blob: aa0e7bdc8bbec9ea18175c6b7aa357c113570865 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// See https://code.google.com/p/go/source/browse/CONTRIBUTORS
// Licensed under the same terms as Go itself:
// https://code.google.com/p/go/source/browse/LICENSE
// TODO: replace all <-sc.doneServing with reads from the stream's cw
// instead, and make sure that on close we close all open
// streams. then remove doneServing?
// TODO: finish GOAWAY support. Consider each incoming frame type and
// whether it should be ignored during a shutdown race.
// TODO: disconnect idle clients. GFE seems to do 4 minutes. make
// configurable? or maximum number of idle clients and remove the
// oldest?
// TODO: turn off the serve goroutine when idle, so
// an idle conn only has the readFrames goroutine active. (which could
// also be optimized probably to pin less memory in crypto/tls). This
// would involve tracking when the serve goroutine is active (atomic
// int32 read/CAS probably?) and starting it up when frames arrive,
// and shutting it down when all handlers exit. the occasional PING
// packets could use time.AfterFunc to call sc.wakeStartServeLoop()
// (which is a no-op if already running) and then queue the PING write
// as normal. The serve loop would then exit in most cases (if no
// Handlers running) and not be woken up again until the PING packet
// returns.
// TODO (maybe): add a mechanism for Handlers to going into
// half-closed-local mode (rw.(io.Closer) test?) but not exit their
// handler, and continue to be able to read from the
// Request.Body. This would be a somewhat semantic change from HTTP/1
// (or at least what we expose in net/http), so I'd probably want to
// add it there too. For now, this package says that returning from
// the Handler ServeHTTP function means you're both done reading and
// done writing, without a way to stop just one or the other.
package http2
import (
"bufio"
"bytes"
"crypto/tls"
"errors"
"fmt"
"io"
"log"
"net"
"net/http"
"net/url"
"strconv"
"strings"
"sync"
"time"
"github.com/bradfitz/http2/hpack"
)
const (
prefaceTimeout = 10 * time.Second
firstSettingsTimeout = 2 * time.Second // should be in-flight with preface anyway
handlerChunkWriteSize = 4 << 10
defaultMaxStreams = 250 // TODO: make this 100 as the GFE seems to?
)
var (
errClientDisconnected = errors.New("client disconnected")
errClosedBody = errors.New("body closed by handler")
errStreamBroken = errors.New("http2: stream broken")
)
var responseWriterStatePool = sync.Pool{
New: func() interface{} {
rws := &responseWriterState{}
rws.bw = bufio.NewWriterSize(chunkWriter{rws}, handlerChunkWriteSize)
return rws
},
}
// Test hooks.
var (
testHookOnConn func()
testHookGetServerConn func(*serverConn)
testHookOnPanicMu *sync.Mutex // nil except in tests
testHookOnPanic func(sc *serverConn, panicVal interface{}) (rePanic bool)
)
// Server is an HTTP/2 server.
type Server struct {
// MaxHandlers limits the number of http.Handler ServeHTTP goroutines
// which may run at a time over all connections.
// Negative or zero no limit.
// TODO: implement
MaxHandlers int
// MaxConcurrentStreams optionally specifies the number of
// concurrent streams that each client may have open at a
// time. This is unrelated to the number of http.Handler goroutines
// which may be active globally, which is MaxHandlers.
// If zero, MaxConcurrentStreams defaults to at least 100, per
// the HTTP/2 spec's recommendations.
MaxConcurrentStreams uint32
// MaxReadFrameSize optionally specifies the largest frame
// this server is willing to read. A valid value is between
// 16k and 16M, inclusive. If zero or otherwise invalid, a
// default value is used.
MaxReadFrameSize uint32
// PermitProhibitedCipherSuites, if true, permits the use of
// cipher suites prohibited by the HTTP/2 spec.
PermitProhibitedCipherSuites bool
}
func (s *Server) maxReadFrameSize() uint32 {
if v := s.MaxReadFrameSize; v >= minMaxFrameSize && v <= maxFrameSize {
return v
}
return defaultMaxReadFrameSize
}
func (s *Server) maxConcurrentStreams() uint32 {
if v := s.MaxConcurrentStreams; v > 0 {
return v
}
return defaultMaxStreams
}
// ConfigureServer adds HTTP/2 support to a net/http Server.
//
// The configuration conf may be nil.
