blob: c549230a83ca1143d0d6ffadaebeaff9773fa2d9 [file] [log] [blame]
/*
* Copyright © 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include "main/macros.h"
#include "compiler/glsl/glsl_parser_extras.h"
#include "glsl_types.h"
#include "util/hash_table.h"
mtx_t glsl_type::mutex = _MTX_INITIALIZER_NP;
hash_table *glsl_type::array_types = NULL;
hash_table *glsl_type::record_types = NULL;
hash_table *glsl_type::interface_types = NULL;
hash_table *glsl_type::function_types = NULL;
hash_table *glsl_type::subroutine_types = NULL;
void *glsl_type::mem_ctx = NULL;
void
glsl_type::init_ralloc_type_ctx(void)
{
if (glsl_type::mem_ctx == NULL) {
glsl_type::mem_ctx = ralloc_autofree_context();
assert(glsl_type::mem_ctx != NULL);
}
}
glsl_type::glsl_type(GLenum gl_type,
glsl_base_type base_type, unsigned vector_elements,
unsigned matrix_columns, const char *name) :
gl_type(gl_type),
base_type(base_type),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampled_type(0), interface_packing(0),
vector_elements(vector_elements), matrix_columns(matrix_columns),
length(0)
{
mtx_lock(&glsl_type::mutex);
init_ralloc_type_ctx();
assert(name != NULL);
this->name = ralloc_strdup(this->mem_ctx, name);
mtx_unlock(&glsl_type::mutex);
/* Neither dimension is zero or both dimensions are zero.
*/
assert((vector_elements == 0) == (matrix_columns == 0));
memset(& fields, 0, sizeof(fields));
}
glsl_type::glsl_type(GLenum gl_type, glsl_base_type base_type,
enum glsl_sampler_dim dim, bool shadow, bool array,
unsigned type, const char *name) :
gl_type(gl_type),
base_type(base_type),
sampler_dimensionality(dim), sampler_shadow(shadow),
sampler_array(array), sampled_type(type), interface_packing(0),
length(0)
{
mtx_lock(&glsl_type::mutex);
init_ralloc_type_ctx();
assert(name != NULL);
this->name = ralloc_strdup(this->mem_ctx, name);
mtx_unlock(&glsl_type::mutex);
memset(& fields, 0, sizeof(fields));
if (base_type == GLSL_TYPE_SAMPLER) {
/* Samplers take no storage whatsoever. */
matrix_columns = vector_elements = 0;
} else {
matrix_columns = vector_elements = 1;
}
}
glsl_type::glsl_type(const glsl_struct_field *fields, unsigned num_fields,
const char *name) :
gl_type(0),
base_type(GLSL_TYPE_STRUCT),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampled_type(0), interface_packing(0),
vector_elements(0), matrix_columns(0),
length(num_fields)
{
unsigned int i;
mtx_lock(&glsl_type::mutex);
init_ralloc_type_ctx();
assert(name != NULL);
this->name = ralloc_strdup(this->mem_ctx, name);
this->fields.structure = ralloc_array(this->mem_ctx,
glsl_struct_field, length);
for (i = 0; i < length; i++) {
this->fields.structure[i].type = fields[i].type;
this->fields.structure[i].name = ralloc_strdup(this->fields.structure,
fields[i].name);
this->fields.structure[i].location = fields[i].location;
this->fields.structure[i].interpolation = fields[i].interpolation;
this->fields.structure[i].centroid = fields[i].centroid;
this->fields.structure[i].sample = fields[i].sample;
this->fields.structure[i].matrix_layout = fields[i].matrix_layout;
this->fields.structure[i].patch = fields[i].patch;
this->fields.structure[i].image_read_only = fields[i].image_read_only;
this->fields.structure[i].image_write_only = fields[i].image_write_only;
this->fields.structure[i].image_coherent = fields[i].image_coherent;
this->fields.structure[i].image_volatile = fields[i].image_volatile;
this->fields.structure[i].image_restrict = fields[i].image_restrict;
this->fields.structure[i].precision = fields[i].precision;
}
mtx_unlock(&glsl_type::mutex);
}
glsl_type::glsl_type(const glsl_struct_field *fields, unsigned num_fields,
enum glsl_interface_packing packing, const char *name) :
gl_type(0),
base_type(GLSL_TYPE_INTERFACE),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampled_type(0), interface_packing((unsigned) packing),
vector_elements(0), matrix_columns(0),
length(num_fields)
{
unsigned int i;
mtx_lock(&glsl_type::mutex);
init_ralloc_type_ctx();
assert(name != NULL);
this->name = ralloc_strdup(this->mem_ctx, name);
this->fields.structure = ralloc_array(this->mem_ctx,
glsl_struct_field, length);
for (i = 0; i < length; i++) {
this->fields.structure[i].type = fields[i].type;
this->fields.structure[i].name = ralloc_strdup(this->fields.structure,
fields[i].name);
this->fields.structure[i].location = fields[i].location;
this->fields.structure[i].interpolation = fields[i].interpolation;
this->fields.structure[i].centroid = fields[i].centroid;
this->fields.structure[i].sample = fields[i].sample;
this->fields.structure[i].matrix_layout = fields[i].matrix_layout;
this->fields.structure[i].patch = fields[i].patch;
this->fields.structure[i].image_read_only = fields[i].image_read_only;
this->fields.structure[i].image_write_only = fields[i].image_write_only;
this->fields.structure[i].image_coherent = fields[i].image_coherent;
this->fields.structure[i].image_volatile = fields[i].image_volatile;
this->fields.structure[i].image_restrict = fields[i].image_restrict;
this->fields.structure[i].precision = fields[i].precision;
}
mtx_unlock(&glsl_type::mutex);
}
glsl_type::glsl_type(const glsl_type *return_type,
const glsl_function_param *params, unsigned num_params) :
gl_type(0),
base_type(GLSL_TYPE_FUNCTION),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampled_type(0), interface_packing(0),
vector_elements(0), matrix_columns(0),
length(num_params)
{
unsigned int i;
mtx_lock(&glsl_type::mutex);
init_ralloc_type_ctx();
this->fields.parameters = rzalloc_array(this->mem_ctx,
glsl_function_param, num_params + 1);
/* We store the return type as the first parameter */
this->fields.parameters[0].type = return_type;
