#if defined(_WIN32)
if (!suppress_popups) MessageBox(nullptr, usage.str().c_str(), "Usage Error", MB_OK);
#else
std::cerr << usage.str();
std::cerr.flush();
#endif
exit(1);
}
init_connection();
init_vk();
spin_angle = 4.0f;
spin_increment = 0.2f;
pause = false;
mat4x4_perspective(projection_matrix, static_cast<float>(degreesToRadians(45.0f)), 1.0f, 0.1f, 100.0f);
mat4x4_look_at(view_matrix, eye, origin, up);
mat4x4_identity(model_matrix);
projection_matrix[1][1] *= -1; // Flip projection matrix from GL to Vulkan orientation.
}
void Demo::init_connection() {
#if defined(VK_USE_PLATFORM_XCB_KHR)
const xcb_setup_t *setup;
xcb_screen_iterator_t iter;
int scr;
const char *display_envar = getenv("DISPLAY");
if (display_envar == nullptr || display_envar[0] == '\0') {
printf("Environment variable DISPLAY requires a valid value.\nExiting ...\n");
fflush(stdout);
exit(1);
}
connection = xcb_connect(nullptr, &scr);
if (xcb_connection_has_error(connection) > 0) {
printf("Cannot connect to XCB.\nExiting ...\n");
fflush(stdout);
exit(1);
}
setup = xcb_get_setup(connection);
iter = xcb_setup_roots_iterator(setup);
while (scr-- > 0) xcb_screen_next(&iter);
screen = iter.data;
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
display = wl_display_connect(nullptr);
if (display == nullptr) {
printf("Cannot connect to wayland.\nExiting ...\n");
fflush(stdout);
exit(1);
}
registry = wl_display_get_registry(display);
wl_registry_add_listener(registry, &registry_listener, this);
wl_display_dispatch(display);
#endif
}
#if defined(VK_USE_PLATFORM_DISPLAY_KHR)
int find_display_gpu(int gpu_number, const std::vector<vk::PhysicalDevice> &physical_devices) {
uint32_t display_count = 0;
int gpu_return = gpu_number;
if (gpu_number >= 0) {
auto display_props_return = physical_devices[gpu_number].getDisplayPropertiesKHR();
VERIFY(display_props_return.result == vk::Result::eSuccess);
display_count = display_props_return.value.size();
} else {
for (uint32_t i = 0; i < physical_devices.size(); i++) {
auto display_props_return = physical_devices[i].getDisplayPropertiesKHR();
VERIFY(display_props_return.result == vk::Result::eSuccess);
if (display_props_return.value.size() > 0) {
display_count = display_props_return.value.size();
gpu_return = i;
break;
}
}
}
if (display_count > 0)
return gpu_return;
else
return -1;
}
#endif
VKAPI_ATTR VkBool32 VKAPI_CALL Demo::debug_messenger_callback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
void *pUserData) {
std::ostringstream message;
Demo &demo = *static_cast<Demo *>(pUserData);
if (demo.use_break) {
#ifndef WIN32
raise(SIGTRAP);
#else
DebugBreak();
#endif
}
message << vk::to_string(vk::DebugUtilsMessageSeverityFlagBitsEXT(messageSeverity));
message << " : " + vk::to_string(vk::DebugUtilsMessageTypeFlagsEXT(messageType));
if (vk::DebugUtilsMessageTypeFlagsEXT(messageType) & vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation) {
validation_error = 1;
}
message << " - Message Id Number: " << std::to_string(pCallbackData->messageIdNumber);
message << " | Message Id Name: " << (pCallbackData->pMessageIdName == nullptr ? "" : pCallbackData->pMessageIdName) << "\n\t"
<< pCallbackData->pMessage << "\n";
if (pCallbackData->objectCount > 0) {
message << "\n\tObjects - " << pCallbackData->objectCount << "\n";
for (uint32_t object = 0; object < pCallbackData->objectCount; ++object) {
message << "\t\tObject[" << object << "] - "
<< vk::to_string(vk::ObjectType(pCallbackData->pObjects[object].objectType)) << ", Handle ";
// Print handle correctly if it is a dispatchable handle - aka a pointer
VkObjectType t = pCallbackData->pObjects[object].objectType;
if (t == VK_OBJECT_TYPE_INSTANCE || t == VK_OBJECT_TYPE_PHYSICAL_DEVICE || t == VK_OBJECT_TYPE_DEVICE ||
t == VK_OBJECT_TYPE_COMMAND_BUFFER || t == VK_OBJECT_TYPE_QUEUE) {
message << reinterpret_cast<void *>(static_cast<uintptr_t>(pCallbackData->pObjects[object].objectHandle));
} else {
message << pCallbackData->pObjects[object].objectHandle;
}
if (NULL != pCallbackData->pObjects[object].pObjectName && strlen(pCallbackData->pObjects[object].pObjectName) > 0) {
message << ", Name \"" << pCallbackData->pObjects[object].pObjectName << "\"\n";
} else {
message << "\n";
}
}
}
if (pCallbackData->cmdBufLabelCount > 0) {
message << "\n\tCommand Buffer Labels - " << pCallbackData->cmdBufLabelCount << "\n";
for (uint32_t cmd_buf_label = 0; cmd_buf_label < pCallbackData->cmdBufLabelCount; ++cmd_buf_label) {
message << "\t\tLabel[" << cmd_buf_label << "] - " << pCallbackData->pCmdBufLabels[cmd_buf_label].pLabelName << " { "
<< pCallbackData->pCmdBufLabels[cmd_buf_label].color[0] << ", "
<< pCallbackData->pCmdBufLabels[cmd_buf_label].color[1] << ", "
<< pCallbackData->pCmdBufLabels[cmd_buf_label].color[2] << ", "
<< pCallbackData->pCmdBufLabels[cmd_buf_label].color[2] << "}\n";
}
}
#ifdef _WIN32
if (!demo.suppress_popups) {
demo.in_callback = true;
auto message_string = message.str();
MessageBox(NULL, message_string.c_str(), "Alert", MB_OK);
demo.in_callback = false;
}
#elif defined(ANDROID)
if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) {
__android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message.str());
} else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) {
__android_log_print(ANDROID_LOG_WARN, APP_SHORT_NAME, "%s", message.str());
} else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) {
__android_log_print(ANDROID_LOG_ERROR, APP_SHORT_NAME, "%s", message.str());
} else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT) {
__android_log_print(ANDROID_LOG_VERBOSE, APP_SHORT_NAME, "%s", message.str());
} else {
__android_log_print(ANDROID_LOG_INFO, APP_SHORT_NAME, "%s", message.str());
}
#else
std::cout << message.str() << std::endl; // use endl to force a flush
#endif
return false; // Don't bail out, but keep going.
}
void Demo::init_vk() {
// See https://github.com/KhronosGroup/Vulkan-Hpp/pull/1755
// Currently Vulkan-Hpp doesn't check for libvulkan.1.dylib
// Which affects vkcube installation on Apple platforms.
VkResult err = volkInitialize();
if (err != VK_SUCCESS) {
ERR_EXIT(
"Unable to find the Vulkan runtime on the system.\n\n"
"This likely indicates that no Vulkan capable drivers are installed.",
"Installation Failure");
}
VULKAN_HPP_DEFAULT_DISPATCHER.init(vkGetInstanceProcAddr);
std::vector<char const *> instance_validation_layers = {"VK_LAYER_KHRONOS_validation"};
// Look for validation layers
vk::Bool32 validation_found = VK_FALSE;
if (validate) {
auto layers = vk::enumerateInstanceLayerProperties();
VERIFY(layers.result == vk::Result::eSuccess);
validation_found = check_layers(instance_validation_layers, layers.value);
if (validation_found) {
enabled_layers.push_back("VK_LAYER_KHRONOS_validation");
}
else {
ERR_EXIT(
"vkEnumerateInstanceLayerProperties failed to find required validation layer.\n\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
}
}
/* Look for instance extensions */
vk::Bool32 surfaceExtFound = VK_FALSE;
vk::Bool32 platformSurfaceExtFound = VK_FALSE;
bool portabilityEnumerationActive = false;
auto instance_extensions_return = vk::enumerateInstanceExtensionProperties();
VERIFY(instance_extensions_return.result == vk::Result::eSuccess);
for (const auto &extension : instance_extensions_return.value) {
if (!strcmp(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, extension.extensionName)) {
enabled_instance_extensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else if (!strcmp(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, extension.extensionName)) {
use_debug_messenger = true;
enabled_instance_extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
} else if (!strcmp(VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, extension.extensionName)) {
// We want cube to be able to enumerate drivers that support the portability_subset extension, so we have to enable the
// portability enumeration extension.