//
// ConfigureServer must be called before s begins serving.
func ConfigureServer(s *http.Server, conf *Server) {
if conf == nil {
conf = new(Server)
}
if s.TLSConfig == nil {
s.TLSConfig = new(tls.Config)
}
// Note: not setting MinVersion to tls.VersionTLS12,
// as we don't want to interfere with HTTP/1.1 traffic
// on the user's server. We enforce TLS 1.2 later once
// we accept a connection. Ideally this should be done
// during next-proto selection, but using TLS <1.2 with
// HTTP/2 is still the client's bug.
// Be sure we advertise tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
// at least.
// TODO: enable PreferServerCipherSuites?
if s.TLSConfig.CipherSuites != nil {
const requiredCipher = tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
haveRequired := false
for _, v := range s.TLSConfig.CipherSuites {
if v == requiredCipher {
haveRequired = true
break
}
}
if !haveRequired {
s.TLSConfig.CipherSuites = append(s.TLSConfig.CipherSuites, requiredCipher)
}
}
haveNPN := false
for _, p := range s.TLSConfig.NextProtos {
if p == NextProtoTLS {
haveNPN = true
break
}
}
if !haveNPN {
s.TLSConfig.NextProtos = append(s.TLSConfig.NextProtos, NextProtoTLS)
}
// h2-14 is temporary (as of 2015-03-05) while we wait for all browsers
// to switch to "h2".
s.TLSConfig.NextProtos = append(s.TLSConfig.NextProtos, "h2-14")
if s.TLSNextProto == nil {
s.TLSNextProto = map[string]func(*http.Server, *tls.Conn, http.Handler){}
}
protoHandler := func(hs *http.Server, c *tls.Conn, h http.Handler) {
if testHookOnConn != nil {
testHookOnConn()
}
conf.handleConn(hs, c, h)
}
s.TLSNextProto[NextProtoTLS] = protoHandler
s.TLSNextProto["h2-14"] = protoHandler // temporary; see above.
}
func (srv *Server) handleConn(hs *http.Server, c net.Conn, h http.Handler) {
sc := &serverConn{
srv: srv,
hs: hs,
conn: c,
remoteAddrStr: c.RemoteAddr().String(),
bw: newBufferedWriter(c),
handler: h,
streams: make(map[uint32]*stream),
readFrameCh: make(chan frameAndGate),
readFrameErrCh: make(chan error, 1), // must be buffered for 1
wantWriteFrameCh: make(chan frameWriteMsg, 8),
wroteFrameCh: make(chan struct{}, 1), // buffered; one send in reading goroutine
bodyReadCh: make(chan bodyReadMsg), // buffering doesn't matter either way
doneServing: make(chan struct{}),
advMaxStreams: srv.maxConcurrentStreams(),
writeSched: writeScheduler{
maxFrameSize: initialMaxFrameSize,
},
initialWindowSize: initialWindowSize,
headerTableSize: initialHeaderTableSize,
serveG: newGoroutineLock(),
pushEnabled: true,
}
sc.flow.add(initialWindowSize)
sc.inflow.add(initialWindowSize)
sc.hpackEncoder = hpack.NewEncoder(&sc.headerWriteBuf)
sc.hpackDecoder = hpack.NewDecoder(initialHeaderTableSize, sc.onNewHeaderField)
fr := NewFramer(sc.bw, c)
fr.SetMaxReadFrameSize(srv.maxReadFrameSize())
sc.framer = fr
if tc, ok := c.(*tls.Conn); ok {
sc.tlsState = new(tls.ConnectionState)
*sc.tlsState = tc.ConnectionState()
// 9.2 Use of TLS Features
// An implementation of HTTP/2 over TLS MUST use TLS
// 1.2 or higher with the restrictions on feature set
// and cipher suite described in this section. Due to
// implementation limitations, it might not be
// possible to fail TLS negotiation. An endpoint MUST
// immediately terminate an HTTP/2 connection that
// does not meet the TLS requirements described in
// this section with a connection error (Section
// 5.4.1) of type INADEQUATE_SECURITY.
if sc.tlsState.Version < tls.VersionTLS12 {
sc.rejectConn(ErrCodeInadequateSecurity, "TLS version too low")
return
}
if sc.tlsState.ServerName == "" {
// Client must use SNI, but we don't enforce that anymore,
// since it was causing problems when connecting to bare IP
// addresses during development.
//
// TODO: optionally enforce? Or enforce at the time we receive
// a new request, and verify the the ServerName matches the :authority?
// But that precludes proxy situations, perhaps.
