blob: e1e5962e59f325e90b95e0ccf0f2f8b8555eb93d [file] [log] [blame]
/*
* Mesa 3-D graphics library
*
* Copyright (C) 2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file bitset.h
* \brief Bitset of arbitrary size definitions.
* \author Michal Krol
*/
#ifndef BITSET_H
#define BITSET_H
#include "util/bitscan.h"
#include "util/macros.h"
/****************************************************************************
* generic bitset implementation
*/
#define BITSET_WORD unsigned int
#define BITSET_WORDBITS (sizeof (BITSET_WORD) * 8)
/* bitset declarations
*/
#define BITSET_WORDS(bits) (((bits) + BITSET_WORDBITS - 1) / BITSET_WORDBITS)
#define BITSET_DECLARE(name, bits) BITSET_WORD name[BITSET_WORDS(bits)]
/* bitset operations
*/
#define BITSET_COPY(x, y) memcpy( (x), (y), sizeof (x) )
#define BITSET_EQUAL(x, y) (memcmp( (x), (y), sizeof (x) ) == 0)
#define BITSET_ZERO(x) memset( (x), 0, sizeof (x) )
#define BITSET_ONES(x) memset( (x), 0xff, sizeof (x) )
#define BITSET_SIZE(x) (8 * sizeof(x)) // bitset size in bits
#define BITSET_BITWORD(b) ((b) / BITSET_WORDBITS)
#define BITSET_BIT(b) (1u << ((b) % BITSET_WORDBITS))
/* single bit operations
*/
#define BITSET_TEST(x, b) (((x)[BITSET_BITWORD(b)] & BITSET_BIT(b)) != 0)
#define BITSET_SET(x, b) ((x)[BITSET_BITWORD(b)] |= BITSET_BIT(b))
#define BITSET_CLEAR(x, b) ((x)[BITSET_BITWORD(b)] &= ~BITSET_BIT(b))
#define BITSET_MASK(b) (((b) % BITSET_WORDBITS == 0) ? ~0 : BITSET_BIT(b) - 1)
#define BITSET_RANGE(b, e) ((BITSET_MASK((e) + 1)) & ~(BITSET_BIT(b) - 1))
/* logic bit operations
*/
static inline void
__bitset_and(BITSET_WORD *r, const BITSET_WORD *x, const BITSET_WORD *y, unsigned n)
{
for (unsigned i = 0; i < n; i++)
r[i] = x[i] & y[i];
}
static inline void
__bitset_or(BITSET_WORD *r, const BITSET_WORD *x, const BITSET_WORD *y, unsigned n)
{
for (unsigned i = 0; i < n; i++)
r[i] = x[i] | y[i];
}
static inline void
__bitset_not(BITSET_WORD *x, unsigned n)
{
for (unsigned i = 0; i < n; i++)
x[i] = ~x[i];
}
#define BITSET_AND(r, x, y) \
do { \
assert(ARRAY_SIZE(r) == ARRAY_SIZE(x)); \
assert(ARRAY_SIZE(r) == ARRAY_SIZE(y)); \
__bitset_and(r, x, y, ARRAY_SIZE(r)); \
} while (0)
#define BITSET_OR(r, x, y) \
do { \
assert(ARRAY_SIZE(r) == ARRAY_SIZE(x)); \
assert(ARRAY_SIZE(r) == ARRAY_SIZE(y)); \
__bitset_or(r, x, y, ARRAY_SIZE(r)); \
} while (0)
#define BITSET_NOT(x) \
__bitset_not(x, ARRAY_SIZE(x))
static inline void
__bitset_rotate_right(BITSET_WORD *x, unsigned amount, unsigned n)
{
assert(amount < BITSET_WORDBITS);
if (amount == 0)
return;
for (unsigned i = 0; i < n - 1; i++) {
x[i] = (x[i] >> amount) | (x[i + 1] << (BITSET_WORDBITS - amount));
}
x[n - 1] = x[n - 1] >> amount;
}
static inline void
__bitset_rotate_left(BITSET_WORD *x, unsigned amount, unsigned n)
{
assert(amount < BITSET_WORDBITS);
if (amount == 0)
return;
for (int i = n - 1; i > 0; i--) {
x[i] = (x[i] << amount) | (x[i - 1] >> (BITSET_WORDBITS - amount));
}
x[0] = x[0] << amount;
}
static inline void
__bitset_shr(BITSET_WORD *x, unsigned amount, unsigned n)
{
const unsigned int words = amount / BITSET_WORDBITS;
if (amount == 0)
return;
if (words) {
unsigned i;
for (i = 0; i < n - words; i++)
x[i] = x[i + words];