portabilityEnumerationActive = true;
enabled_instance_extensions.push_back(VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME);
} else if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME, extension.extensionName)) {
surfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
else if (!strcmp(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
}
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
else if (!strcmp(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME);
}
#elif defined(VK_USE_PLATFORM_XCB_KHR)
else if (!strcmp(VK_KHR_XCB_SURFACE_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
}
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
else if (!strcmp(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME);
}
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
else if (!strcmp(VK_EXT_DIRECTFB_SURFACE_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_EXT_DIRECTFB_SURFACE_EXTENSION_NAME);
}
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
else if (!strcmp(VK_KHR_DISPLAY_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_KHR_DISPLAY_EXTENSION_NAME);
}
#elif defined(VK_USE_PLATFORM_METAL_EXT)
else if (!strcmp(VK_EXT_METAL_SURFACE_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_EXT_METAL_SURFACE_EXTENSION_NAME);
}
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
else if (!strcmp(VK_QNX_SCREEN_SURFACE_EXTENSION_NAME, extension.extensionName)) {
platformSurfaceExtFound = 1;
enabled_instance_extensions.push_back(VK_QNX_SCREEN_SURFACE_EXTENSION_NAME);
}
#endif
}
if (!surfaceExtFound) {
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_KHR_SURFACE_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
}
if (!platformSurfaceExtFound) {
#if defined(VK_USE_PLATFORM_WIN32_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_KHR_WIN32_SURFACE_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_XCB_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_KHR_XCB_SURFACE_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_KHR_XLIB_SURFACE_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_EXT_DIRECTFB_SURFACE_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_KHR_DISPLAY_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_METAL_EXT)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_EXT_METAL_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the " VK_QNX_SCREEN_SURFACE_EXTENSION_NAME
" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
#endif
}
vk::DebugUtilsMessageSeverityFlagsEXT severityFlags(vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning |
vk::DebugUtilsMessageSeverityFlagBitsEXT::eError);
vk::DebugUtilsMessageTypeFlagsEXT messageTypeFlags(vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral |
vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance |
vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation);
auto debug_utils_create_info = vk::DebugUtilsMessengerCreateInfoEXT({}, severityFlags, messageTypeFlags,
&debug_messenger_callback, static_cast<void *>(this));
auto const app = vk::ApplicationInfo()
.setPApplicationName(APP_SHORT_NAME)
.setApplicationVersion(0)
.setPEngineName(APP_SHORT_NAME)
.setEngineVersion(0)
.setApiVersion(VK_API_VERSION_1_0);
auto const inst_info = vk::InstanceCreateInfo()
.setFlags(portabilityEnumerationActive ? vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR
: static_cast<vk::InstanceCreateFlagBits>(0))
.setPNext((use_debug_messenger && validate) ? &debug_utils_create_info : nullptr)
.setPApplicationInfo(&app)
.setPEnabledLayerNames(enabled_layers)
.setPEnabledExtensionNames(enabled_instance_extensions);
auto instance_result = vk::createInstance(inst_info);
if (instance_result.result == vk::Result::eErrorIncompatibleDriver) {
ERR_EXIT(
"Cannot find a compatible Vulkan installable client driver (ICD).\n\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
} else if (instance_result.result == vk::Result::eErrorExtensionNotPresent) {
ERR_EXIT(
"Cannot find a specified extension library.\n"
"Make sure your layers path is set appropriately.\n",
"vkCreateInstance Failure");
} else if (instance_result.result != vk::Result::eSuccess) {
ERR_EXIT(
"vkCreateInstance failed.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
}
inst = instance_result.value;
VULKAN_HPP_DEFAULT_DISPATCHER.init(inst);
if (use_debug_messenger) {
auto create_debug_messenger_return = inst.createDebugUtilsMessengerEXT(debug_utils_create_info);
VERIFY(create_debug_messenger_return.result == vk::Result::eSuccess);
debug_messenger = create_debug_messenger_return.value;
}
auto physical_device_return = inst.enumeratePhysicalDevices();
VERIFY(physical_device_return.result == vk::Result::eSuccess);
auto physical_devices = physical_device_return.value;
if (physical_devices.size() <= 0) {
ERR_EXIT(
"vkEnumeratePhysicalDevices reported zero accessible devices.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkEnumeratePhysicalDevices Failure");
}
if (invalid_gpu_selection || (gpu_number >= 0 && !(static_cast<uint32_t>(gpu_number) < physical_devices.size()))) {
fprintf(stderr, "GPU %d specified is not present, GPU count = %zu\n", gpu_number, physical_devices.size());
ERR_EXIT("Specified GPU number is not present", "User Error");
}
#if defined(VK_USE_PLATFORM_DISPLAY_KHR)
gpu_number = find_display_gpu(gpu_number, physical_devices);
if (gpu_number < 0) {
printf("Cannot find any display!\n");
fflush(stdout);
exit(1);
}
#else
/* Try to auto select most suitable device */
if (gpu_number == -1) {
constexpr uint32_t device_type_count = static_cast<uint32_t>(vk::PhysicalDeviceType::eCpu) + 1;
std::array<uint32_t, device_type_count> count_device_type{};
for (uint32_t i = 0; i < physical_devices.size(); i++) {
const auto physicalDeviceProperties = physical_devices[i].getProperties();
assert(physicalDeviceProperties.deviceType <= vk::PhysicalDeviceType::eCpu);
count_device_type[static_cast<int>(physicalDeviceProperties.deviceType)]++;
}
std::array<vk::PhysicalDeviceType, device_type_count> const device_type_preference = {
vk::PhysicalDeviceType::eDiscreteGpu, vk::PhysicalDeviceType::eIntegratedGpu, vk::PhysicalDeviceType::eVirtualGpu,
vk::PhysicalDeviceType::eCpu, vk::PhysicalDeviceType::eOther};
vk::PhysicalDeviceType search_for_device_type = vk::PhysicalDeviceType::eDiscreteGpu;
for (uint32_t i = 0; i < sizeof(device_type_preference) / sizeof(vk::PhysicalDeviceType); i++) {
if (count_device_type[static_cast<int>(device_type_preference[i])]) {
search_for_device_type = device_type_preference[i];
break;
}
}
for (uint32_t i = 0; i < physical_devices.size(); i++) {
const auto physicalDeviceProperties = physical_devices[i].getProperties();
if (physicalDeviceProperties.deviceType == search_for_device_type) {
gpu_number = i;
break;
}
}
}
#endif
assert(gpu_number >= 0);
gpu = physical_devices[gpu_number];
{
auto physicalDeviceProperties = gpu.getProperties();
fprintf(stderr, "Selected GPU %d: %s, type: %s\n", gpu_number, physicalDeviceProperties.deviceName.data(),
to_string(physicalDeviceProperties.deviceType).c_str());
}
/* Look for device extensions */
vk::Bool32 swapchainExtFound = VK_FALSE;
auto device_extension_return = gpu.enumerateDeviceExtensionProperties();
VERIFY(device_extension_return.result == vk::Result::eSuccess);
for (const auto &extension : device_extension_return.value) {
if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME, extension.extensionName)) {
swapchainExtFound = 1;
enabled_device_extensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
} else if (!strcmp("VK_KHR_portability_subset", extension.extensionName)) {
enabled_device_extensions.push_back("VK_KHR_portability_subset");
}
}
if (!swapchainExtFound) {
ERR_EXIT("vkEnumerateDeviceExtensionProperties failed to find the " VK_KHR_SWAPCHAIN_EXTENSION_NAME
" extension.\n\n"
"Do you have a compatible Vulkan installable client driver (ICD) installed?\n"
"Please look at the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
}
gpu.getProperties(&gpu_props);
/* Call with nullptr data to get count */
queue_props = gpu.getQueueFamilyProperties();
assert(queue_props.size() >= 1);
// Query fine-grained feature support for this device.