//
// So for now, do nothing here again.
}
if !srv.PermitProhibitedCipherSuites && isBadCipher(sc.tlsState.CipherSuite) {
// "Endpoints MAY choose to generate a connection error
// (Section 5.4.1) of type INADEQUATE_SECURITY if one of
// the prohibited cipher suites are negotiated."
//
// We choose that. In my opinion, the spec is weak
// here. It also says both parties must support at least
// TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 so there's no
// excuses here. If we really must, we could allow an
// "AllowInsecureWeakCiphers" option on the server later.
// Let's see how it plays out first.
sc.rejectConn(ErrCodeInadequateSecurity, fmt.Sprintf("Prohibited TLS 1.2 Cipher Suite: %x", sc.tlsState.CipherSuite))
return
}
}
if hook := testHookGetServerConn; hook != nil {
hook(sc)
}
sc.serve()
}
// isBadCipher reports whether the cipher is blacklisted by the HTTP/2 spec.
func isBadCipher(cipher uint16) bool {
switch cipher {
case tls.TLS_RSA_WITH_RC4_128_SHA,
tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA,
tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
// Reject cipher suites from Appendix A.
// "This list includes those cipher suites that do not
// offer an ephemeral key exchange and those that are
// based on the TLS null, stream or block cipher type"
return true
default:
return false
}
}
func (sc *serverConn) rejectConn(err ErrCode, debug string) {
log.Printf("REJECTING conn: %v, %s", err, debug)
// ignoring errors. hanging up anyway.
sc.framer.WriteGoAway(0, err, []byte(debug))
sc.bw.Flush()
sc.conn.Close()
}
// frameAndGates coordinates the readFrames and serve
// goroutines. Because the Framer interface only permits the most
// recently-read Frame from being accessed, the readFrames goroutine
// blocks until it has a frame, passes it to serve, and then waits for
// serve to be done with it before reading the next one.
type frameAndGate struct {
f Frame
g gate
}
type serverConn struct {
// Immutable:
srv *Server
hs *http.Server
conn net.Conn
bw *bufferedWriter // writing to conn
handler http.Handler
framer *Framer
hpackDecoder *hpack.Decoder
doneServing chan struct{} // closed when serverConn.serve ends
readFrameCh chan frameAndGate // written by serverConn.readFrames
readFrameErrCh chan error
wantWriteFrameCh chan frameWriteMsg // from handlers -> serve
wroteFrameCh chan struct{} // from writeFrameAsync -> serve, tickles more frame writes
bodyReadCh chan bodyReadMsg // from handlers -> serve
testHookCh chan func() // code to run on the serve loop
flow flow // conn-wide (not stream-specific) outbound flow control
inflow flow // conn-wide inbound flow control
tlsState *tls.ConnectionState // shared by all handlers, like net/http
remoteAddrStr string
// Everything following is owned by the serve loop; use serveG.check():
serveG goroutineLock // used to verify funcs are on serve()
pushEnabled bool
sawFirstSettings bool // got the initial SETTINGS frame after the preface
needToSendSettingsAck bool
unackedSettings int // how many SETTINGS have we sent without ACKs?
clientMaxStreams uint32 // SETTINGS_MAX_CONCURRENT_STREAMS from client (our PUSH_PROMISE limit)
advMaxStreams uint32 // our SETTINGS_MAX_CONCURRENT_STREAMS advertised the client
curOpenStreams uint32 // client's number of open streams
maxStreamID uint32 // max ever seen
streams map[uint32]*stream
initialWindowSize int32
headerTableSize uint32
maxHeaderListSize uint32 // zero means unknown (default)
canonHeader map[string]string // http2-lower-case -> Go-Canonical-Case
req requestParam // non-zero while reading request headers
writingFrame bool // started write goroutine but haven't heard back on wroteFrameCh
needsFrameFlush bool // last frame write wasn't a flush
writeSched writeScheduler
inGoAway bool // we've started to or sent GOAWAY
needToSendGoAway bool // we need to schedule a GOAWAY frame write
goAwayCode ErrCode
shutdownTimerCh <-chan time.Time // nil until used
shutdownTimer *time.Timer // nil until used
// Owned by the writeFrameAsync goroutine:
headerWriteBuf bytes.Buffer
hpackEncoder *hpack.Encoder
}
// requestParam is the state of the next request, initialized over
// potentially several frames HEADERS + zero or more CONTINUATION
// frames.