while (i < n)
x[i++] = 0;
amount %= BITSET_WORDBITS;
}
__bitset_rotate_right(x, amount, n);
}
static inline void
__bitset_shl(BITSET_WORD *x, unsigned amount, unsigned n)
{
const int words = amount / BITSET_WORDBITS;
if (amount == 0)
return;
if (words) {
int i;
for (i = n - 1; i >= words; i--) {
x[i] = x[i - words];
}
while (i >= 0) {
x[i--] = 0;
}
amount %= BITSET_WORDBITS;
}
__bitset_rotate_left(x, amount, n);
}
#define BITSET_SHR(x, n) \
__bitset_shr(x, n, ARRAY_SIZE(x));
#define BITSET_SHL(x, n) \
__bitset_shl(x, n, ARRAY_SIZE(x));
/* bit range operations
*/
#define BITSET_TEST_RANGE_INSIDE_WORD(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
(((x)[BITSET_BITWORD(b)] & BITSET_RANGE(b, e)) != 0) : \
(assert (!"BITSET_TEST_RANGE: bit range crosses word boundary"), 0))
#define BITSET_SET_RANGE_INSIDE_WORD(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
((x)[BITSET_BITWORD(b)] |= BITSET_RANGE(b, e)) : \
(assert (!"BITSET_SET_RANGE_INSIDE_WORD: bit range crosses word boundary"), 0))
#define BITSET_CLEAR_RANGE_INSIDE_WORD(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
((x)[BITSET_BITWORD(b)] &= ~BITSET_RANGE(b, e)) : \
(assert (!"BITSET_CLEAR_RANGE: bit range crosses word boundary"), 0))
static inline bool
__bitset_test_range(const BITSET_WORD *r, unsigned start, unsigned end)
{
const unsigned size = end - start + 1;
const unsigned start_mod = start % BITSET_WORDBITS;
if (start_mod + size <= BITSET_WORDBITS) {
return BITSET_TEST_RANGE_INSIDE_WORD(r, start, end);
} else {
const unsigned first_size = BITSET_WORDBITS - start_mod;
return __bitset_test_range(r, start, start + first_size - 1) ||
__bitset_test_range(r, start + first_size, end);
}
}
#define BITSET_TEST_RANGE(x, b, e) \
__bitset_test_range(x, b, e)
static inline void
__bitset_set_range(BITSET_WORD *r, unsigned start, unsigned end)
{
const unsigned size = end - start + 1;
const unsigned start_mod = start % BITSET_WORDBITS;
if (start_mod + size <= BITSET_WORDBITS) {
BITSET_SET_RANGE_INSIDE_WORD(r, start, end);
} else {
const unsigned first_size = BITSET_WORDBITS - start_mod;
__bitset_set_range(r, start, start + first_size - 1);
__bitset_set_range(r, start + first_size, end);
}
}
#define BITSET_SET_RANGE(x, b, e) \
__bitset_set_range(x, b, e)
static inline void
__bitclear_clear_range(BITSET_WORD *r, unsigned start, unsigned end)
{
const unsigned size = end - start + 1;
const unsigned start_mod = start % BITSET_WORDBITS;
if (start_mod + size <= BITSET_WORDBITS) {
BITSET_CLEAR_RANGE_INSIDE_WORD(r, start, end);
} else {
const unsigned first_size = BITSET_WORDBITS - start_mod;
__bitclear_clear_range(r, start, start + first_size - 1);
__bitclear_clear_range(r, start + first_size, end);
}
}
#define BITSET_CLEAR_RANGE(x, b, e) \
__bitclear_clear_range(x, b, e)
static inline unsigned
__bitset_prefix_sum(const BITSET_WORD *x, unsigned b, unsigned n)
{
unsigned prefix = 0;
for (unsigned i = 0; i < n; i++) {
if ((i + 1) * BITSET_WORDBITS <= b) {
prefix += util_bitcount(x[i]);
} else {
prefix += util_bitcount(x[i] & BITFIELD_MASK(b - i * BITSET_WORDBITS));
break;
}
}
return prefix;
}
/* Count set bits in the bitset (compute the size/cardinality of the bitset).
