| // Copyright 2011 The Closure Library Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS-IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| |
| /** |
| * @fileoverview Implements quaternions and their conversion functions. In this |
| * implementation, quaternions are represented as 4 element vectors with the |
| * first 3 elements holding the imaginary components and the 4th element holding |
| * the real component. |
| * |
| */ |
| goog.provide('goog.vec.Quaternion'); |
| goog.provide('goog.vec.Quaternion.AnyType'); |
| |
| goog.require('goog.vec'); |
| goog.require('goog.vec.Vec3'); |
| goog.require('goog.vec.Vec4'); |
| |
| |
| /** @typedef {goog.vec.Float32} */ goog.vec.Quaternion.Float32; |
| /** @typedef {goog.vec.Float64} */ goog.vec.Quaternion.Float64; |
| /** @typedef {goog.vec.Number} */ goog.vec.Quaternion.Number; |
| /** @typedef {goog.vec.AnyType} */ goog.vec.Quaternion.AnyType; |
| |
| |
| /** |
| * Creates a Float32 quaternion, initialized to zero. |
| * |
| * @return {!goog.vec.Quaternion.Float32} The new quaternion. |
| */ |
| goog.vec.Quaternion.createFloat32 = goog.vec.Vec4.createFloat32; |
| |
| |
| /** |
| * Creates a Float64 quaternion, initialized to zero. |
| * |
| * @return {!goog.vec.Quaternion.Float64} The new quaternion. |
| */ |
| goog.vec.Quaternion.createFloat64 = goog.vec.Vec4.createFloat64; |
| |
| |
| /** |
| * Creates a Number quaternion, initialized to zero. |
| * |
| * @return {goog.vec.Quaternion.Number} The new quaternion. |
| */ |
| goog.vec.Quaternion.createNumber = goog.vec.Vec4.createNumber; |
| |
| |
| /** |
| * Creates a new Float32 quaternion initialized with the values from the |
| * supplied array. |
| * |
| * @param {!goog.vec.AnyType} vec The source 4 element array. |
| * @return {!goog.vec.Quaternion.Float32} The new quaternion. |
| */ |
| goog.vec.Quaternion.createFloat32FromArray = |
| goog.vec.Vec4.createFloat32FromArray; |
| |
| |
| /** |
| * Creates a new Float64 quaternion initialized with the values from the |
| * supplied array. |
| * |
| * @param {!goog.vec.AnyType} vec The source 4 element array. |
| * @return {!goog.vec.Quaternion.Float64} The new quaternion. |
| */ |
| goog.vec.Quaternion.createFloat64FromArray = |
| goog.vec.Vec4.createFloat64FromArray; |
| |
| |
| /** |
| * Creates a new Float32 quaternion initialized with the supplied values. |
| * |
| * @param {number} v0 The value for element at index 0. |
| * @param {number} v1 The value for element at index 1. |
| * @param {number} v2 The value for element at index 2. |
| * @param {number} v3 The value for element at index 3. |
| * @return {!goog.vec.Quaternion.Float32} The new quaternion. |
| */ |
| goog.vec.Quaternion.createFloat32FromValues = |
| goog.vec.Vec4.createFloat32FromValues; |
| |
| |
| /** |
| * Creates a new Float64 quaternion initialized with the supplied values. |
| * |
| * @param {number} v0 The value for element at index 0. |
| * @param {number} v1 The value for element at index 1. |
| * @param {number} v2 The value for element at index 2. |
| * @param {number} v3 The value for element at index 3. |
| * @return {!goog.vec.Quaternion.Float64} The new quaternion. |
| */ |
| goog.vec.Quaternion.createFloat64FromValues = |
| goog.vec.Vec4.createFloat64FromValues; |
| |
| |
| /** |
| * Creates a clone of the given Float32 quaternion. |
| * |
| * @param {!goog.vec.Quaternion.Float32} q The source quaternion. |
| * @return {!goog.vec.Quaternion.Float32} The new quaternion. |