this->fields.parameters[0].in = false;
this->fields.parameters[0].out = true;
/* We store the i'th parameter in slot i+1 */
for (i = 0; i < length; i++) {
this->fields.parameters[i + 1].type = params[i].type;
this->fields.parameters[i + 1].in = params[i].in;
this->fields.parameters[i + 1].out = params[i].out;
}
mtx_unlock(&glsl_type::mutex);
}
glsl_type::glsl_type(const char *subroutine_name) :
gl_type(0),
base_type(GLSL_TYPE_SUBROUTINE),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampled_type(0), interface_packing(0),
vector_elements(1), matrix_columns(1),
length(0)
{
mtx_lock(&glsl_type::mutex);
init_ralloc_type_ctx();
assert(subroutine_name != NULL);
this->name = ralloc_strdup(this->mem_ctx, subroutine_name);
mtx_unlock(&glsl_type::mutex);
}
bool
glsl_type::contains_sampler() const
{
if (this->is_array()) {
return this->fields.array->contains_sampler();
} else if (this->is_record()) {
for (unsigned int i = 0; i < this->length; i++) {
if (this->fields.structure[i].type->contains_sampler())
return true;
}
return false;
} else {
return this->is_sampler();
}
}
bool
glsl_type::contains_integer() const
{
if (this->is_array()) {
return this->fields.array->contains_integer();
} else if (this->is_record()) {
for (unsigned int i = 0; i < this->length; i++) {
if (this->fields.structure[i].type->contains_integer())
return true;
}
return false;
} else {
return this->is_integer();
}
}
bool
glsl_type::contains_double() const
{
if (this->is_array()) {
return this->fields.array->contains_double();
} else if (this->is_record()) {
for (unsigned int i = 0; i < this->length; i++) {
if (this->fields.structure[i].type->contains_double())
return true;
}
return false;
} else {
return this->is_double();
}
}
bool
glsl_type::contains_opaque() const {
switch (base_type) {
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
return true;
case GLSL_TYPE_ARRAY:
return fields.array->contains_opaque();
case GLSL_TYPE_STRUCT:
for (unsigned int i = 0; i < length; i++) {
if (fields.structure[i].type->contains_opaque())
return true;
}
return false;
default:
return false;
}
}
bool
glsl_type::contains_subroutine() const
{
if (this->is_array()) {
return this->fields.array->contains_subroutine();
} else if (this->is_record()) {
for (unsigned int i = 0; i < this->length; i++) {
if (this->fields.structure[i].type->contains_subroutine())
return true;
}
return false;
} else {
return this->is_subroutine();
}
}
gl_texture_index
glsl_type::sampler_index() const
{
const glsl_type *const t = (this->is_array()) ? this->fields.array : this;
assert(t->is_sampler());
switch (t->sampler_dimensionality) {
case GLSL_SAMPLER_DIM_1D:
return (t->sampler_array) ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
case GLSL_SAMPLER_DIM_2D:
return (t->sampler_array) ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
case GLSL_SAMPLER_DIM_3D:
return TEXTURE_3D_INDEX;
case GLSL_SAMPLER_DIM_CUBE:
return (t->sampler_array) ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
case GLSL_SAMPLER_DIM_RECT:
return TEXTURE_RECT_INDEX;
case GLSL_SAMPLER_DIM_BUF:
return TEXTURE_BUFFER_INDEX;
case GLSL_SAMPLER_DIM_EXTERNAL:
return TEXTURE_EXTERNAL_INDEX;
case GLSL_SAMPLER_DIM_MS:
return (t->sampler_array) ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
default:
assert(!"Should not get here.");
return TEXTURE_BUFFER_INDEX;
}
}
bool
glsl_type::contains_image() const
{
if (this->is_array()) {
return this->fields.array->contains_image();
} else if (this->is_record()) {
for (unsigned int i = 0; i < this->length; i++) {
if (this->fields.structure[i].type->contains_image())
return true;
}
return false;
} else {
return this->is_image();
}
}
const glsl_type *glsl_type::get_base_type() const
{
switch (base_type) {
case GLSL_TYPE_UINT:
return uint_type;
case GLSL_TYPE_INT:
return int_type;
case GLSL_TYPE_FLOAT:
return float_type;
case GLSL_TYPE_DOUBLE:
return double_type;
case GLSL_TYPE_BOOL:
return bool_type;
default:
return error_type;
}
}
const glsl_type *glsl_type::get_scalar_type() const
{
const glsl_type *type = this;
/* Handle arrays */
while (type->base_type == GLSL_TYPE_ARRAY)
type = type->fields.array;
/* Handle vectors and matrices */
switch (type->base_type) {
case GLSL_TYPE_UINT:
return uint_type;
case GLSL_TYPE_INT:
return int_type;
case GLSL_TYPE_FLOAT:
return float_type;
case GLSL_TYPE_DOUBLE:
return double_type;
case GLSL_TYPE_BOOL:
return bool_type;
default:
/* Handle everything else */
return type;
}
}
void
_mesa_glsl_release_types(void)
{
/* Should only be called during atexit (either when unloading shared
* object, or if process terminates), so no mutex-locking should be
* necessary.
*/
if (glsl_type::array_types != NULL) {
_mesa_hash_table_destroy(glsl_type::array_types, NULL);
glsl_type::array_types = NULL;
}
if (glsl_type::record_types != NULL) {
_mesa_hash_table_destroy(glsl_type::record_types, NULL);
glsl_type::record_types = NULL;
}
if (glsl_type::interface_types != NULL) {
_mesa_hash_table_destroy(glsl_type::interface_types, NULL);
glsl_type::interface_types = NULL;
}
}
glsl_type::glsl_type(const glsl_type *array, unsigned length) :
base_type(GLSL_TYPE_ARRAY),
sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
sampled_type(0), interface_packing(0),
vector_elements(0), matrix_columns(0),
length(length), name(NULL)
{
this->fields.array = array;
/* Inherit the gl type of the base. The GL type is used for
* uniform/statevar handling in Mesa and the arrayness of the type
* is represented by the size rather than the type.
*/
this->gl_type = array->gl_type;
/* Allow a maximum of 10 characters for the array size. This is enough
* for 32-bits of ~0. The extra 3 are for the '[', ']', and terminating
* NUL.