// If app has specific feature requirements it should check supported
// features based on this query
vk::PhysicalDeviceFeatures physDevFeatures;
gpu.getFeatures(&physDevFeatures);
}
void Demo::create_surface() {
// Create a WSI surface for the window:
#if defined(VK_USE_PLATFORM_WIN32_KHR)
{
auto const createInfo = vk::Win32SurfaceCreateInfoKHR().setHinstance(connection).setHwnd(window);
auto result = inst.createWin32SurfaceKHR(&createInfo, nullptr, &surface);
VERIFY(result == vk::Result::eSuccess);
}
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
{
auto const createInfo = vk::WaylandSurfaceCreateInfoKHR().setDisplay(display).setSurface(window);
auto result = inst.createWaylandSurfaceKHR(&createInfo, nullptr, &surface);
VERIFY(result == vk::Result::eSuccess);
}
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
{
auto const createInfo = vk::XlibSurfaceCreateInfoKHR().setDpy(display).setWindow(xlib_window);
auto result = inst.createXlibSurfaceKHR(&createInfo, nullptr, &surface);
VERIFY(result == vk::Result::eSuccess);
}
#elif defined(VK_USE_PLATFORM_XCB_KHR)
{
auto const createInfo = vk::XcbSurfaceCreateInfoKHR().setConnection(connection).setWindow(xcb_window);
auto result = inst.createXcbSurfaceKHR(&createInfo, nullptr, &surface);
VERIFY(result == vk::Result::eSuccess);
}
#elif defined(VK_USE_PLATFORM_DIRECTFB_EXT)
{
auto const createInfo = vk::DirectFBSurfaceCreateInfoEXT().setDfb(dfb).setSurface(window);
auto result = inst.createDirectFBSurfaceEXT(&createInfo, nullptr, &surface);
VERIFY(result == vk::Result::eSuccess);
}
#elif defined(VK_USE_PLATFORM_METAL_EXT)
{
auto const createInfo = vk::MetalSurfaceCreateInfoEXT().setPLayer(static_cast<CAMetalLayer *>(caMetalLayer));
auto result = inst.createMetalSurfaceEXT(&createInfo, nullptr, &surface);
VERIFY(result == vk::Result::eSuccess);
}
#elif defined(VK_USE_PLATFORM_DISPLAY_KHR)
{
auto result = create_display_surface();
VERIFY(result == vk::Result::eSuccess);
}
#elif defined(VK_USE_PLATFORM_SCREEN_QNX)
{
auto const createInfo = vk::ScreenSurfaceCreateInfoQNX().setContext(screen_context).setWindow(screen_window);
auto result = inst.createScreenSurfaceQNX(&createInfo, nullptr, &surface);
VERIFY(result == vk::Result::eSuccess);
}
#endif
}
void Demo::init_vk_swapchain() {
create_surface();
// Iterate over each queue to learn whether it supports presenting:
std::vector<vk::Bool32> supportsPresent;
for (uint32_t i = 0; i < static_cast<uint32_t>(queue_props.size()); i++) {
auto supports = gpu.getSurfaceSupportKHR(i, surface);
VERIFY(supports.result == vk::Result::eSuccess);
supportsPresent.push_back(supports.value);
}
uint32_t graphicsQueueFamilyIndex = UINT32_MAX;
uint32_t presentQueueFamilyIndex = UINT32_MAX;
for (uint32_t i = 0; i < static_cast<uint32_t>(queue_props.size()); i++) {
if (queue_props[i].queueFlags & vk::QueueFlagBits::eGraphics) {
if (graphicsQueueFamilyIndex == UINT32_MAX) {
graphicsQueueFamilyIndex = i;
}
if (supportsPresent[i] == VK_TRUE) {
graphicsQueueFamilyIndex = i;
presentQueueFamilyIndex = i;
break;
}
}
}
if (presentQueueFamilyIndex == UINT32_MAX) {
// If didn't find a queue that supports both graphics and present,
// then
// find a separate present queue.
for (uint32_t i = 0; i < queue_props.size(); ++i) {
if (supportsPresent[i] == VK_TRUE) {
presentQueueFamilyIndex = i;
break;
}
}
}
// Generate error if could not find both a graphics and a present queue
if (graphicsQueueFamilyIndex == UINT32_MAX || presentQueueFamilyIndex == UINT32_MAX) {
ERR_EXIT("Could not find both graphics and present queues\n", "Swapchain Initialization Failure");
}
graphics_queue_family_index = graphicsQueueFamilyIndex;
present_queue_family_index = presentQueueFamilyIndex;
separate_present_queue = (graphics_queue_family_index != present_queue_family_index);
create_device();
graphics_queue = device.getQueue(graphics_queue_family_index, 0);
if (!separate_present_queue) {
present_queue = graphics_queue;
} else {
present_queue = device.getQueue(present_queue_family_index, 0);
}
// Get the list of VkFormat's that are supported:
auto surface_formats_return = gpu.getSurfaceFormatsKHR(surface);
VERIFY(surface_formats_return.result == vk::Result::eSuccess);
vk::SurfaceFormatKHR surfaceFormat = pick_surface_format(surface_formats_return.value);
format = surfaceFormat.format;
color_space = surfaceFormat.colorSpace;
quit = false;
curFrame = 0;
// Create semaphores to synchronize acquiring presentable buffers before
// rendering and waiting for drawing to be complete before presenting
auto const semaphoreCreateInfo = vk::SemaphoreCreateInfo();
// Create fences that we can use to throttle if we get too far
// ahead of the image presents
auto const fence_ci = vk::FenceCreateInfo().setFlags(vk::FenceCreateFlagBits::eSignaled);
for (uint32_t i = 0; i < FRAME_LAG; i++) {
vk::Result result = device.createFence(&fence_ci, nullptr, &fences[i]);
VERIFY(result == vk::Result::eSuccess);
result = device.createSemaphore(&semaphoreCreateInfo, nullptr, &image_acquired_semaphores[i]);
VERIFY(result == vk::Result::eSuccess);
result = device.createSemaphore(&semaphoreCreateInfo, nullptr, &draw_complete_semaphores[i]);
VERIFY(result == vk::Result::eSuccess);
if (separate_present_queue) {
result = device.createSemaphore(&semaphoreCreateInfo, nullptr, &image_ownership_semaphores[i]);
VERIFY(result == vk::Result::eSuccess);
}
}
frame_index = 0;
// Get Memory information and properties
memory_properties = gpu.getMemoryProperties();
}
void Demo::prepare() {
prepare_buffers();
if (is_minimized) {
prepared = false;
return;
}
prepare_init_cmd();
prepare_depth();
prepare_textures();
prepare_cube_data_buffers();
prepare_descriptor_layout();
prepare_render_pass();
prepare_pipeline();
for (auto &swapchain_image_resource : swapchain_image_resources) {
auto alloc_return = device.allocateCommandBuffers(vk::CommandBufferAllocateInfo()
.setCommandPool(cmd_pool)
.setLevel(vk::CommandBufferLevel::ePrimary)
.setCommandBufferCount(1));
VERIFY(alloc_return.result == vk::Result::eSuccess);
swapchain_image_resource.cmd = alloc_return.value[0];
}
if (separate_present_queue) {
auto present_cmd_pool_return =
device.createCommandPool(vk::CommandPoolCreateInfo().setQueueFamilyIndex(present_queue_family_index));
VERIFY(present_cmd_pool_return.result == vk::Result::eSuccess);
present_cmd_pool = present_cmd_pool_return.value;
for (auto &swapchain_image_resource : swapchain_image_resources) {
auto alloc_cmd_return = device.allocateCommandBuffers(vk::CommandBufferAllocateInfo()
.setCommandPool(present_cmd_pool)
.setLevel(vk::CommandBufferLevel::ePrimary)
.setCommandBufferCount(1));
VERIFY(alloc_cmd_return.result == vk::Result::eSuccess);
swapchain_image_resource.graphics_to_present_cmd = alloc_cmd_return.value[0];
build_image_ownership_cmd(swapchain_image_resource);
}
}
prepare_descriptor_pool();
prepare_descriptor_set();
prepare_framebuffers();
for (const auto &swapchain_image_resource : swapchain_image_resources) {
draw_build_cmd(swapchain_image_resource);
}
/*
* Prepare functions above may generate pipeline commands
* that need to be flushed before beginning the render loop.