| */ |
| goog.vec.Quaternion.cloneFloat32 = goog.vec.Vec4.cloneFloat32; |
| |
| |
| /** |
| * Creates a clone of the given Float64 quaternion. |
| * |
| * @param {!goog.vec.Quaternion.Float64} q The source quaternion. |
| * @return {!goog.vec.Quaternion.Float64} The new quaternion. |
| */ |
| goog.vec.Quaternion.cloneFloat64 = goog.vec.Vec4.cloneFloat64; |
| |
| |
| /** |
| * Creates a Float32 quaternion, initialized to the identity. |
| * |
| * @return {!goog.vec.Quaternion.Float32} The new quaternion. |
| */ |
| goog.vec.Quaternion.createIdentityFloat32 = function() { |
| var quat = goog.vec.Quaternion.createFloat32(); |
| goog.vec.Quaternion.makeIdentity(quat); |
| return quat; |
| }; |
| |
| |
| /** |
| * Creates a Float64 quaternion, initialized to the identity. |
| * |
| * @return {!goog.vec.Quaternion.Float64} The new quaternion. |
| */ |
| goog.vec.Quaternion.createIdentityFloat64 = function() { |
| var quat = goog.vec.Quaternion.createFloat64(); |
| goog.vec.Quaternion.makeIdentity(quat); |
| return quat; |
| }; |
| |
| |
| /** |
| * Initializes the quaternion with the given values. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} q The quaternion to receive |
| * the values. |
| * @param {number} v0 The value for element at index 0. |
| * @param {number} v1 The value for element at index 1. |
| * @param {number} v2 The value for element at index 2. |
| * @param {number} v3 The value for element at index 3. |
| * @return {!goog.vec.Vec4.AnyType} return q so that operations can be |
| * chained together. |
| */ |
| goog.vec.Quaternion.setFromValues = goog.vec.Vec4.setFromValues; |
| |
| |
| /** |
| * Initializes the quaternion with the given array of values. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} q The quaternion to receive |
| * the values. |
| * @param {!goog.vec.AnyType} values The array of values. |
| * @return {!goog.vec.Quaternion.AnyType} return q so that operations can be |
| * chained together. |
| */ |
| goog.vec.Quaternion.setFromArray = goog.vec.Vec4.setFromArray; |
| |
| |
| /** |
| * Adds the two quaternions. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat0 The first addend. |
| * @param {!goog.vec.Quaternion.AnyType} quat1 The second addend. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. May be quat0 or quat1. |
| */ |
| goog.vec.Quaternion.add = goog.vec.Vec4.add; |
| |
| |
| /** |
| * Negates a quaternion, storing the result into resultQuat. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion to negate. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. May be quat0. |
| */ |
| goog.vec.Quaternion.negate = goog.vec.Vec4.negate; |
| |
| |
| /** |
| * Multiplies each component of quat0 with scalar storing the product into |
| * resultVec. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat0 The source quaternion. |
| * @param {number} scalar The value to multiply with each component of quat0. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. May be quat0. |
| */ |
| goog.vec.Quaternion.scale = goog.vec.Vec4.scale; |
| |
| |
| /** |
| * Returns the square magnitude of the given quaternion. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion. |
| * @return {number} The magnitude of the quaternion. |
| */ |
| goog.vec.Quaternion.magnitudeSquared = goog.vec.Vec4.magnitudeSquared; |
| |
| |
| /** |
| * Returns the magnitude of the given quaternion. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion. |