type requestParam struct {
// stream is non-nil if we're reading (HEADER or CONTINUATION)
// frames for a request (but not DATA).
stream *stream
header http.Header
method, path string
scheme, authority string
sawRegularHeader bool // saw a non-pseudo header already
invalidHeader bool // an invalid header was seen
}
// stream represents a stream. This is the minimal metadata needed by
// the serve goroutine. Most of the actual stream state is owned by
// the http.Handler's goroutine in the responseWriter. Because the
// responseWriter's responseWriterState is recycled at the end of a
// handler, this struct intentionally has no pointer to the
// *responseWriter{,State} itself, as the Handler ending nils out the
// responseWriter's state field.
type stream struct {
// immutable:
id uint32
body *pipe // non-nil if expecting DATA frames
cw closeWaiter // closed wait stream transitions to closed state
// owned by serverConn's serve loop:
bodyBytes int64 // body bytes seen so far
declBodyBytes int64 // or -1 if undeclared
flow flow // limits writing from Handler to client
inflow flow // what the client is allowed to POST/etc to us
parent *stream // or nil
weight uint8
state streamState
sentReset bool // only true once detached from streams map
gotReset bool // only true once detacted from streams map
}
func (sc *serverConn) Framer() *Framer { return sc.framer }
func (sc *serverConn) CloseConn() error { return sc.conn.Close() }
func (sc *serverConn) Flush() error { return sc.bw.Flush() }
func (sc *serverConn) HeaderEncoder() (*hpack.Encoder, *bytes.Buffer) {
return sc.hpackEncoder, &sc.headerWriteBuf
}
func (sc *serverConn) state(streamID uint32) (streamState, *stream) {
sc.serveG.check()
// http://http2.github.io/http2-spec/#rfc.section.5.1
if st, ok := sc.streams[streamID]; ok {
return st.state, st
}
// "The first use of a new stream identifier implicitly closes all
// streams in the "idle" state that might have been initiated by
// that peer with a lower-valued stream identifier. For example, if
// a client sends a HEADERS frame on stream 7 without ever sending a
// frame on stream 5, then stream 5 transitions to the "closed"
// state when the first frame for stream 7 is sent or received."
if streamID <= sc.maxStreamID {
return stateClosed, nil
}
return stateIdle, nil
}
func (sc *serverConn) vlogf(format string, args ...interface{}) {
if VerboseLogs {
sc.logf(format, args...)
}
}
func (sc *serverConn) logf(format string, args ...interface{}) {
if lg := sc.hs.ErrorLog; lg != nil {
lg.Printf(format, args...)
} else {
log.Printf(format, args...)
}
}
func (sc *serverConn) condlogf(err error, format string, args ...interface{}) {
if err == nil {
return
}
str := err.Error()
if err == io.EOF || strings.Contains(str, "use of closed network connection") {
// Boring, expected errors.
sc.vlogf(format, args...)
} else {
sc.logf(format, args...)
}
}
func (sc *serverConn) onNewHeaderField(f hpack.HeaderField) {
sc.serveG.check()
sc.vlogf("got header field %+v", f)
switch {
case !validHeader(f.Name):
sc.req.invalidHeader = true
case strings.HasPrefix(f.Name, ":"):
if sc.req.sawRegularHeader {
sc.logf("pseudo-header after regular header")
sc.req.invalidHeader = true
return
}
var dst *string
switch f.Name {
case ":method":
dst = &sc.req.method
case ":path":
dst = &sc.req.path
case ":scheme":
dst = &sc.req.scheme
case ":authority":
dst = &sc.req.authority
default:
// 8.1.2.1 Pseudo-Header Fields
// "Endpoints MUST treat a request or response
// that contains undefined or invalid
// pseudo-header fields as malformed (Section
// 8.1.2.6)."
sc.logf("invalid pseudo-header %q", f.Name)
sc.req.invalidHeader = true
return
}
if *dst != "" {
sc.logf("duplicate pseudo-header %q sent", f.Name)
sc.req.invalidHeader = true
return
}
*dst = f.Value
case f.Name == "cookie":
sc.req.sawRegularHeader = true
if s, ok := sc.req.header["Cookie"]; ok && len(s) == 1 {
s[0] = s[0] + "; " + f.Value
} else {
sc.req.header.Add("Cookie", f.Value)
}
default:
sc.req.sawRegularHeader = true
sc.req.header.Add(sc.canonicalHeader(f.Name), f.Value)
}
}
func (sc *serverConn) canonicalHeader(v string) string {
sc.serveG.check()
cv, ok := commonCanonHeader[v]
if ok {
return cv
}
cv, ok = sc.canonHeader[v]
if ok {
return cv
}
if sc.canonHeader == nil {
sc.canonHeader = make(map[string]string)
}
cv = http.CanonicalHeaderKey(v)
sc.canonHeader[v] = cv
return cv
}
// readFrames is the loop that reads incoming frames.