*/
const unsigned name_length = strlen(array->name) + 10 + 3;
mtx_lock(&glsl_type::mutex);
char *const n = (char *) ralloc_size(this->mem_ctx, name_length);
mtx_unlock(&glsl_type::mutex);
if (length == 0)
snprintf(n, name_length, "%s[]", array->name);
else {
/* insert outermost dimensions in the correct spot
* otherwise the dimension order will be backwards
*/
const char *pos = strchr(array->name, '[');
if (pos) {
int idx = pos - array->name;
snprintf(n, idx+1, "%s", array->name);
snprintf(n + idx, name_length - idx, "[%u]%s",
length, array->name + idx);
} else {
snprintf(n, name_length, "%s[%u]", array->name, length);
}
}
this->name = n;
}
const glsl_type *
glsl_type::vec(unsigned components)
{
if (components == 0 || components > 4)
return error_type;
static const glsl_type *const ts[] = {
float_type, vec2_type, vec3_type, vec4_type
};
return ts[components - 1];
}
const glsl_type *
glsl_type::dvec(unsigned components)
{
if (components == 0 || components > 4)
return error_type;
static const glsl_type *const ts[] = {
double_type, dvec2_type, dvec3_type, dvec4_type
};
return ts[components - 1];
}
const glsl_type *
glsl_type::ivec(unsigned components)
{
if (components == 0 || components > 4)
return error_type;
static const glsl_type *const ts[] = {
int_type, ivec2_type, ivec3_type, ivec4_type
};
return ts[components - 1];
}
const glsl_type *
glsl_type::uvec(unsigned components)
{
if (components == 0 || components > 4)
return error_type;
static const glsl_type *const ts[] = {
uint_type, uvec2_type, uvec3_type, uvec4_type
};
return ts[components - 1];
}
const glsl_type *
glsl_type::bvec(unsigned components)
{
if (components == 0 || components > 4)
return error_type;
static const glsl_type *const ts[] = {
bool_type, bvec2_type, bvec3_type, bvec4_type
};
return ts[components - 1];
}
const glsl_type *
glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
{
if (base_type == GLSL_TYPE_VOID)
return void_type;
if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
return error_type;
/* Treat GLSL vectors as Nx1 matrices.
*/
if (columns == 1) {
switch (base_type) {
case GLSL_TYPE_UINT:
return uvec(rows);
case GLSL_TYPE_INT:
return ivec(rows);
case GLSL_TYPE_FLOAT:
return vec(rows);
case GLSL_TYPE_DOUBLE:
return dvec(rows);
case GLSL_TYPE_BOOL:
return bvec(rows);
default:
return error_type;
}
} else {
if ((base_type != GLSL_TYPE_FLOAT && base_type != GLSL_TYPE_DOUBLE) || (rows == 1))
return error_type;
/* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following
* combinations are valid:
*
* 1 2 3 4
* 1
* 2 x x x
* 3 x x x
* 4 x x x
*/
#define IDX(c,r) (((c-1)*3) + (r-1))
if (base_type == GLSL_TYPE_DOUBLE) {
switch (IDX(columns, rows)) {
case IDX(2,2): return dmat2_type;
case IDX(2,3): return dmat2x3_type;
case IDX(2,4): return dmat2x4_type;
case IDX(3,2): return dmat3x2_type;
case IDX(3,3): return dmat3_type;
case IDX(3,4): return dmat3x4_type;
case IDX(4,2): return dmat4x2_type;
case IDX(4,3): return dmat4x3_type;
case IDX(4,4): return dmat4_type;
default: return error_type;
}
} else {
switch (IDX(columns, rows)) {
case IDX(2,2): return mat2_type;
case IDX(2,3): return mat2x3_type;
case IDX(2,4): return mat2x4_type;
case IDX(3,2): return mat3x2_type;
case IDX(3,3): return mat3_type;
case IDX(3,4): return mat3x4_type;
case IDX(4,2): return mat4x2_type;
case IDX(4,3): return mat4x3_type;
case IDX(4,4): return mat4_type;
default: return error_type;
}
}
}
assert(!"Should not get here.");
return error_type;
}
const glsl_type *
glsl_type::get_sampler_instance(enum glsl_sampler_dim dim,
bool shadow,
bool array,
glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_FLOAT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
if (shadow)
return (array ? sampler1DArrayShadow_type : sampler1DShadow_type);
else
return (array ? sampler1DArray_type : sampler1D_type);
case GLSL_SAMPLER_DIM_2D:
if (shadow)
return (array ? sampler2DArrayShadow_type : sampler2DShadow_type);
else
return (array ? sampler2DArray_type : sampler2D_type);
case GLSL_SAMPLER_DIM_3D:
if (shadow || array)
return error_type;
else
return sampler3D_type;
case GLSL_SAMPLER_DIM_CUBE:
if (shadow)
return (array ? samplerCubeArrayShadow_type : samplerCubeShadow_type);
else
return (array ? samplerCubeArray_type : samplerCube_type);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return error_type;
if (shadow)
return sampler2DRectShadow_type;
else
return sampler2DRect_type;
case GLSL_SAMPLER_DIM_BUF:
if (shadow || array)
return error_type;
else
return samplerBuffer_type;
case GLSL_SAMPLER_DIM_MS:
if (shadow)
return error_type;
return (array ? sampler2DMSArray_type : sampler2DMS_type);
case GLSL_SAMPLER_DIM_EXTERNAL:
if (shadow || array)
return error_type;
else
return samplerExternalOES_type;
}
case GLSL_TYPE_INT:
if (shadow)
return error_type;
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? isampler1DArray_type : isampler1D_type);
case GLSL_SAMPLER_DIM_2D:
return (array ? isampler2DArray_type : isampler2D_type);
case GLSL_SAMPLER_DIM_3D:
if (array)
return error_type;
return isampler3D_type;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? isamplerCubeArray_type : isamplerCube_type);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return error_type;
return isampler2DRect_type;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return error_type;
return isamplerBuffer_type;
case GLSL_SAMPLER_DIM_MS:
return (array ? isampler2DMSArray_type : isampler2DMS_type);
case GLSL_SAMPLER_DIM_EXTERNAL:
return error_type;
}
case GLSL_TYPE_UINT:
if (shadow)
return error_type;
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? usampler1DArray_type : usampler1D_type);
case GLSL_SAMPLER_DIM_2D:
return (array ? usampler2DArray_type : usampler2D_type);
case GLSL_SAMPLER_DIM_3D:
if (array)
return error_type;
return usampler3D_type;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? usamplerCubeArray_type : usamplerCube_type);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return error_type;