| * @return {number} The magnitude of the quaternion. |
| */ |
| goog.vec.Quaternion.magnitude = goog.vec.Vec4.magnitude; |
| |
| |
| /** |
| * Normalizes the given quaternion storing the result into resultVec. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat0 The quaternion to |
| * normalize. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. May be quat0. |
| */ |
| goog.vec.Quaternion.normalize = goog.vec.Vec4.normalize; |
| |
| |
| /** |
| * Computes the dot (scalar) product of two quaternions. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} q0 The first quaternion. |
| * @param {!goog.vec.Quaternion.AnyType} q1 The second quaternion. |
| * @return {number} The scalar product. |
| */ |
| goog.vec.Quaternion.dot = goog.vec.Vec4.dot; |
| |
| |
| /** |
| * Computes the inverse of the quaternion in quat, storing the result into |
| * resultQuat. |
| * |
| * If the quaternion is already normalized, goog.vec.Quaternion.conjugate |
| * is faster than this function and produces the same result. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The quaternion to invert. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to receive |
| * the result. |
| * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.invert = function(quat, resultQuat) { |
| var a0 = quat[0], a1 = quat[1], a2 = quat[2], a3 = quat[3]; |
| var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3; |
| var invDot = dot ? 1.0 / dot : 0; |
| |
| resultQuat[0] = -a0 * invDot; |
| resultQuat[1] = -a1 * invDot; |
| resultQuat[2] = -a2 * invDot; |
| resultQuat[3] = a3 * invDot; |
| return resultQuat; |
| }; |
| |
| |
| /** |
| * Computes the conjugate of the quaternion in quat, storing the result into |
| * resultQuat. |
| * |
| * If the quaternion is normalized already, this function is faster than |
| * goog.Quaternion.inverse and produces the same result. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The source quaternion. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. |
| * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.conjugate = function(quat, resultQuat) { |
| resultQuat[0] = -quat[0]; |
| resultQuat[1] = -quat[1]; |
| resultQuat[2] = -quat[2]; |
| resultQuat[3] = quat[3]; |
| return resultQuat; |
| }; |
| |
| |
| /** |
| * Concatenates the two quaternions storing the result into resultQuat. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat0 The first quaternion. |
| * @param {!goog.vec.Quaternion.AnyType} quat1 The second quaternion. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. |
| * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.concat = function(quat0, quat1, resultQuat) { |
| var x0 = quat0[0], y0 = quat0[1], z0 = quat0[2], w0 = quat0[3]; |
| var x1 = quat1[0], y1 = quat1[1], z1 = quat1[2], w1 = quat1[3]; |
| resultQuat[0] = w0 * x1 + x0 * w1 + y0 * z1 - z0 * y1; |
| resultQuat[1] = w0 * y1 - x0 * z1 + y0 * w1 + z0 * x1; |
| resultQuat[2] = w0 * z1 + x0 * y1 - y0 * x1 + z0 * w1; |
| resultQuat[3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; |
| return resultQuat; |
| }; |
| |
| |
| /** |
| * Makes the given quaternion the identity quaternion (0, 0, 0, 1). |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The quaternion. |
| * @return {!goog.vec.Quaternion.AnyType} Return quat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.makeIdentity = function(quat) { |
| quat[0] = 0; |
| quat[1] = 0; |
| quat[2] = 0; |
| quat[3] = 1; |
| return quat; |
| }; |
| |
| |
| /** |