*/
flush_init_cmd();
if (staging_texture.buffer) {
destroy_texture(staging_texture);
}
current_buffer = 0;
prepared = true;
}
void Demo::prepare_buffers() {
vk::SwapchainKHR oldSwapchain = swapchain;
// Check the surface capabilities and formats
auto surface_capabilities_return = gpu.getSurfaceCapabilitiesKHR(surface);
VERIFY(surface_capabilities_return.result == vk::Result::eSuccess);
auto surfCapabilities = surface_capabilities_return.value;
auto present_modes_return = gpu.getSurfacePresentModesKHR(surface);
VERIFY(present_modes_return.result == vk::Result::eSuccess);
auto present_modes = present_modes_return.value;
vk::Extent2D swapchainExtent;
// width and height are either both -1, or both not -1.
if (surfCapabilities.currentExtent.width == static_cast<uint32_t>(-1)) {
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapchainExtent.width = width;
swapchainExtent.height = height;
} else {
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfCapabilities.currentExtent;
width = surfCapabilities.currentExtent.width;
height = surfCapabilities.currentExtent.height;
}
if (width == 0 || height == 0) {
is_minimized = true;
return;
} else {
is_minimized = false;
}
// The FIFO present mode is guaranteed by the spec to be supported
// and to have no tearing. It's a great default present mode to use.
vk::PresentModeKHR swapchainPresentMode = vk::PresentModeKHR::eFifo;
// There are times when you may wish to use another present mode. The
// following code shows how to select them, and the comments provide some
// reasons you may wish to use them.
//
// It should be noted that Vulkan 1.0 doesn't provide a method for
// synchronizing rendering with the presentation engine's display. There
// is a method provided for throttling rendering with the display, but
// there are some presentation engines for which this method will not work.
// If an application doesn't throttle its rendering, and if it renders much
// faster than the refresh rate of the display, this can waste power on
// mobile devices. That is because power is being spent rendering images
// that may never be seen.
// VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care
// about
// tearing, or have some way of synchronizing their rendering with the
// display.
// VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that
// generally render a new presentable image every refresh cycle, but are
// occasionally early. In this case, the application wants the new
// image
// to be displayed instead of the previously-queued-for-presentation
// image
// that has not yet been displayed.
// VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally
// render a new presentable image every refresh cycle, but are
// occasionally
// late. In this case (perhaps because of stuttering/latency concerns),
// the application wants the late image to be immediately displayed,
// even
// though that may mean some tearing.
if (presentMode != swapchainPresentMode) {
for (const auto &mode : present_modes) {
if (mode == presentMode) {
swapchainPresentMode = mode;
break;
}
}
}
if (swapchainPresentMode != presentMode) {
ERR_EXIT("Present mode specified is not supported\n", "Present mode unsupported");
}
// Determine the number of VkImages to use in the swap chain.
// Application desires to acquire 3 images at a time for triple
// buffering
uint32_t desiredNumOfSwapchainImages = 3;
if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) {
desiredNumOfSwapchainImages = surfCapabilities.minImageCount;
}
// If maxImageCount is 0, we can ask for as many images as we want,
// otherwise
// we're limited to maxImageCount
if ((surfCapabilities.maxImageCount > 0) && (desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) {
// Application must settle for fewer images than desired:
desiredNumOfSwapchainImages = surfCapabilities.maxImageCount;
}
vk::SurfaceTransformFlagBitsKHR preTransform;
if (surfCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity) {
preTransform = vk::SurfaceTransformFlagBitsKHR::eIdentity;
} else {
preTransform = surfCapabilities.currentTransform;
}
// Find a supported composite alpha mode - one of these is guaranteed to be set
vk::CompositeAlphaFlagBitsKHR compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque;
std::array<vk::CompositeAlphaFlagBitsKHR, 4> compositeAlphaFlags = {
vk::CompositeAlphaFlagBitsKHR::eOpaque,
vk::CompositeAlphaFlagBitsKHR::ePreMultiplied,
vk::CompositeAlphaFlagBitsKHR::ePostMultiplied,
vk::CompositeAlphaFlagBitsKHR::eInherit,
};
for (const auto &compositeAlphaFlag : compositeAlphaFlags) {
if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlag) {
compositeAlpha = compositeAlphaFlag;
break;
}
}
auto swapchain_return = device.createSwapchainKHR(vk::SwapchainCreateInfoKHR()
.setSurface(surface)
.setMinImageCount(desiredNumOfSwapchainImages)
.setImageFormat(format)
.setImageColorSpace(color_space)
.setImageExtent({swapchainExtent.width, swapchainExtent.height})
.setImageArrayLayers(1)
.setImageUsage(vk::ImageUsageFlagBits::eColorAttachment)
.setImageSharingMode(vk::SharingMode::eExclusive)
.setPreTransform(preTransform)
.setCompositeAlpha(compositeAlpha)
.setPresentMode(swapchainPresentMode)
.setClipped(true)
.setOldSwapchain(oldSwapchain));
VERIFY(swapchain_return.result == vk::Result::eSuccess);
swapchain = swapchain_return.value;
// If we just re-created an existing swapchain, we should destroy the
// old
// swapchain at this point.
// Note: destroying the swapchain also cleans up all its associated
// presentable images once the platform is done with them.
if (oldSwapchain) {
device.destroySwapchainKHR(oldSwapchain);
}
auto swapchain_images_return = device.getSwapchainImagesKHR(swapchain);
VERIFY(swapchain_images_return.result == vk::Result::eSuccess);
swapchain_image_resources.resize(swapchain_images_return.value.size());
for (uint32_t i = 0; i < swapchain_image_resources.size(); ++i) {
auto color_image_view = vk::ImageViewCreateInfo()
.setViewType(vk::ImageViewType::e2D)
.setFormat(format)
.setSubresourceRange(vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
swapchain_image_resources[i].image = swapchain_images_return.value[i];
color_image_view.image = swapchain_image_resources[i].image;
auto image_view_return = device.createImageView(color_image_view);
VERIFY(image_view_return.result == vk::Result::eSuccess);
swapchain_image_resources[i].view = image_view_return.value;
}
}
void Demo::prepare_cube_data_buffers() {
mat4x4 VP;
mat4x4_mul(VP, projection_matrix, view_matrix);
mat4x4 MVP;
mat4x4_mul(MVP, VP, model_matrix);
vktexcube_vs_uniform data;
memcpy(data.mvp, MVP, sizeof(MVP));
// dumpMatrix("MVP", MVP)
for (int32_t i = 0; i < 12 * 3; i++) {
data.position[i][0] = g_vertex_buffer_data[i * 3];
data.position[i][1] = g_vertex_buffer_data[i * 3 + 1];
data.position[i][2] = g_vertex_buffer_data[i * 3 + 2];
data.position[i][3] = 1.0f;
data.attr[i][0] = g_uv_buffer_data[2 * i];
data.attr[i][1] = g_uv_buffer_data[2 * i + 1];
data.attr[i][2] = 0;
data.attr[i][3] = 0;
}
auto const buf_info = vk::BufferCreateInfo().setSize(sizeof(data)).setUsage(vk::BufferUsageFlagBits::eUniformBuffer);
for (auto &swapchain_image_resource : swapchain_image_resources) {