* This is a special case of prefix sum, but this convenience method is more
* natural when applicable.
*/
static inline unsigned
__bitset_count(const BITSET_WORD *x, unsigned n)
{
return __bitset_prefix_sum(x, ~0, n);
}
#define BITSET_PREFIX_SUM(x, b) \
__bitset_prefix_sum(x, b, ARRAY_SIZE(x))
#define BITSET_COUNT(x) \
__bitset_count(x, ARRAY_SIZE(x))
/* Get first bit set in a bitset.
*/
static inline int
__bitset_ffs(const BITSET_WORD *x, int n)
{
for (int i = 0; i < n; i++) {
if (x[i])
return ffs(x[i]) + BITSET_WORDBITS * i;
}
return 0;
}
/* Get the last bit set in a bitset.
*/
static inline int
__bitset_last_bit(const BITSET_WORD *x, int n)
{
for (int i = n - 1; i >= 0; i--) {
if (x[i])
return util_last_bit(x[i]) + BITSET_WORDBITS * i;
}
return 0;
}
#define BITSET_FFS(x) __bitset_ffs(x, ARRAY_SIZE(x))
#define BITSET_LAST_BIT(x) __bitset_last_bit(x, ARRAY_SIZE(x))
#define BITSET_LAST_BIT_SIZED(x, size) __bitset_last_bit(x, size)
static inline unsigned
__bitset_next_set(unsigned i, BITSET_WORD *tmp,
const BITSET_WORD *set, unsigned size)
{
unsigned bit, word;
/* NOTE: The initial conditions for this function are very specific. At
* the start of the loop, the tmp variable must be set to *set and the
* initial i value set to 0. This way, if there is a bit set in the first
* word, we ignore the i-value and just grab that bit (so 0 is ok, even
* though 0 may be returned). If the first word is 0, then the value of
* `word` will be 0 and we will go on to look at the second word.
*/
word = BITSET_BITWORD(i);
while (*tmp == 0) {
word++;
if (word >= BITSET_WORDS(size))
return size;
*tmp = set[word];
}
/* Find the next set bit in the non-zero word */
bit = ffs(*tmp) - 1;
/* Unset the bit */
*tmp &= ~(1ull << bit);
return word * BITSET_WORDBITS + bit;
}
/**
* Iterates over each set bit in a set
*
* @param __i iteration variable, bit number
* @param __set the bitset to iterate (will not be modified)
* @param __size number of bits in the set to consider
*/
#define BITSET_FOREACH_SET(__i, __set, __size) \
for (BITSET_WORD __tmp = (__size) == 0 ? 0 : *(__set), *__foo = &__tmp; __foo != NULL; __foo = NULL) \
for (__i = 0; \
(__i = __bitset_next_set(__i, &__tmp, __set, __size)) < __size;)
static inline void
__bitset_next_range(unsigned *start, unsigned *end, const BITSET_WORD *set,
unsigned size)
{
/* To find the next start, start searching from end. In the first iteration
* it will be at 0, in every subsequent iteration it will be at the first
* 0-bit after the range.