| * Generates a unit quaternion from the given angle-axis rotation pair. |
| * The rotation axis is not required to be a unit vector, but should |
| * have non-zero length. The angle should be specified in radians. |
| * |
| * @param {number} angle The angle (in radians) to rotate about the axis. |
| * @param {!goog.vec.Quaternion.AnyType} axis Unit vector specifying the |
| * axis of rotation. |
| * @param {!goog.vec.Quaternion.AnyType} quat Unit quaternion to store the |
| * result. |
| * @return {!goog.vec.Quaternion.AnyType} Return quat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.fromAngleAxis = function(angle, axis, quat) { |
| // Normalize the axis of rotation. |
| goog.vec.Vec3.normalize(axis, axis); |
| |
| var halfAngle = 0.5 * angle; |
| var sin = Math.sin(halfAngle); |
| goog.vec.Quaternion.setFromValues( |
| quat, sin * axis[0], sin * axis[1], sin * axis[2], Math.cos(halfAngle)); |
| |
| // Normalize the resulting quaternion. |
| goog.vec.Quaternion.normalize(quat, quat); |
| return quat; |
| }; |
| |
| |
| /** |
| * Generates an angle-axis rotation pair from a unit quaternion. |
| * The quaternion is assumed to be of unit length. The calculated |
| * values are returned via the passed 'axis' object and the 'angle' |
| * number returned by the function itself. The returned rotation axis |
| * is a non-zero length unit vector, and the returned angle is in |
| * radians in the range of [-PI, +PI]. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat Unit quaternion to convert. |
| * @param {!goog.vec.Quaternion.AnyType} axis Vector to store the returned |
| * rotation axis. |
| * @return {number} angle Angle (in radians) to rotate about 'axis'. |
| * The range of the returned angle is [-PI, +PI]. |
| */ |
| goog.vec.Quaternion.toAngleAxis = function(quat, axis) { |
| var angle = 2 * Math.acos(quat[3]); |
| var magnitude = Math.min(Math.max(1 - quat[3] * quat[3], 0), 1); |
| if (magnitude < goog.vec.EPSILON) { |
| // This is nearly an identity rotation, so just use a fixed +X axis. |
| goog.vec.Vec3.setFromValues(axis, 1, 0, 0); |
| } else { |
| // Compute the proper rotation axis. |
| goog.vec.Vec3.setFromValues(axis, quat[0], quat[1], quat[2]); |
| // Make sure the rotation axis is of unit length. |
| goog.vec.Vec3.normalize(axis, axis); |
| } |
| // Adjust the range of the returned angle to [-PI, +PI]. |
| if (angle > Math.PI) { |
| angle -= 2 * Math.PI; |
| } |
| return angle; |
| }; |
| |
| |
| /** |
| * Generates the quaternion from the given 3x3 rotation matrix. |
| * |
| * Perf: http://jsperf.com/conversion-of-3x3-matrix-to-quaternion |
| * http://jsperf.com/goog-vec-fromrotationmatrix3-a |
| * |
| * @param {!goog.vec.AnyType} matrix The source matrix. |
| * @param {!goog.vec.Quaternion.AnyType} quat The resulting quaternion. |
| * @return {!goog.vec.Quaternion.AnyType} Return quat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.fromRotationMatrix3 = function(matrix, quat) { |
| // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes |
| // article "Quaternion Calculus and Fast Animation". |
| var fTrace = matrix[0] + matrix[4] + matrix[8]; |
| var fRoot; |
| |
| if (fTrace > 0.0) { |
| // |w| > 1/2, may as well choose w > 1/2 |
| fRoot = Math.sqrt(fTrace + 1.0); // 2w |
| quat[3] = 0.5 * fRoot; |
| fRoot = 0.5 / fRoot; // 1 / (4w) |
| quat[0] = (matrix[5] - matrix[7]) * fRoot; |
| quat[1] = (matrix[6] - matrix[2]) * fRoot; |
| quat[2] = (matrix[1] - matrix[3]) * fRoot; |