auto result = device.createBuffer(&buf_info, nullptr, &swapchain_image_resource.uniform_buffer);
VERIFY(result == vk::Result::eSuccess);
vk::MemoryRequirements mem_reqs;
device.getBufferMemoryRequirements(swapchain_image_resource.uniform_buffer, &mem_reqs);
auto mem_alloc = vk::MemoryAllocateInfo().setAllocationSize(mem_reqs.size).setMemoryTypeIndex(0);
bool const pass = memory_type_from_properties(
mem_reqs.memoryTypeBits, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
mem_alloc.memoryTypeIndex);
VERIFY(pass);
result = device.allocateMemory(&mem_alloc, nullptr, &swapchain_image_resource.uniform_memory);
VERIFY(result == vk::Result::eSuccess);
result = device.mapMemory(swapchain_image_resource.uniform_memory, 0, VK_WHOLE_SIZE, vk::MemoryMapFlags(),
&swapchain_image_resource.uniform_memory_ptr);
VERIFY(result == vk::Result::eSuccess);
memcpy(swapchain_image_resource.uniform_memory_ptr, &data, sizeof data);
result = device.bindBufferMemory(swapchain_image_resource.uniform_buffer, swapchain_image_resource.uniform_memory, 0);
VERIFY(result == vk::Result::eSuccess);
}
}
void Demo::prepare_depth() {
depth.format = vk::Format::eD16Unorm;
auto const image = vk::ImageCreateInfo()
.setImageType(vk::ImageType::e2D)
.setFormat(depth.format)
.setExtent({width, height, 1})
.setMipLevels(1)
.setArrayLayers(1)
.setSamples(vk::SampleCountFlagBits::e1)
.setTiling(vk::ImageTiling::eOptimal)
.setUsage(vk::ImageUsageFlagBits::eDepthStencilAttachment)
.setSharingMode(vk::SharingMode::eExclusive)
.setInitialLayout(vk::ImageLayout::eUndefined);
auto result = device.createImage(&image, nullptr, &depth.image);
VERIFY(result == vk::Result::eSuccess);
vk::MemoryRequirements mem_reqs;
device.getImageMemoryRequirements(depth.image, &mem_reqs);
depth.mem_alloc.setAllocationSize(mem_reqs.size);
depth.mem_alloc.setMemoryTypeIndex(0);
auto const pass = memory_type_from_properties(mem_reqs.memoryTypeBits, vk::MemoryPropertyFlagBits::eDeviceLocal,
depth.mem_alloc.memoryTypeIndex);
VERIFY(pass);
result = device.allocateMemory(&depth.mem_alloc, nullptr, &depth.mem);
VERIFY(result == vk::Result::eSuccess);
result = device.bindImageMemory(depth.image, depth.mem, 0);
VERIFY(result == vk::Result::eSuccess);
auto view = vk::ImageViewCreateInfo()
.setImage(depth.image)
.setViewType(vk::ImageViewType::e2D)
.setFormat(depth.format)
.setSubresourceRange(vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eDepth, 0, 1, 0, 1));
if (force_errors) {
// Intentionally force a bad pNext value to generate a validation layer error
view.pNext = &image;
}
result = device.createImageView(&view, nullptr, &depth.view);
VERIFY(result == vk::Result::eSuccess);
}
void Demo::prepare_descriptor_layout() {
std::array<vk::DescriptorSetLayoutBinding, 2> const layout_bindings = {
vk::DescriptorSetLayoutBinding()
.setBinding(0)
.setDescriptorType(vk::DescriptorType::eUniformBuffer)
.setDescriptorCount(1)
.setStageFlags(vk::ShaderStageFlagBits::eVertex)
.setPImmutableSamplers(nullptr),
vk::DescriptorSetLayoutBinding()
.setBinding(1)
.setDescriptorType(vk::DescriptorType::eCombinedImageSampler)
.setDescriptorCount(texture_count)
.setStageFlags(vk::ShaderStageFlagBits::eFragment)
.setPImmutableSamplers(nullptr)};
auto const descriptor_layout = vk::DescriptorSetLayoutCreateInfo().setBindings(layout_bindings);
auto result = device.createDescriptorSetLayout(&descriptor_layout, nullptr, &desc_layout);
VERIFY(result == vk::Result::eSuccess);
auto const pPipelineLayoutCreateInfo = vk::PipelineLayoutCreateInfo().setSetLayouts(desc_layout);
result = device.createPipelineLayout(&pPipelineLayoutCreateInfo, nullptr, &pipeline_layout);
VERIFY(result == vk::Result::eSuccess);
}
void Demo::prepare_descriptor_pool() {
std::array<vk::DescriptorPoolSize, 2> const poolSizes = {
vk::DescriptorPoolSize()
.setType(vk::DescriptorType::eUniformBuffer)
.setDescriptorCount(static_cast<uint32_t>(swapchain_image_resources.size())),
vk::DescriptorPoolSize()
.setType(vk::DescriptorType::eCombinedImageSampler)
.setDescriptorCount(static_cast<uint32_t>(swapchain_image_resources.size()) * texture_count)};
auto const descriptor_pool =
vk::DescriptorPoolCreateInfo().setMaxSets(static_cast<uint32_t>(swapchain_image_resources.size())).setPoolSizes(poolSizes);
auto result = device.createDescriptorPool(&descriptor_pool, nullptr, &desc_pool);
VERIFY(result == vk::Result::eSuccess);
}
void Demo::prepare_descriptor_set() {
auto const alloc_info = vk::DescriptorSetAllocateInfo().setDescriptorPool(desc_pool).setSetLayouts(desc_layout);
auto buffer_info = vk::DescriptorBufferInfo().setOffset(0).setRange(sizeof(vktexcube_vs_uniform));
std::array<vk::DescriptorImageInfo, texture_count> tex_descs;
for (uint32_t i = 0; i < texture_count; i++) {
tex_descs[i].setSampler(textures[i].sampler);
tex_descs[i].setImageView(textures[i].view);
tex_descs[i].setImageLayout(vk::ImageLayout::eShaderReadOnlyOptimal);
}
std::array<vk::WriteDescriptorSet, 2> writes;
writes[0].setDescriptorCount(1).setDescriptorType(vk::DescriptorType::eUniformBuffer).setPBufferInfo(&buffer_info);
writes[1]
.setDstBinding(1)
.setDescriptorCount(texture_count)
.setDescriptorType(vk::DescriptorType::eCombinedImageSampler)
.setImageInfo(tex_descs);
for (auto &swapchain_image_resource : swapchain_image_resources) {
auto result = device.allocateDescriptorSets(&alloc_info, &swapchain_image_resource.descriptor_set);
VERIFY(result == vk::Result::eSuccess);
buffer_info.setBuffer(swapchain_image_resource.uniform_buffer);
writes[0].setDstSet(swapchain_image_resource.descriptor_set);
writes[1].setDstSet(swapchain_image_resource.descriptor_set);
device.updateDescriptorSets(writes, {});
}
}
void Demo::prepare_framebuffers() {
std::array<vk::ImageView, 2> attachments;
attachments[1] = depth.view;
for (auto &swapchain_image_resource : swapchain_image_resources) {
attachments[0] = swapchain_image_resource.view;
auto const framebuffer_return = device.createFramebuffer(vk::FramebufferCreateInfo()
.setRenderPass(render_pass)
.setAttachments(attachments)
.setWidth(width)
.setHeight(height)
.setLayers(1));
VERIFY(framebuffer_return.result == vk::Result::eSuccess);
swapchain_image_resource.framebuffer = framebuffer_return.value;
}
}
vk::ShaderModule Demo::prepare_fs() {
const uint32_t fragShaderCode[] = {
#include "cube.frag.inc"
};
frag_shader_module = prepare_shader_module(fragShaderCode, sizeof(fragShaderCode));
return frag_shader_module;
}
void Demo::prepare_pipeline() {
vk::PipelineCacheCreateInfo const pipelineCacheInfo;
auto result = device.createPipelineCache(&pipelineCacheInfo, nullptr, &pipelineCache);
VERIFY(result == vk::Result::eSuccess);
std::array<vk::PipelineShaderStageCreateInfo, 2> const shaderStageInfo = {
vk::PipelineShaderStageCreateInfo().setStage(vk::ShaderStageFlagBits::eVertex).setModule(prepare_vs()).setPName("main"),
vk::PipelineShaderStageCreateInfo().setStage(vk::ShaderStageFlagBits::eFragment).setModule(prepare_fs()).setPName("main")};
vk::PipelineVertexInputStateCreateInfo const vertexInputInfo;
auto const inputAssemblyInfo = vk::PipelineInputAssemblyStateCreateInfo().setTopology(vk::PrimitiveTopology::eTriangleList);
// TODO: Where are pViewports and pScissors set?