return usampler2DRect_type;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return error_type;
return usamplerBuffer_type;
case GLSL_SAMPLER_DIM_MS:
return (array ? usampler2DMSArray_type : usampler2DMS_type);
case GLSL_SAMPLER_DIM_EXTERNAL:
return error_type;
}
default:
return error_type;
}
unreachable("switch statement above should be complete");
}
const glsl_type *
glsl_type::get_image_instance(enum glsl_sampler_dim dim,
bool array, glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_FLOAT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? image1DArray_type : image1D_type);
case GLSL_SAMPLER_DIM_2D:
return (array ? image2DArray_type : image2D_type);
case GLSL_SAMPLER_DIM_3D:
return image3D_type;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? imageCubeArray_type : imageCube_type);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return error_type;
else
return image2DRect_type;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return error_type;
else
return imageBuffer_type;
case GLSL_SAMPLER_DIM_MS:
return (array ? image2DMSArray_type : image2DMS_type);
case GLSL_SAMPLER_DIM_EXTERNAL:
return error_type;
}
case GLSL_TYPE_INT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? iimage1DArray_type : iimage1D_type);
case GLSL_SAMPLER_DIM_2D:
return (array ? iimage2DArray_type : iimage2D_type);
case GLSL_SAMPLER_DIM_3D:
if (array)
return error_type;
return iimage3D_type;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? iimageCubeArray_type : iimageCube_type);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return error_type;
return iimage2DRect_type;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return error_type;
return iimageBuffer_type;
case GLSL_SAMPLER_DIM_MS:
return (array ? iimage2DMSArray_type : iimage2DMS_type);
case GLSL_SAMPLER_DIM_EXTERNAL:
return error_type;
}
case GLSL_TYPE_UINT:
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
return (array ? uimage1DArray_type : uimage1D_type);
case GLSL_SAMPLER_DIM_2D:
return (array ? uimage2DArray_type : uimage2D_type);
case GLSL_SAMPLER_DIM_3D:
if (array)
return error_type;
return uimage3D_type;
case GLSL_SAMPLER_DIM_CUBE:
return (array ? uimageCubeArray_type : uimageCube_type);
case GLSL_SAMPLER_DIM_RECT:
if (array)
return error_type;
return uimage2DRect_type;
case GLSL_SAMPLER_DIM_BUF:
if (array)
return error_type;
return uimageBuffer_type;
case GLSL_SAMPLER_DIM_MS:
return (array ? uimage2DMSArray_type : uimage2DMS_type);
case GLSL_SAMPLER_DIM_EXTERNAL:
return error_type;
}
default:
return error_type;
}
unreachable("switch statement above should be complete");
}
const glsl_type *
glsl_type::get_array_instance(const glsl_type *base, unsigned array_size)
{
/* Generate a name using the base type pointer in the key. This is
* done because the name of the base type may not be unique across
* shaders. For example, two shaders may have different record types
* named 'foo'.
*/
char key[128];
snprintf(key, sizeof(key), "%p[%u]", (void *) base, array_size);
mtx_lock(&glsl_type::mutex);
if (array_types == NULL) {
array_types = _mesa_hash_table_create(NULL, _mesa_key_hash_string,
_mesa_key_string_equal);
}
const struct hash_entry *entry = _mesa_hash_table_search(array_types, key);
if (entry == NULL) {
mtx_unlock(&glsl_type::mutex);
const glsl_type *t = new glsl_type(base, array_size);
mtx_lock(&glsl_type::mutex);
entry = _mesa_hash_table_insert(array_types,
ralloc_strdup(mem_ctx, key),
(void *) t);
}
assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_ARRAY);
assert(((glsl_type *) entry->data)->length == array_size);
assert(((glsl_type *) entry->data)->fields.array == base);
mtx_unlock(&glsl_type::mutex);
return (glsl_type *) entry->data;
}
bool
glsl_type::record_compare(const glsl_type *b) const
{
if (this->length != b->length)
return false;
if (this->interface_packing != b->interface_packing)
return false;
/* From the GLSL 4.20 specification (Sec 4.2):
*
* "Structures must have the same name, sequence of type names, and
* type definitions, and field names to be considered the same type."
*
* GLSL ES behaves the same (Ver 1.00 Sec 4.2.4, Ver 3.00 Sec 4.2.5).
*
* Note that we cannot force type name check when comparing unnamed
* structure types, these have a unique name assigned during parsing.
*/
if (!this->is_anonymous() && !b->is_anonymous())
if (strcmp(this->name, b->name) != 0)
return false;
for (unsigned i = 0; i < this->length; i++) {
if (this->fields.structure[i].type != b->fields.structure[i].type)
return false;
if (strcmp(this->fields.structure[i].name,
b->fields.structure[i].name) != 0)
return false;
if (this->fields.structure[i].matrix_layout
!= b->fields.structure[i].matrix_layout)
return false;
if (this->fields.structure[i].location
!= b->fields.structure[i].location)
return false;
if (this->fields.structure[i].interpolation
!= b->fields.structure[i].interpolation)
return false;
if (this->fields.structure[i].centroid
!= b->fields.structure[i].centroid)
return false;
if (this->fields.structure[i].sample
!= b->fields.structure[i].sample)
return false;
if (this->fields.structure[i].patch
!= b->fields.structure[i].patch)
return false;
if (this->fields.structure[i].image_read_only
!= b->fields.structure[i].image_read_only)
return false;
if (this->fields.structure[i].image_write_only
!= b->fields.structure[i].image_write_only)
return false;
if (this->fields.structure[i].image_coherent
!= b->fields.structure[i].image_coherent)
return false;
if (this->fields.structure[i].image_volatile
!= b->fields.structure[i].image_volatile)
return false;
if (this->fields.structure[i].image_restrict
!= b->fields.structure[i].image_restrict)
return false;
if (this->fields.structure[i].precision
!= b->fields.structure[i].precision)
return false;
}
return true;
}
bool
glsl_type::record_key_compare(const void *a, const void *b)
{
const glsl_type *const key1 = (glsl_type *) a;
const glsl_type *const key2 = (glsl_type *) b;
return strcmp(key1->name, key2->name) == 0 && key1->record_compare(key2);
}
/**
* Generate an integer hash value for a glsl_type structure type.