| } else { |
| // |w| <= 1/2 |
| var i = 0; |
| if (matrix[4] > matrix[0]) i = 1; |
| if (matrix[8] > matrix[i * 3 + i]) i = 2; |
| var j = (i + 1) % 3; |
| var k = (i + 2) % 3; |
| |
| fRoot = Math.sqrt( |
| matrix[i * 3 + i] - matrix[j * 3 + j] - matrix[k * 3 + k] + 1.0); |
| quat[i] = 0.5 * fRoot; |
| fRoot = 0.5 / fRoot; |
| quat[3] = (matrix[j * 3 + k] - matrix[k * 3 + j]) * fRoot; |
| quat[j] = (matrix[j * 3 + i] + matrix[i * 3 + j]) * fRoot; |
| quat[k] = (matrix[k * 3 + i] + matrix[i * 3 + k]) * fRoot; |
| |
| // Flip all signs if w is negative. |
| if (quat[3] < 0) { |
| quat[0] = -quat[0]; |
| quat[1] = -quat[1]; |
| quat[2] = -quat[2]; |
| quat[3] = -quat[3]; |
| } |
| } |
| return quat; |
| }; |
| |
| |
| /** |
| * Generates the quaternion from the given 4x4 rotation matrix. |
| * |
| * Perf: http://jsperf.com/goog-vec-fromrotationmatrix4 |
| * |
| * Implementation is the same as fromRotationMatrix3 but using indices from |
| * the top left 3x3 in a 4x4 matrix. |
| * |
| * @param {!goog.vec.AnyType} matrix The source matrix. |
| * @param {!goog.vec.Quaternion.AnyType} quat The resulting quaternion. |
| * @return {!goog.vec.Quaternion.AnyType} Return quat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.fromRotationMatrix4 = function(matrix, quat) { |
| var fTrace = matrix[0] + matrix[5] + matrix[10]; |
| var fRoot; |
| |
| if (fTrace > 0.0) { |
| // |w| > 1/2, may as well choose w > 1/2 |
| fRoot = Math.sqrt(fTrace + 1.0); // 2w |
| quat[3] = 0.5 * fRoot; |
| fRoot = 0.5 / fRoot; // 1 / (4w) |
| quat[0] = (matrix[6] - matrix[9]) * fRoot; |
| quat[1] = (matrix[8] - matrix[2]) * fRoot; |
| quat[2] = (matrix[1] - matrix[4]) * fRoot; |
| } else { |
| // |w| <= 1/2 |
| var i = 0; |
| if (matrix[8] > matrix[0]) i = 1; |
| if (matrix[10] > matrix[i * 4 + i]) i = 2; |
| var j = (i + 1) % 3; |
| var k = (i + 2) % 3; |
| |
| fRoot = Math.sqrt( |
| matrix[i * 4 + i] - matrix[j * 4 + j] - matrix[k * 4 + k] + 1.0); |
| quat[i] = 0.5 * fRoot; |
| fRoot = 0.5 / fRoot; |
| quat[3] = (matrix[j * 4 + k] - matrix[k * 4 + j]) * fRoot; |
| quat[j] = (matrix[j * 4 + i] + matrix[i * 4 + j]) * fRoot; |
| quat[k] = (matrix[k * 4 + i] + matrix[i * 4 + k]) * fRoot; |
| |
| // Flip all signs if w is negative. |
| if (quat[3] < 0) { |
| quat[0] = -quat[0]; |
| quat[1] = -quat[1]; |
| quat[2] = -quat[2]; |
| quat[3] = -quat[3]; |
| } |
| } |
| return quat; |
| }; |
| |
| |
| /** |
| * Generates the 3x3 rotation matrix from the given quaternion. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The source quaternion. |
| * @param {!goog.vec.AnyType} matrix The resulting matrix. |
| * @return {!goog.vec.AnyType} Return resulting matrix so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.toRotationMatrix3 = function(quat, matrix) { |
| var x = quat[0], y = quat[1], z = quat[2], w = quat[3]; |
| var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z; |
| var wx = x2 * w; |
| var wy = y2 * w; |
| var wz = z2 * w; |
| var xx = x2 * x; |
| var xy = y2 * x; |
| var xz = z2 * x; |
| var yy = y2 * y; |
| var yz = z2 * y; |
| var zz = z2 * z; |
| |
| matrix[0] = 1 - (yy + zz); |
| matrix[1] = xy + wz; |
| matrix[2] = xz - wy; |
| matrix[3] = xy - wz; |
| matrix[4] = 1 - (xx + zz); |
| matrix[5] = yz + wx; |
| matrix[6] = xz + wy; |
| matrix[7] = yz - wx; |
| matrix[8] = 1 - (xx + yy); |
| return matrix; |
| }; |
| |
| |
| /** |
| * Generates the 4x4 rotation matrix from the given quaternion. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The source quaternion. |