auto const viewportInfo = vk::PipelineViewportStateCreateInfo().setViewportCount(1).setScissorCount(1);
auto const rasterizationInfo = vk::PipelineRasterizationStateCreateInfo()
.setDepthClampEnable(VK_FALSE)
.setRasterizerDiscardEnable(VK_FALSE)
.setPolygonMode(vk::PolygonMode::eFill)
.setCullMode(vk::CullModeFlagBits::eBack)
.setFrontFace(vk::FrontFace::eCounterClockwise)
.setDepthBiasEnable(VK_FALSE)
.setLineWidth(1.0f);
auto const multisampleInfo = vk::PipelineMultisampleStateCreateInfo();
auto const stencilOp =
vk::StencilOpState().setFailOp(vk::StencilOp::eKeep).setPassOp(vk::StencilOp::eKeep).setCompareOp(vk::CompareOp::eAlways);
auto const depthStencilInfo = vk::PipelineDepthStencilStateCreateInfo()
.setDepthTestEnable(VK_TRUE)
.setDepthWriteEnable(VK_TRUE)
.setDepthCompareOp(vk::CompareOp::eLessOrEqual)
.setDepthBoundsTestEnable(VK_FALSE)
.setStencilTestEnable(VK_FALSE)
.setFront(stencilOp)
.setBack(stencilOp);
std::array<vk::PipelineColorBlendAttachmentState, 1> const colorBlendAttachments = {
vk::PipelineColorBlendAttachmentState().setColorWriteMask(vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA)};
auto const colorBlendInfo = vk::PipelineColorBlendStateCreateInfo().setAttachments(colorBlendAttachments);
std::array<vk::DynamicState, 2> const dynamicStates = {vk::DynamicState::eViewport, vk::DynamicState::eScissor};
auto const dynamicStateInfo = vk::PipelineDynamicStateCreateInfo().setDynamicStates(dynamicStates);
auto pipline_return = device.createGraphicsPipelines(pipelineCache, vk::GraphicsPipelineCreateInfo()
.setStages(shaderStageInfo)
.setPVertexInputState(&vertexInputInfo)
.setPInputAssemblyState(&inputAssemblyInfo)
.setPViewportState(&viewportInfo)
.setPRasterizationState(&rasterizationInfo)
.setPMultisampleState(&multisampleInfo)
.setPDepthStencilState(&depthStencilInfo)
.setPColorBlendState(&colorBlendInfo)
.setPDynamicState(&dynamicStateInfo)
.setLayout(pipeline_layout)
.setRenderPass(render_pass));
VERIFY(pipline_return.result == vk::Result::eSuccess);
pipeline = pipline_return.value.at(0);
device.destroyShaderModule(frag_shader_module);
device.destroyShaderModule(vert_shader_module);
}
void Demo::prepare_render_pass() {
// The initial layout for the color and depth attachments will be LAYOUT_UNDEFINED
// because at the start of the renderpass, we don't care about their contents.
// At the start of the subpass, the color attachment's layout will be transitioned
// to LAYOUT_COLOR_ATTACHMENT_OPTIMAL and the depth stencil attachment's layout
// will be transitioned to LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL. At the end of
// the renderpass, the color attachment's layout will be transitioned to
// LAYOUT_PRESENT_SRC_KHR to be ready to present. This is all done as part of
// the renderpass, no barriers are necessary.
std::array<vk::AttachmentDescription, 2> const attachments = {
vk::AttachmentDescription()
.setFormat(format)
.setSamples(vk::SampleCountFlagBits::e1)
.setLoadOp(vk::AttachmentLoadOp::eClear)
.setStoreOp(vk::AttachmentStoreOp::eStore)
.setStencilLoadOp(vk::AttachmentLoadOp::eDontCare)
.setStencilStoreOp(vk::AttachmentStoreOp::eDontCare)
.setInitialLayout(vk::ImageLayout::eUndefined)
.setFinalLayout(vk::ImageLayout::ePresentSrcKHR),
vk::AttachmentDescription()
.setFormat(depth.format)
.setSamples(vk::SampleCountFlagBits::e1)
.setLoadOp(vk::AttachmentLoadOp::eClear)
.setStoreOp(vk::AttachmentStoreOp::eDontCare)
.setStencilLoadOp(vk::AttachmentLoadOp::eDontCare)
.setStencilStoreOp(vk::AttachmentStoreOp::eDontCare)
.setInitialLayout(vk::ImageLayout::eUndefined)
.setFinalLayout(vk::ImageLayout::eDepthStencilAttachmentOptimal)};
auto const color_reference = vk::AttachmentReference().setAttachment(0).setLayout(vk::ImageLayout::eColorAttachmentOptimal);
auto const depth_reference =
vk::AttachmentReference().setAttachment(1).setLayout(vk::ImageLayout::eDepthStencilAttachmentOptimal);
auto const subpass = vk::SubpassDescription()
.setPipelineBindPoint(vk::PipelineBindPoint::eGraphics)
.setColorAttachments(color_reference)
.setPDepthStencilAttachment(&depth_reference);
vk::PipelineStageFlags stages = vk::PipelineStageFlagBits::eEarlyFragmentTests | vk::PipelineStageFlagBits::eLateFragmentTests;
std::array<vk::SubpassDependency, 2> const dependencies = {
vk::SubpassDependency() // Depth buffer is shared between swapchain images
.setSrcSubpass(VK_SUBPASS_EXTERNAL)
.setDstSubpass(0)
.setSrcStageMask(stages)
.setDstStageMask(stages)
.setSrcAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentWrite)
.setDstAccessMask(vk::AccessFlagBits::eDepthStencilAttachmentRead | vk::AccessFlagBits::eDepthStencilAttachmentWrite)
.setDependencyFlags(vk::DependencyFlags()),
vk::SubpassDependency() // Image layout transition
.setSrcSubpass(VK_SUBPASS_EXTERNAL)
.setDstSubpass(0)
.setSrcStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput)
.setDstStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput)
.setSrcAccessMask(vk::AccessFlagBits())
.setDstAccessMask(vk::AccessFlagBits::eColorAttachmentWrite | vk::AccessFlagBits::eColorAttachmentRead)
.setDependencyFlags(vk::DependencyFlags()),
};
const auto render_pass_result = device.createRenderPass(
vk::RenderPassCreateInfo().setAttachments(attachments).setSubpasses(subpass).setDependencies(dependencies));
VERIFY(render_pass_result.result == vk::Result::eSuccess);
render_pass = render_pass_result.value;
}
vk::ShaderModule Demo::prepare_shader_module(const uint32_t *code, size_t size) {
const auto shader_module_return = device.createShaderModule(vk::ShaderModuleCreateInfo().setCodeSize(size).setPCode(code));
VERIFY(shader_module_return.result == vk::Result::eSuccess);
return shader_module_return.value;
}
void Demo::prepare_texture_buffer(const char *filename, texture_object &tex_obj) {
vk::SubresourceLayout tex_layout;
if (!loadTexture(filename, nullptr, tex_layout, tex_obj.tex_width, tex_obj.tex_height)) {
ERR_EXIT("Failed to load textures", "Load Texture Failure");
}
auto const buffer_create_info = vk::BufferCreateInfo()
.setSize(tex_obj.tex_width * tex_obj.tex_height * 4)
.setUsage(vk::BufferUsageFlagBits::eTransferSrc)
.setSharingMode(vk::SharingMode::eExclusive);
auto result = device.createBuffer(&buffer_create_info, nullptr, &tex_obj.buffer);
VERIFY(result == vk::Result::eSuccess);
vk::MemoryRequirements mem_reqs;
device.getBufferMemoryRequirements(tex_obj.buffer, &mem_reqs);
tex_obj.mem_alloc.setAllocationSize(mem_reqs.size);
tex_obj.mem_alloc.setMemoryTypeIndex(0);
vk::MemoryPropertyFlags requirements = vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent;
auto pass = memory_type_from_properties(mem_reqs.memoryTypeBits, requirements, tex_obj.mem_alloc.memoryTypeIndex);
VERIFY(pass == true);
result = device.allocateMemory(&tex_obj.mem_alloc, nullptr, &(tex_obj.mem));
VERIFY(result == vk::Result::eSuccess);
result = device.bindBufferMemory(tex_obj.buffer, tex_obj.mem, 0);
VERIFY(result == vk::Result::eSuccess);
vk::SubresourceLayout layout;
layout.rowPitch = tex_obj.tex_width * 4;
auto data = device.mapMemory(tex_obj.mem, 0, tex_obj.mem_alloc.allocationSize);
VERIFY(data.result == vk::Result::eSuccess);
if (!loadTexture(filename, (uint8_t *)data.value, layout, tex_obj.tex_width, tex_obj.tex_height)) {