*/
unsigned
glsl_type::record_key_hash(const void *a)
{
const glsl_type *const key = (glsl_type *) a;
uintptr_t hash = key->length;
unsigned retval;
for (unsigned i = 0; i < key->length; i++) {
/* casting pointer to uintptr_t */
hash = (hash * 13 ) + (uintptr_t) key->fields.structure[i].type;
}
if (sizeof(hash) == 8)
retval = (hash & 0xffffffff) ^ ((uint64_t) hash >> 32);
else
retval = hash;
return retval;
}
const glsl_type *
glsl_type::get_record_instance(const glsl_struct_field *fields,
unsigned num_fields,
const char *name)
{
const glsl_type key(fields, num_fields, name);
mtx_lock(&glsl_type::mutex);
if (record_types == NULL) {
record_types = _mesa_hash_table_create(NULL, record_key_hash,
record_key_compare);
}
const struct hash_entry *entry = _mesa_hash_table_search(record_types,
&key);
if (entry == NULL) {
mtx_unlock(&glsl_type::mutex);
const glsl_type *t = new glsl_type(fields, num_fields, name);
mtx_lock(&glsl_type::mutex);
entry = _mesa_hash_table_insert(record_types, t, (void *) t);
}
assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_STRUCT);
assert(((glsl_type *) entry->data)->length == num_fields);
assert(strcmp(((glsl_type *) entry->data)->name, name) == 0);
mtx_unlock(&glsl_type::mutex);
return (glsl_type *) entry->data;
}
const glsl_type *
glsl_type::get_interface_instance(const glsl_struct_field *fields,
unsigned num_fields,
enum glsl_interface_packing packing,
const char *block_name)
{
const glsl_type key(fields, num_fields, packing, block_name);
mtx_lock(&glsl_type::mutex);
if (interface_types == NULL) {
interface_types = _mesa_hash_table_create(NULL, record_key_hash,
record_key_compare);
}
const struct hash_entry *entry = _mesa_hash_table_search(interface_types,
&key);
if (entry == NULL) {
mtx_unlock(&glsl_type::mutex);
const glsl_type *t = new glsl_type(fields, num_fields,
packing, block_name);
mtx_lock(&glsl_type::mutex);
entry = _mesa_hash_table_insert(interface_types, t, (void *) t);
}
assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_INTERFACE);
assert(((glsl_type *) entry->data)->length == num_fields);
assert(strcmp(((glsl_type *) entry->data)->name, block_name) == 0);
mtx_unlock(&glsl_type::mutex);
return (glsl_type *) entry->data;
}
const glsl_type *
glsl_type::get_subroutine_instance(const char *subroutine_name)
{
const glsl_type key(subroutine_name);
mtx_lock(&glsl_type::mutex);
if (subroutine_types == NULL) {
subroutine_types = _mesa_hash_table_create(NULL, record_key_hash,
record_key_compare);
}
const struct hash_entry *entry = _mesa_hash_table_search(subroutine_types,
&key);
if (entry == NULL) {
mtx_unlock(&glsl_type::mutex);
const glsl_type *t = new glsl_type(subroutine_name);
mtx_lock(&glsl_type::mutex);
entry = _mesa_hash_table_insert(subroutine_types, t, (void *) t);
}
assert(((glsl_type *) entry->data)->base_type == GLSL_TYPE_SUBROUTINE);
assert(strcmp(((glsl_type *) entry->data)->name, subroutine_name) == 0);
mtx_unlock(&glsl_type::mutex);
return (glsl_type *) entry->data;
}
static bool
function_key_compare(const void *a, const void *b)
{
const glsl_type *const key1 = (glsl_type *) a;
const glsl_type *const key2 = (glsl_type *) b;
if (key1->length != key2->length)
return 1;
return memcmp(key1->fields.parameters, key2->fields.parameters,
(key1->length + 1) * sizeof(*key1->fields.parameters)) == 0;
}
static uint32_t
function_key_hash(const void *a)
{
const glsl_type *const key = (glsl_type *) a;
char hash_key[128];
unsigned size = 0;
size = snprintf(hash_key, sizeof(hash_key), "%08x", key->length);
for (unsigned i = 0; i < key->length; i++) {
if (size >= sizeof(hash_key))
break;
size += snprintf(& hash_key[size], sizeof(hash_key) - size,
"%p", (void *) key->fields.structure[i].type);
}
return _mesa_hash_string(hash_key);
}
const glsl_type *
glsl_type::get_function_instance(const glsl_type *return_type,
const glsl_function_param *params,
unsigned num_params)
{
const glsl_type key(return_type, params, num_params);
mtx_lock(&glsl_type::mutex);
if (function_types == NULL) {
function_types = _mesa_hash_table_create(NULL, function_key_hash,
function_key_compare);
}
struct hash_entry *entry = _mesa_hash_table_search(function_types, &key);
if (entry == NULL) {
mtx_unlock(&glsl_type::mutex);
const glsl_type *t = new glsl_type(return_type, params, num_params);
mtx_lock(&glsl_type::mutex);
entry = _mesa_hash_table_insert(function_types, t, (void *) t);
}
const glsl_type *t = (const glsl_type *)entry->data;
assert(t->base_type == GLSL_TYPE_FUNCTION);
assert(t->length == num_params);
mtx_unlock(&glsl_type::mutex);
return t;
}
const glsl_type *
glsl_type::get_mul_type(const glsl_type *type_a, const glsl_type *type_b)
{
if (type_a == type_b) {
return type_a;
} else if (type_a->is_matrix() && type_b->is_matrix()) {
/* Matrix multiply. The columns of A must match the rows of B. Given
* the other previously tested constraints, this means the vector type
* of a row from A must be the same as the vector type of a column from
* B.
*/
if (type_a->row_type() == type_b->column_type()) {
/* The resulting matrix has the number of columns of matrix B and
* the number of rows of matrix A. We get the row count of A by
* looking at the size of a vector that makes up a column. The
* transpose (size of a row) is done for B.