| * @param {!goog.vec.AnyType} matrix The resulting matrix. |
| * @return {!goog.vec.AnyType} Return resulting matrix so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.toRotationMatrix4 = function(quat, matrix) { |
| var x = quat[0], y = quat[1], z = quat[2], w = quat[3]; |
| var x2 = 2 * x, y2 = 2 * y, z2 = 2 * z; |
| var wx = x2 * w; |
| var wy = y2 * w; |
| var wz = z2 * w; |
| var xx = x2 * x; |
| var xy = y2 * x; |
| var xz = z2 * x; |
| var yy = y2 * y; |
| var yz = z2 * y; |
| var zz = z2 * z; |
| |
| matrix[0] = 1 - (yy + zz); |
| matrix[1] = xy + wz; |
| matrix[2] = xz - wy; |
| matrix[3] = 0; |
| matrix[4] = xy - wz; |
| matrix[5] = 1 - (xx + zz); |
| matrix[6] = yz + wx; |
| matrix[7] = 0; |
| matrix[8] = xz + wy; |
| matrix[9] = yz - wx; |
| matrix[10] = 1 - (xx + yy); |
| matrix[11] = 0; |
| matrix[12] = 0; |
| matrix[13] = 0; |
| matrix[14] = 0; |
| matrix[15] = 1; |
| return matrix; |
| }; |
| |
| |
| /** |
| * Rotates a quaternion by the given angle about the X axis. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The quaternion. |
| * @param {number} angle The angle in radians. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. |
| * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.rotateX = function(quat, angle, resultQuat) { |
| angle *= 0.5; |
| var ax = quat[0], ay = quat[1], az = quat[2], aw = quat[3]; |
| var bx = Math.sin(angle), bw = Math.cos(angle); |
| |
| resultQuat[0] = ax * bw + aw * bx; |
| resultQuat[1] = ay * bw + az * bx; |
| resultQuat[2] = az * bw - ay * bx; |
| resultQuat[3] = aw * bw - ax * bx; |
| return resultQuat; |
| }; |
| |
| |
| /** |
| * Rotates a quaternion by the given angle about the Y axis. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The quaternion. |
| * @param {number} angle The angle in radians. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. |
| * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.rotateY = function(quat, angle, resultQuat) { |
| angle *= 0.5; |
| var ax = quat[0], ay = quat[1], az = quat[2], aw = quat[3]; |
| var by = Math.sin(angle), bw = Math.cos(angle); |
| |
| resultQuat[0] = ax * bw - az * by; |
| resultQuat[1] = ay * bw + aw * by; |
| resultQuat[2] = az * bw + ax * by; |
| resultQuat[3] = aw * bw - ay * by; |
| return resultQuat; |
| }; |
| |
| |
| /** |
| * Rotates a quaternion by the given angle about the Z axis. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} quat The quaternion. |
| * @param {number} angle The angle in radians. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. |
| * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.rotateZ = function(quat, angle, resultQuat) { |
| angle *= 0.5; |
| var ax = quat[0], ay = quat[1], az = quat[2], aw = quat[3]; |
| var bz = Math.sin(angle), bw = Math.cos(angle); |
| |
| resultQuat[0] = ax * bw + ay * bz; |
| resultQuat[1] = ay * bw - ax * bz; |
| resultQuat[2] = az * bw + aw * bz; |
| resultQuat[3] = aw * bw - az * bz; |
| return resultQuat; |
| }; |
| |
| |
| /** |
| * Transforms a vec with a quaternion. Works on both vec3s and vec4s. |
| * |
| * @param {!goog.vec.AnyType} vec The vec to transform. |
| * @param {!goog.vec.Quaternion.AnyType} quat The quaternion. |
| * @param {!goog.vec.AnyType} resultVec The vec to receive the result. |
| * @return {!goog.vec.AnyType} Return resultVec so that operations can be |
| * chained together. Note that the caller is responsible for type-casting. |