*/
unsigned word = BITSET_BITWORD(*end);
if (word >= BITSET_WORDS(size)) {
*start = *end = size;
return;
}
BITSET_WORD tmp = set[word] & ~(BITSET_BIT(*end) - 1);
while (!tmp) {
word++;
if (word >= BITSET_WORDS(size)) {
*start = *end = size;
return;
}
tmp = set[word];
}
*start = word * BITSET_WORDBITS + ffs(tmp) - 1;
/* Now do the opposite to find end. Here we can start at start + 1, because
* we know that the bit at start is 1 and we're searching for the first
* 0-bit.
*/
word = BITSET_BITWORD(*start + 1);
if (word >= BITSET_WORDS(size)) {
*end = size;
return;
}
tmp = set[word] | (BITSET_BIT(*start + 1) - 1);
while (~tmp == 0) {
word++;
if (word >= BITSET_WORDS(size)) {
*end = size;
return;
}
tmp = set[word];
}
/* Cap "end" at "size" in case there are extra bits past "size" set in the
* word. This is only necessary for "end" because we terminate the loop if
* "start" goes past "size".
*/
*end = MIN2(word * BITSET_WORDBITS + ffs(~tmp) - 1, size);
}
/**
* Iterates over each contiguous range of set bits in a set
*
* @param __start the first 1 bit of the current range
* @param __end the bit after the last 1 bit of the current range
* @param __set the bitset to iterate (will not be modified)
* @param __size number of bits in the set to consider
*/
#define BITSET_FOREACH_RANGE(__start, __end, __set, __size) \
for (__start = 0, __end = 0, \
__bitset_next_range(&__start, &__end, __set, __size); \
__start < __size; \
__bitset_next_range(&__start, &__end, __set, __size))
#ifdef __cplusplus
/**
* Simple C++ wrapper of a bitset type of static size, with value semantics
* and basic bitwise arithmetic operators. The operators defined below are
* expected to have the same semantics as the same operator applied to other
* fundamental integer types. T is the name of the struct to instantiate
* it as, and N is the number of bits in the bitset.
*/
#define DECLARE_BITSET_T(T, N) struct T { \
EXPLICIT_CONVERSION \
operator bool() const \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
if (words[i]) \
return true; \
return false; \
} \
\
T & \
operator=(int x) \
{ \
const T c = {{ (BITSET_WORD)x }}; \
return *this = c; \
} \
\
friend bool \
operator==(const T &b, const T &c) \
{ \
return BITSET_EQUAL(b.words, c.words); \
} \
\
friend bool \
operator!=(const T &b, const T &c) \
{ \
return !(b == c); \
} \
\
friend bool \
operator==(const T &b, int x) \
{ \
const T c = {{ (BITSET_WORD)x }}; \
return b == c; \
} \
\
friend bool \
operator!=(const T &b, int x) \
{ \
return !(b == x); \
} \
\
friend T \
operator~(const T &b) \
{ \
T c; \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
c.words[i] = ~b.words[i]; \
return c; \
} \
\
T & \
operator|=(const T &b) \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
words[i] |= b.words[i]; \
return *this; \
} \
\
friend T \
operator|(const T &b, const T &c) \
{ \
T d = b; \
d |= c; \
return d; \
} \
\
T & \
operator&=(const T &b) \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
words[i] &= b.words[i]; \
return *this; \
} \
\
friend T \
operator&(const T &b, const T &c) \
{ \
T d = b; \
d &= c; \
return d; \
} \
\
bool \
test(unsigned i) const \
{ \
return BITSET_TEST(words, i); \
} \
\
T & \
set(unsigned i) \
{ \
BITSET_SET(words, i); \
return *this; \
} \
\
T & \
clear(unsigned i) \
{ \
BITSET_CLEAR(words, i); \
return *this; \
} \
\
BITSET_WORD words[BITSET_WORDS(N)]; \
}
#endif
#endif