*/
const glsl_type *const type =
get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
type_b->row_type()->vector_elements);
assert(type != error_type);
return type;
}
} else if (type_a->is_matrix()) {
/* A is a matrix and B is a column vector. Columns of A must match
* rows of B. Given the other previously tested constraints, this
* means the vector type of a row from A must be the same as the
* vector the type of B.
*/
if (type_a->row_type() == type_b) {
/* The resulting vector has a number of elements equal to
* the number of rows of matrix A. */
const glsl_type *const type =
get_instance(type_a->base_type,
type_a->column_type()->vector_elements,
1);
assert(type != error_type);
return type;
}
} else {
assert(type_b->is_matrix());
/* A is a row vector and B is a matrix. Columns of A must match rows
* of B. Given the other previously tested constraints, this means
* the type of A must be the same as the vector type of a column from
* B.
*/
if (type_a == type_b->column_type()) {
/* The resulting vector has a number of elements equal to
* the number of columns of matrix B. */
const glsl_type *const type =
get_instance(type_a->base_type,
type_b->row_type()->vector_elements,
1);
assert(type != error_type);
return type;
}
}
return error_type;
}
const glsl_type *
glsl_type::field_type(const char *name) const
{
if (this->base_type != GLSL_TYPE_STRUCT
&& this->base_type != GLSL_TYPE_INTERFACE)
return error_type;
for (unsigned i = 0; i < this->length; i++) {
if (strcmp(name, this->fields.structure[i].name) == 0)
return this->fields.structure[i].type;
}
return error_type;
}
int
glsl_type::field_index(const char *name) const
{
if (this->base_type != GLSL_TYPE_STRUCT
&& this->base_type != GLSL_TYPE_INTERFACE)
return -1;
for (unsigned i = 0; i < this->length; i++) {
if (strcmp(name, this->fields.structure[i].name) == 0)
return i;
}
return -1;
}
unsigned
glsl_type::component_slots() const
{
switch (this->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
return this->components();
case GLSL_TYPE_DOUBLE:
return 2 * this->components();
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
unsigned size = 0;
for (unsigned i = 0; i < this->length; i++)
size += this->fields.structure[i].type->component_slots();
return size;
}
case GLSL_TYPE_ARRAY:
return this->length * this->fields.array->component_slots();
case GLSL_TYPE_IMAGE:
return 1;
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_FUNCTION:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_VOID:
case GLSL_TYPE_ERROR:
break;
}
return 0;
}
unsigned
glsl_type::record_location_offset(unsigned length) const
{
unsigned offset = 0;
const glsl_type *t = this->without_array();
if (t->is_record()) {
assert(length <= t->length);
for (unsigned i = 0; i < length; i++) {
const glsl_type *st = t->fields.structure[i].type;
const glsl_type *wa = st->without_array();
if (wa->is_record()) {
unsigned r_offset = wa->record_location_offset(wa->length);
offset += st->is_array() ?
st->arrays_of_arrays_size() * r_offset : r_offset;
} else if (st->is_array() && st->fields.array->is_array()) {
unsigned outer_array_size = st->length;
const glsl_type *base_type = st->fields.array;
/* For arrays of arrays the outer arrays take up a uniform
* slot for each element. The innermost array elements share a
* single slot so we ignore the innermost array when calculating
* the offset.
*/
while (base_type->fields.array->is_array()) {
outer_array_size = outer_array_size * base_type->length;
base_type = base_type->fields.array;
}
offset += outer_array_size;
} else {
/* We dont worry about arrays here because unless the array
* contains a structure or another array it only takes up a single
* uniform slot.
*/
offset += 1;
}
}
}
return offset;
}
unsigned
glsl_type::uniform_locations() const
{
unsigned size = 0;
switch (this->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_DOUBLE:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_SUBROUTINE:
return 1;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
for (unsigned i = 0; i < this->length; i++)
size += this->fields.structure[i].type->uniform_locations();
return size;
case GLSL_TYPE_ARRAY:
return this->length * this->fields.array->uniform_locations();
default:
return 0;
}
}
bool
glsl_type::can_implicitly_convert_to(const glsl_type *desired,
_mesa_glsl_parse_state *state) const
{
if (this == desired)
return true;
/* ESSL does not allow implicit conversions. If there is no state, we're
* doing intra-stage function linking where these checks have already been
* done.
*/
if (state && state->es_shader)
return false;
/* There is no conversion among matrix types. */
if (this->matrix_columns > 1 || desired->matrix_columns > 1)
return false;
/* Vector size must match. */
if (this->vector_elements != desired->vector_elements)
return false;
/* int and uint can be converted to float. */
if (desired->is_float() && this->is_integer())
return true;
/* With GLSL 4.0 / ARB_gpu_shader5, int can be converted to uint.
* Note that state may be NULL here, when resolving function calls in the
* linker. By this time, all the state-dependent checks have already
* happened though, so allow anything that's allowed in any shader version. */
if ((!state || state->is_version(400, 0) || state->ARB_gpu_shader5_enable) &&
desired->base_type == GLSL_TYPE_UINT && this->base_type == GLSL_TYPE_INT)
return true;
/* No implicit conversions from double. */
if ((!state || state->has_double()) && this->is_double())
return false;
/* Conversions from different types to double. */
if ((!state || state->has_double()) && desired->is_double()) {
if (this->is_float())
return true;
if (this->is_integer())
return true;
}
return false;
}
unsigned
glsl_type::std140_base_alignment(bool row_major) const
{
unsigned N = is_double() ? 8 : 4;
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (this->is_scalar() || this->is_vector()) {
switch (this->vector_elements) {
case 1:
return N;
case 2:
return 2 * N;
case 3:
case 4:
return 4 * N;
}
}
/* (4) If the member is an array of scalars or vectors, the base alignment
* and array stride are set to match the base alignment of a single
* array element, according to rules (1), (2), and (3), and rounded up
* to the base alignment of a vec4. The array may have padding at the
* end; the base offset of the member following the array is rounded up
* to the next multiple of the base alignment.
*
* (6) If the member is an array of <S> column-major matrices with <C>
* columns and <R> rows, the matrix is stored identically to a row of
* <S>*<C> column vectors with <R> components each, according to rule
* (4).