fprintf(stderr, "Error loading texture: %s\n", filename);
}
device.unmapMemory(tex_obj.mem);
}
void Demo::prepare_texture_image(const char *filename, texture_object &tex_obj, vk::ImageTiling tiling, vk::ImageUsageFlags usage,
vk::MemoryPropertyFlags required_props) {
vk::SubresourceLayout tex_layout;
if (!loadTexture(filename, nullptr, tex_layout, tex_obj.tex_width, tex_obj.tex_height)) {
ERR_EXIT("Failed to load textures", "Load Texture Failure");
}
auto const image_create_info = vk::ImageCreateInfo()
.setImageType(vk::ImageType::e2D)
.setFormat(vk::Format::eR8G8B8A8Unorm)
.setExtent({tex_obj.tex_width, tex_obj.tex_height, 1})
.setMipLevels(1)
.setArrayLayers(1)
.setSamples(vk::SampleCountFlagBits::e1)
.setTiling(tiling)
.setUsage(usage)
.setSharingMode(vk::SharingMode::eExclusive)
.setInitialLayout(vk::ImageLayout::ePreinitialized);
auto result = device.createImage(&image_create_info, nullptr, &tex_obj.image);
VERIFY(result == vk::Result::eSuccess);
vk::MemoryRequirements mem_reqs;
device.getImageMemoryRequirements(tex_obj.image, &mem_reqs);
tex_obj.mem_alloc.setAllocationSize(mem_reqs.size);
tex_obj.mem_alloc.setMemoryTypeIndex(0);
auto pass = memory_type_from_properties(mem_reqs.memoryTypeBits, required_props, tex_obj.mem_alloc.memoryTypeIndex);
VERIFY(pass == true);
result = device.allocateMemory(&tex_obj.mem_alloc, nullptr, &tex_obj.mem);
VERIFY(result == vk::Result::eSuccess);
result = device.bindImageMemory(tex_obj.image, tex_obj.mem, 0);
VERIFY(result == vk::Result::eSuccess);
if (required_props & vk::MemoryPropertyFlagBits::eHostVisible) {
auto const subres = vk::ImageSubresource().setAspectMask(vk::ImageAspectFlagBits::eColor).setMipLevel(0).setArrayLayer(0);
vk::SubresourceLayout layout;
device.getImageSubresourceLayout(tex_obj.image, &subres, &layout);
auto data = device.mapMemory(tex_obj.mem, 0, tex_obj.mem_alloc.allocationSize);
VERIFY(data.result == vk::Result::eSuccess);
if (!loadTexture(filename, (uint8_t *)data.value, layout, tex_obj.tex_width, tex_obj.tex_height)) {
fprintf(stderr, "Error loading texture: %s\n", filename);
}
device.unmapMemory(tex_obj.mem);
}
tex_obj.imageLayout = vk::ImageLayout::eShaderReadOnlyOptimal;
}
void Demo::prepare_textures() {
vk::Format const tex_format = vk::Format::eR8G8B8A8Unorm;
vk::FormatProperties props;
gpu.getFormatProperties(tex_format, &props);
for (uint32_t i = 0; i < texture_count; i++) {
if ((props.linearTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage) && !use_staging_buffer) {
/* Device can texture using linear textures */
prepare_texture_image(tex_files[i], textures[i], vk::ImageTiling::eLinear, vk::ImageUsageFlagBits::eSampled,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
// Nothing in the pipeline needs to be complete to start, and don't allow fragment
// shader to run until layout transition completes
set_image_layout(textures[i].image, vk::ImageAspectFlagBits::eColor, vk::ImageLayout::ePreinitialized,
textures[i].imageLayout, vk::AccessFlagBits(), vk::PipelineStageFlagBits::eTopOfPipe,
vk::PipelineStageFlagBits::eFragmentShader);
staging_texture.image = vk::Image();
} else if (props.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage) {
/* Must use staging buffer to copy linear texture to optimized */
prepare_texture_buffer(tex_files[i], staging_texture);
prepare_texture_image(tex_files[i], textures[i], vk::ImageTiling::eOptimal,
vk::ImageUsageFlagBits::eTransferDst | vk::ImageUsageFlagBits::eSampled,
vk::MemoryPropertyFlagBits::eDeviceLocal);
set_image_layout(textures[i].image, vk::ImageAspectFlagBits::eColor, vk::ImageLayout::ePreinitialized,
vk::ImageLayout::eTransferDstOptimal, vk::AccessFlagBits(), vk::PipelineStageFlagBits::eTopOfPipe,
vk::PipelineStageFlagBits::eTransfer);
auto const subresource = vk::ImageSubresourceLayers()
.setAspectMask(vk::ImageAspectFlagBits::eColor)
.setMipLevel(0)
.setBaseArrayLayer(0)
.setLayerCount(1);
auto const copy_region = vk::BufferImageCopy()
.setBufferOffset(0)
.setBufferRowLength(staging_texture.tex_width)
.setBufferImageHeight(staging_texture.tex_height)
.setImageSubresource(subresource)
.setImageOffset({0, 0, 0})
.setImageExtent({staging_texture.tex_width, staging_texture.tex_height, 1});
cmd.copyBufferToImage(staging_texture.buffer, textures[i].image, vk::ImageLayout::eTransferDstOptimal, 1, &copy_region);
set_image_layout(textures[i].image, vk::ImageAspectFlagBits::eColor, vk::ImageLayout::eTransferDstOptimal,
textures[i].imageLayout, vk::AccessFlagBits::eTransferWrite, vk::PipelineStageFlagBits::eTransfer,
vk::PipelineStageFlagBits::eFragmentShader);
} else {
assert(!"No support for R8G8B8A8_UNORM as texture image format");
}
auto const samplerInfo = vk::SamplerCreateInfo()
.setMagFilter(vk::Filter::eNearest)
.setMinFilter(vk::Filter::eNearest)
.setMipmapMode(vk::SamplerMipmapMode::eNearest)
.setAddressModeU(vk::SamplerAddressMode::eClampToEdge)
.setAddressModeV(vk::SamplerAddressMode::eClampToEdge)
.setAddressModeW(vk::SamplerAddressMode::eClampToEdge)
.setMipLodBias(0.0f)
.setAnisotropyEnable(VK_FALSE)
.setMaxAnisotropy(1)
.setCompareEnable(VK_FALSE)
.setCompareOp(vk::CompareOp::eNever)
.setMinLod(0.0f)
.setMaxLod(0.0f)
.setBorderColor(vk::BorderColor::eFloatOpaqueWhite)
.setUnnormalizedCoordinates(VK_FALSE);
auto result = device.createSampler(&samplerInfo, nullptr, &textures[i].sampler);
VERIFY(result == vk::Result::eSuccess);
auto const viewInfo = vk::ImageViewCreateInfo()
.setImage(textures[i].image)
.setViewType(vk::ImageViewType::e2D)
.setFormat(tex_format)
.setSubresourceRange(vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
result = device.createImageView(&viewInfo, nullptr, &textures[i].view);
VERIFY(result == vk::Result::eSuccess);
}
}
vk::ShaderModule Demo::prepare_vs() {
const uint32_t vertShaderCode[] = {
#include "cube.vert.inc"
};
vert_shader_module = prepare_shader_module(vertShaderCode, sizeof(vertShaderCode));
return vert_shader_module;
}
void Demo::destroy_swapchain_related_resources() {
device.destroyDescriptorPool(desc_pool);
device.destroyPipeline(pipeline);
device.destroyPipelineCache(pipelineCache);
device.destroyRenderPass(render_pass);
device.destroyPipelineLayout(pipeline_layout);
device.destroyDescriptorSetLayout(desc_layout);
for (const auto &tex : textures) {
device.destroyImageView(tex.view);
device.destroyImage(tex.image);
device.freeMemory(tex.mem);
device.destroySampler(tex.sampler);
}
device.destroyImageView(depth.view);
device.destroyImage(depth.image);
device.freeMemory(depth.mem);
for (const auto &resource : swapchain_image_resources) {
device.destroyFramebuffer(resource.framebuffer);
device.destroyImageView(resource.view);
device.freeCommandBuffers(cmd_pool, {resource.cmd});
device.destroyBuffer(resource.uniform_buffer);
device.unmapMemory(resource.uniform_memory);
device.freeMemory(resource.uniform_memory);
}
device.destroyCommandPool(cmd_pool);
if (separate_present_queue) {
device.destroyCommandPool(present_cmd_pool);
}
}
void Demo::resize() {
// Don't react to resize until after first initialization.
if (!prepared) {
if (is_minimized) {
prepare();
}
return;
}
// In order to properly resize the window, we must re-create the
// swapchain
// AND redo the command buffers, etc.