| */ |
| goog.vec.Quaternion.transformVec = function(vec, quat, resultVec) { |
| var x = vec[0], y = vec[1], z = vec[2]; |
| var qx = quat[0], qy = quat[1], qz = quat[2], qw = quat[3]; |
| // Calculate quat * vec. |
| var ix = qw * x + qy * z - qz * y; |
| var iy = qw * y + qz * x - qx * z; |
| var iz = qw * z + qx * y - qy * x; |
| var iw = -qx * x - qy * y - qz * z; |
| // Calculate result * inverse quat. |
| resultVec[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; |
| resultVec[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; |
| resultVec[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; |
| return resultVec; |
| }; |
| |
| |
| /** |
| * Computes the spherical linear interpolated value from the given quaternions |
| * q0 and q1 according to the coefficient t. The resulting quaternion is stored |
| * in resultQuat. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} q0 The first quaternion. |
| * @param {!goog.vec.Quaternion.AnyType} q1 The second quaternion. |
| * @param {number} t The interpolating coefficient. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the result. |
| * @return {!goog.vec.Quaternion.AnyType} Return resultQuat so that |
| * operations can be chained together. |
| */ |
| goog.vec.Quaternion.slerp = function(q0, q1, t, resultQuat) { |
| // Compute the dot product between q0 and q1 (cos of the angle between q0 and |
| // q1). If it's outside the interval [-1,1], then the arccos is not defined. |
| // The usual reason for this is that q0 and q1 are colinear. In this case |
| // the angle between the two is zero, so just return q1. |
| var cosVal = goog.vec.Quaternion.dot(q0, q1); |
| if (cosVal > 1 || cosVal < -1) { |
| goog.vec.Vec4.setFromArray(resultQuat, q1); |
| return resultQuat; |
| } |
| |
| // Quaternions are a double cover on the space of rotations. That is, q and -q |
| // represent the same rotation. Thus we have two possibilities when |
| // interpolating between q0 and q1: going the short way or the long way. We |
| // prefer the short way since that is the likely expectation from users. |
| var factor = 1; |
| if (cosVal < 0) { |
| factor = -1; |
| cosVal = -cosVal; |
| } |
| |
| // Compute the angle between q0 and q1. If it's very small, then just return |
| // q1 to avoid a very large denominator below. |
| var angle = Math.acos(cosVal); |
| if (angle <= goog.vec.EPSILON) { |
| goog.vec.Vec4.setFromArray(resultQuat, q1); |
| return resultQuat; |
| } |
| |
| // Compute the coefficients and interpolate. |
| var invSinVal = 1 / Math.sin(angle); |
| var c0 = Math.sin((1 - t) * angle) * invSinVal; |
| var c1 = factor * Math.sin(t * angle) * invSinVal; |
| |
| resultQuat[0] = q0[0] * c0 + q1[0] * c1; |
| resultQuat[1] = q0[1] * c0 + q1[1] * c1; |
| resultQuat[2] = q0[2] * c0 + q1[2] * c1; |
| resultQuat[3] = q0[3] * c0 + q1[3] * c1; |
| return resultQuat; |
| }; |
| |
| |
| /** |
| * Compute the simple linear interpolation of the two quaternions q0 and q1 |
| * according to the coefficient t. The resulting quaternion is stored in |
| * resultVec. |
| * |
| * @param {!goog.vec.Quaternion.AnyType} q0 The first quaternion. |
| * @param {!goog.vec.Quaternion.AnyType} q1 The second quaternion. |
| * @param {number} t The interpolation factor. |
| * @param {!goog.vec.Quaternion.AnyType} resultQuat The quaternion to |
| * receive the results (may be q0 or q1). |
| */ |
| goog.vec.Quaternion.nlerp = goog.vec.Vec4.lerp; |