*
* (8) If the member is an array of <S> row-major matrices with <C> columns
* and <R> rows, the matrix is stored identically to a row of <S>*<R>
* row vectors with <C> components each, according to rule (4).
*
* (10) If the member is an array of <S> structures, the <S> elements of
* the array are laid out in order, according to rule (9).
*/
if (this->is_array()) {
if (this->fields.array->is_scalar() ||
this->fields.array->is_vector() ||
this->fields.array->is_matrix()) {
return MAX2(this->fields.array->std140_base_alignment(row_major), 16);
} else {
assert(this->fields.array->is_record() ||
this->fields.array->is_array());
return this->fields.array->std140_base_alignment(row_major);
}
}
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*/
if (this->is_matrix()) {
const struct glsl_type *vec_type, *array_type;
int c = this->matrix_columns;
int r = this->vector_elements;
if (row_major) {
vec_type = get_instance(base_type, c, 1);
array_type = glsl_type::get_array_instance(vec_type, r);
} else {
vec_type = get_instance(base_type, r, 1);
array_type = glsl_type::get_array_instance(vec_type, c);
}
return array_type->std140_base_alignment(false);
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (this->is_record()) {
unsigned base_alignment = 16;
for (unsigned i = 0; i < this->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
glsl_matrix_layout(this->fields.structure[i].matrix_layout);
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const struct glsl_type *field_type = this->fields.structure[i].type;
base_alignment = MAX2(base_alignment,
field_type->std140_base_alignment(field_row_major));
}
return base_alignment;
}
assert(!"not reached");
return -1;
}
unsigned
glsl_type::std140_size(bool row_major) const
{
unsigned N = is_double() ? 8 : 4;
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (this->is_scalar() || this->is_vector()) {
return this->vector_elements * N;
}
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (6) If the member is an array of <S> column-major matrices with <C>
* columns and <R> rows, the matrix is stored identically to a row of
* <S>*<C> column vectors with <R> components each, according to rule
* (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*
* (8) If the member is an array of <S> row-major matrices with <C> columns
* and <R> rows, the matrix is stored identically to a row of <S>*<R>
* row vectors with <C> components each, according to rule (4).
*/
if (this->without_array()->is_matrix()) {
const struct glsl_type *element_type;
const struct glsl_type *vec_type;
unsigned int array_len;
if (this->is_array()) {
element_type = this->without_array();
array_len = this->arrays_of_arrays_size();
} else {
element_type = this;
array_len = 1;
}
if (row_major) {
vec_type = get_instance(element_type->base_type,
element_type->matrix_columns, 1);
array_len *= element_type->vector_elements;
} else {
vec_type = get_instance(element_type->base_type,
element_type->vector_elements, 1);
array_len *= element_type->matrix_columns;
}
const glsl_type *array_type = glsl_type::get_array_instance(vec_type,
array_len);
return array_type->std140_size(false);
}
/* (4) If the member is an array of scalars or vectors, the base alignment
* and array stride are set to match the base alignment of a single
* array element, according to rules (1), (2), and (3), and rounded up
* to the base alignment of a vec4. The array may have padding at the
* end; the base offset of the member following the array is rounded up
* to the next multiple of the base alignment.
*
* (10) If the member is an array of <S> structures, the <S> elements of
* the array are laid out in order, according to rule (9).
*/
if (this->is_array()) {
if (this->without_array()->is_record()) {
return this->arrays_of_arrays_size() *
this->without_array()->std140_size(row_major);
} else {
unsigned element_base_align =
this->without_array()->std140_base_alignment(row_major);
return this->arrays_of_arrays_size() * MAX2(element_base_align, 16);
}
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (this->is_record() || this->is_interface()) {
unsigned size = 0;
unsigned max_align = 0;
for (unsigned i = 0; i < this->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
glsl_matrix_layout(this->fields.structure[i].matrix_layout);
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const struct glsl_type *field_type = this->fields.structure[i].type;
unsigned align = field_type->std140_base_alignment(field_row_major);
/* Ignore unsized arrays when calculating size */
if (field_type->is_unsized_array())
continue;
size = glsl_align(size, align);
size += field_type->std140_size(field_row_major);
max_align = MAX2(align, max_align);
if (field_type->is_record() && (i + 1 < this->length))
size = glsl_align(size, 16);
}
size = glsl_align(size, MAX2(max_align, 16));
return size;
}
assert(!"not reached");
return -1;
}
unsigned
glsl_type::std430_base_alignment(bool row_major) const
{
unsigned N = is_double() ? 8 : 4;
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (this->is_scalar() || this->is_vector()) {
switch (this->vector_elements) {
case 1:
return N;
case 2:
return 2 * N;
case 3:
case 4:
return 4 * N;
}
}
/* OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout":
*
* "When using the std430 storage layout, shader storage blocks will be
* laid out in buffer storage identically to uniform and shader storage
* blocks using the std140 layout, except that the base alignment and
* stride of arrays of scalars and vectors in rule 4 and of structures
* in rule 9 are not rounded up a multiple of the base alignment of a vec4.
*/
/* (1) If the member is a scalar consuming <N> basic machine units, the
* base alignment is <N>.
*
* (2) If the member is a two- or four-component vector with components
* consuming <N> basic machine units, the base alignment is 2<N> or
* 4<N>, respectively.
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (this->is_array())
return this->fields.array->std430_base_alignment(row_major);
/* (5) If the member is a column-major matrix with <C> columns and
* <R> rows, the matrix is stored identically to an array of
* <C> column vectors with <R> components each, according to
* rule (4).
*
* (7) If the member is a row-major matrix with <C> columns and <R>
* rows, the matrix is stored identically to an array of <R>
* row vectors with <C> components each, according to rule (4).
*/
if (this->is_matrix()) {
const struct glsl_type *vec_type, *array_type;
int c = this->matrix_columns;
int r = this->vector_elements;
if (row_major) {
vec_type = get_instance(base_type, c, 1);
array_type = glsl_type::get_array_instance(vec_type, r);
} else {
vec_type = get_instance(base_type, r, 1);
array_type = glsl_type::get_array_instance(vec_type, c);
}
return array_type->std430_base_alignment(false);
}
/* (9) If the member is a structure, the base alignment of the
* structure is <N>, where <N> is the largest base alignment
* value of any of its members, and rounded up to the base
* alignment of a vec4. The individual members of this
* sub-structure are then assigned offsets by applying this set
* of rules recursively, where the base offset of the first
* member of the sub-structure is equal to the aligned offset
* of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is
* rounded up to the next multiple of the base alignment of the
* structure.