//
// First, perform part of the cleanup() function:
prepared = false;
auto result = device.waitIdle();
VERIFY(result == vk::Result::eSuccess);
destroy_swapchain_related_resources();
// Second, re-perform the prepare() function, which will re-create the
// swapchain.
prepare();
}
void Demo::set_image_layout(vk::Image image, vk::ImageAspectFlags aspectMask, vk::ImageLayout oldLayout, vk::ImageLayout newLayout,
vk::AccessFlags srcAccessMask, vk::PipelineStageFlags src_stages, vk::PipelineStageFlags dest_stages) {
assert(cmd);
auto DstAccessMask = [](vk::ImageLayout const &layout) {
vk::AccessFlags flags;
switch (layout) {
case vk::ImageLayout::eTransferDstOptimal:
// Make sure anything that was copying from this image has
// completed
flags = vk::AccessFlagBits::eTransferWrite;
break;
case vk::ImageLayout::eColorAttachmentOptimal:
flags = vk::AccessFlagBits::eColorAttachmentWrite;
break;
case vk::ImageLayout::eDepthStencilAttachmentOptimal:
flags = vk::AccessFlagBits::eDepthStencilAttachmentWrite;
break;
case vk::ImageLayout::eShaderReadOnlyOptimal:
// Make sure any Copy or CPU writes to image are flushed
flags = vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eInputAttachmentRead;
break;
case vk::ImageLayout::eTransferSrcOptimal:
flags = vk::AccessFlagBits::eTransferRead;
break;
case vk::ImageLayout::ePresentSrcKHR:
flags = vk::AccessFlagBits::eMemoryRead;
break;
default:
break;
}
return flags;
};
cmd.pipelineBarrier(src_stages, dest_stages, vk::DependencyFlagBits(), {}, {},
vk::ImageMemoryBarrier()
.setSrcAccessMask(srcAccessMask)
.setDstAccessMask(DstAccessMask(newLayout))
.setOldLayout(oldLayout)
.setNewLayout(newLayout)
.setSrcQueueFamilyIndex(VK_QUEUE_FAMILY_IGNORED)
.setDstQueueFamilyIndex(VK_QUEUE_FAMILY_IGNORED)
.setImage(image)
.setSubresourceRange(vk::ImageSubresourceRange(aspectMask, 0, 1, 0, 1)));
}
void Demo::update_data_buffer() {
mat4x4 VP;
mat4x4_mul(VP, projection_matrix, view_matrix);
// Rotate around the Y axis
mat4x4 Model;
mat4x4_dup(Model, model_matrix);
mat4x4_rotate_Y(model_matrix, Model, static_cast<float>(degreesToRadians(spin_angle)));
mat4x4_orthonormalize(model_matrix, model_matrix);
mat4x4 MVP;
mat4x4_mul(MVP, VP, model_matrix);
memcpy(swapchain_image_resources[current_buffer].uniform_memory_ptr, (const void *)&MVP[0][0], sizeof(MVP));
}
/* Convert ppm image data from header file into RGBA texture image */
#include "lunarg.ppm.h"
bool Demo::loadTexture(const char *filename, uint8_t *rgba_data, vk::SubresourceLayout &layout, uint32_t &width, uint32_t &height) {
(void)filename;
char *cPtr;
cPtr = (char *)lunarg_ppm;
if ((unsigned char *)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "P6\n", 3)) {
return false;
}
while (strncmp(cPtr++, "\n", 1))
;
sscanf(cPtr, "%u %u", &width, &height);
if (rgba_data == nullptr) {
return true;
}
while (strncmp(cPtr++, "\n", 1))
;
if ((unsigned char *)cPtr >= (lunarg_ppm + lunarg_ppm_len) || strncmp(cPtr, "255\n", 4)) {
return false;
}
while (strncmp(cPtr++, "\n", 1))
;
for (uint32_t y = 0; y < height; y++) {
uint8_t *rowPtr = rgba_data;
for (uint32_t x = 0; x < width; x++) {
memcpy(rowPtr, cPtr, 3);
rowPtr[3] = 255; /* Alpha of 1 */
rowPtr += 4;
cPtr += 3;
}
rgba_data += layout.rowPitch;
}
return true;
}
bool Demo::memory_type_from_properties(uint32_t typeBits, vk::MemoryPropertyFlags requirements_mask, uint32_t &typeIndex) {
// Search memtypes to find first index with those properties
for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
if ((typeBits & 1) == 1) {
// Type is available, does it match user properties?
if ((memory_properties.memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) {
typeIndex = i;
return true;
}
}
typeBits >>= 1;
}
// No memory types matched, return failure
return false;
}
vk::SurfaceFormatKHR Demo::pick_surface_format(const std::vector<vk::SurfaceFormatKHR> &surface_formats) {
// Prefer non-SRGB formats...
for (const auto &surface_format : surface_formats) {
const vk::Format format = surface_format.format;
if (format == vk::Format::eR8G8B8A8Unorm || format == vk::Format::eB8G8R8A8Unorm ||
format == vk::Format::eA2B10G10R10UnormPack32 || format == vk::Format::eA2R10G10B10UnormPack32 ||
format == vk::Format::eA1R5G5B5UnormPack16 || format == vk::Format::eR5G6B5UnormPack16 ||
format == vk::Format::eR16G16B16A16Sfloat) {
return surface_format;
}
}
printf("Can't find our preferred formats... Falling back to first exposed format. Rendering may be incorrect.\n");
assert(surface_formats.size() >= 1);
return surface_formats[0];
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
void Demo::run() {
if (!prepared) {
return;
}
draw();
curFrame++;
if (frameCount != UINT32_MAX && curFrame == frameCount) {
PostQuitMessage(validation_error);
}
}
void Demo::create_window() {
WNDCLASSEX win_class;
// Initialize the window class structure:
win_class.cbSize = sizeof(WNDCLASSEX);
win_class.style = CS_HREDRAW | CS_VREDRAW;
win_class.lpfnWndProc = WndProc;
win_class.cbClsExtra = 0;
win_class.cbWndExtra = 0;
win_class.hInstance = connection; // hInstance
win_class.hIcon = LoadIcon(nullptr, IDI_APPLICATION);
win_class.hCursor = LoadCursor(nullptr, IDC_ARROW);
win_class.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
win_class.lpszMenuName = nullptr;
win_class.lpszClassName = name.c_str();
win_class.hIconSm = LoadIcon(nullptr, IDI_WINLOGO);
// Register window class:
if (!RegisterClassEx(&win_class)) {
// It didn't work, so try to give a useful error:
printf("Unexpected error trying to start the application!\n");
fflush(stdout);
exit(1);
}
// Create window with the registered class:
RECT wr = {0, 0, static_cast<LONG>(width), static_cast<LONG>(height)};
AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE);
window = CreateWindowEx(0,
name.c_str(), // class name
name.c_str(), // app name
WS_OVERLAPPEDWINDOW | // window style
WS_VISIBLE | WS_SYSMENU,
100, 100, // x/y coords
wr.right - wr.left, // width
wr.bottom - wr.top, // height
nullptr, // handle to parent
nullptr, // handle to menu
connection, // hInstance
nullptr); // no extra parameters
if (!window) {
// It didn't work, so try to give a useful error:
printf("Cannot create a window in which to draw!\n");
fflush(stdout);
exit(1);
}
// Window client area size must be at least 1 pixel high, to prevent
// crash.
minsize.x = GetSystemMetrics(SM_CXMINTRACK);
minsize.y = GetSystemMetrics(SM_CYMINTRACK) + 1;
}
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
void Demo::create_xlib_window() {
const char *display_envar = getenv("DISPLAY");
if (display_envar == nullptr || display_envar[0] == '\0') {
printf("Environment variable DISPLAY requires a valid value.\nExiting ...\n");
fflush(stdout);
exit(1);
}
XInitThreads();
display = XOpenDisplay(nullptr);
long visualMask = VisualScreenMask;
int numberOfVisuals;
XVisualInfo vInfoTemplate = {};
vInfoTemplate.screen = DefaultScreen(display);
XVisualInfo *visualInfo = XGetVisualInfo(display, visualMask, &vInfoTemplate, &numberOfVisuals);
Colormap colormap = XCreateColormap(display, RootWindow(display, vInfoTemplate.screen), visualInfo->visual, AllocNone);
XSetWindowAttributes windowAttributes = {};
windowAttributes.colormap = colormap;
windowAttributes.background_pixel = 0xFFFFFFFF;
windowAttributes.border_pixel = 0;
windowAttributes.event_mask = KeyPressMask | KeyReleaseMask | StructureNotifyMask | ExposureMask;
xlib_window =
XCreateWindow(display, RootWindow(display, vInfoTemplate.screen), 0, 0, width, height, 0, visualInfo->depth, InputOutput,
visualInfo->visual