*/
if (this->is_record()) {
unsigned base_alignment = 0;
for (unsigned i = 0; i < this->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
glsl_matrix_layout(this->fields.structure[i].matrix_layout);
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const struct glsl_type *field_type = this->fields.structure[i].type;
base_alignment = MAX2(base_alignment,
field_type->std430_base_alignment(field_row_major));
}
assert(base_alignment > 0);
return base_alignment;
}
assert(!"not reached");
return -1;
}
unsigned
glsl_type::std430_array_stride(bool row_major) const
{
unsigned N = is_double() ? 8 : 4;
/* Notice that the array stride of a vec3 is not 3 * N but 4 * N.
* See OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout"
*
* (3) If the member is a three-component vector with components consuming
* <N> basic machine units, the base alignment is 4<N>.
*/
if (this->is_vector() && this->vector_elements == 3)
return 4 * N;
/* By default use std430_size(row_major) */
return this->std430_size(row_major);
}
unsigned
glsl_type::std430_size(bool row_major) const
{
unsigned N = is_double() ? 8 : 4;
/* OpenGL 4.30 spec, section 7.6.2.2 "Standard Uniform Block Layout":
*
* "When using the std430 storage layout, shader storage blocks will be
* laid out in buffer storage identically to uniform and shader storage
* blocks using the std140 layout, except that the base alignment and
* stride of arrays of scalars and vectors in rule 4 and of structures
* in rule 9 are not rounded up a multiple of the base alignment of a vec4.
*/
if (this->is_scalar() || this->is_vector())
return this->vector_elements * N;
if (this->without_array()->is_matrix()) {
const struct glsl_type *element_type;
const struct glsl_type *vec_type;
unsigned int array_len;
if (this->is_array()) {
element_type = this->without_array();
array_len = this->arrays_of_arrays_size();
} else {
element_type = this;
array_len = 1;
}
if (row_major) {
vec_type = get_instance(element_type->base_type,
element_type->matrix_columns, 1);
array_len *= element_type->vector_elements;
} else {
vec_type = get_instance(element_type->base_type,
element_type->vector_elements, 1);
array_len *= element_type->matrix_columns;
}
const glsl_type *array_type = glsl_type::get_array_instance(vec_type,
array_len);
return array_type->std430_size(false);
}
if (this->is_array()) {
if (this->without_array()->is_record())
return this->arrays_of_arrays_size() *
this->without_array()->std430_size(row_major);
else
return this->arrays_of_arrays_size() *
this->without_array()->std430_base_alignment(row_major);
}
if (this->is_record() || this->is_interface()) {
unsigned size = 0;
unsigned max_align = 0;
for (unsigned i = 0; i < this->length; i++) {
bool field_row_major = row_major;
const enum glsl_matrix_layout matrix_layout =
glsl_matrix_layout(this->fields.structure[i].matrix_layout);
if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
field_row_major = true;
} else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
field_row_major = false;
}
const struct glsl_type *field_type = this->fields.structure[i].type;
unsigned align = field_type->std430_base_alignment(field_row_major);
size = glsl_align(size, align);
size += field_type->std430_size(field_row_major);
max_align = MAX2(align, max_align);
}
size = glsl_align(size, max_align);
return size;
}
assert(!"not reached");
return -1;
}
unsigned
glsl_type::count_attribute_slots(bool vertex_input_slots) const
{
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
*
* "A scalar input counts the same amount against this limit as a vec4,
* so applications may want to consider packing groups of four
* unrelated float inputs together into a vector to better utilize the
* capabilities of the underlying hardware. A matrix input will use up
* multiple locations. The number of locations used will equal the
* number of columns in the matrix."
*
* The spec does not explicitly say how arrays are counted. However, it
* should be safe to assume the total number of slots consumed by an array
* is the number of entries in the array multiplied by the number of slots
* consumed by a single element of the array.
*
* The spec says nothing about how structs are counted, because vertex
* attributes are not allowed to be (or contain) structs. However, Mesa
* allows varying structs, the number of varying slots taken up by a
* varying struct is simply equal to the sum of the number of slots taken
* up by each element.
*
* Doubles are counted different depending on whether they are vertex
* inputs or everything else. Vertex inputs from ARB_vertex_attrib_64bit
* take one location no matter what size they are, otherwise dvec3/4
* take two locations.
*/
switch (this->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_BOOL:
return this->matrix_columns;
case GLSL_TYPE_DOUBLE:
if (this->vector_elements > 2 && !vertex_input_slots)
return this->matrix_columns * 2;
else
return this->matrix_columns;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE: {
unsigned size = 0;
for (unsigned i = 0; i < this->length; i++)
size += this->fields.structure[i].type->count_attribute_slots(vertex_input_slots);
return size;
}
case GLSL_TYPE_ARRAY:
return this->length * this->fields.array->count_attribute_slots(vertex_input_slots);
case GLSL_TYPE_FUNCTION:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SUBROUTINE:
case GLSL_TYPE_ERROR:
break;
}
assert(!"Unexpected type in count_attribute_slots()");
return 0;
}
int
glsl_type::coordinate_components() const
{
int size;
switch (sampler_dimensionality) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
size = 1;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_EXTERNAL:
size = 2;
break;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
size = 3;
break;
default:
assert(!"Should not get here.");
size = 1;
break;
}
/* Array textures need an additional component for the array index, except
* for cubemap array images that behave like a 2D array of interleaved
* cubemap faces.
*/
if (sampler_array &&
!(base_type == GLSL_TYPE_IMAGE &&
sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE))
size += 1;
return size;
}
/**
* Declarations of type flyweights (glsl_type::_foo_type) and
* convenience pointers (glsl_type::foo_type).
* @{
*/
#define DECL_TYPE(NAME, ...) \
const glsl_type glsl_type::_##NAME##_type = glsl_type(__VA_ARGS__, #NAME); \
const glsl_type *const glsl_type::NAME##_type = &glsl_type::_##NAME##_type;
#define STRUCT_TYPE(NAME)
#include "compiler/builtin_type_macros.h"
/** @} */