// It's run on its own goroutine.
func (sc *serverConn) readFrames() {
g := make(gate, 1)
for {
f, err := sc.framer.ReadFrame()
if err != nil {
sc.readFrameErrCh <- err
close(sc.readFrameCh)
return
}
sc.readFrameCh <- frameAndGate{f, g}
// We can't read another frame until this one is
// processed, as the ReadFrame interface doesn't copy
// memory. The Frame accessor methods access the last
// frame's (shared) buffer. So we wait for the
// serve goroutine to tell us it's done:
g.Wait()
}
}
// writeFrameAsync runs in its own goroutine and writes a single frame
// and then reports when it's done.
// At most one goroutine can be running writeFrameAsync at a time per
// serverConn.
func (sc *serverConn) writeFrameAsync(wm frameWriteMsg) {
err := wm.write.writeFrame(sc)
if ch := wm.done; ch != nil {
select {
case ch <- err:
default:
panic(fmt.Sprintf("unbuffered done channel passed in for type %T", wm.write))
}
}
sc.wroteFrameCh <- struct{}{} // tickle frame selection scheduler
}
func (sc *serverConn) closeAllStreamsOnConnClose() {
sc.serveG.check()
for _, st := range sc.streams {
sc.closeStream(st, errClientDisconnected)
}
}
func (sc *serverConn) stopShutdownTimer() {
sc.serveG.check()
if t := sc.shutdownTimer; t != nil {
t.Stop()
}
}
func (sc *serverConn) notePanic() {
if testHookOnPanicMu != nil {
testHookOnPanicMu.Lock()
defer testHookOnPanicMu.Unlock()
}
if testHookOnPanic != nil {
if e := recover(); e != nil {
if testHookOnPanic(sc, e) {
panic(e)
}
}
}
}
func (sc *serverConn) serve() {
sc.serveG.check()
defer sc.notePanic()
defer sc.conn.Close()
defer sc.closeAllStreamsOnConnClose()
defer sc.stopShutdownTimer()
defer close(sc.doneServing) // unblocks handlers trying to send
sc.vlogf("HTTP/2 connection from %v on %p", sc.conn.RemoteAddr(), sc.hs)
sc.writeFrame(frameWriteMsg{
write: writeSettings{
{SettingMaxFrameSize, sc.srv.maxReadFrameSize()},
{SettingMaxConcurrentStreams, sc.advMaxStreams},
// TODO: more actual settings, notably
// SettingInitialWindowSize, but then we also
// want to bump up the conn window size the
// same amount here right after the settings
},
})
sc.unackedSettings++
if err := sc.readPreface(); err != nil {
sc.condlogf(err, "error reading preface from client %v: %v", sc.conn.RemoteAddr(), err)
return
}
go sc.readFrames() // closed by defer sc.conn.Close above
settingsTimer := time.NewTimer(firstSettingsTimeout)
for {
select {
case wm := <-sc.wantWriteFrameCh:
sc.writeFrame(wm)
case <-sc.wroteFrameCh:
if sc.writingFrame != true {
panic("internal error: expected to be already writing a frame")
}
sc.writingFrame = false
sc.scheduleFrameWrite()
case fg, ok := <-sc.readFrameCh:
if !ok {
sc.readFrameCh = nil
}
if !sc.processFrameFromReader(fg, ok) {
return
}
if settingsTimer.C != nil {
settingsTimer.Stop()
settingsTimer.C = nil
}
case m := <-sc.bodyReadCh:
sc.noteBodyRead(m.st, m.n)
case <-settingsTimer.C:
sc.logf("timeout waiting for SETTINGS frames from %v", sc.conn.RemoteAddr())
return
case <-sc.shutdownTimerCh:
sc.vlogf("GOAWAY close timer fired; closing conn from %v", sc.conn.RemoteAddr())
return
case fn := <-sc.testHookCh:
fn()
}
}
}
// readPreface reads the ClientPreface greeting from the peer
// or returns an error on timeout or an invalid greeting.
func (sc *serverConn) readPreface() error {
errc := make(chan error, 1)
go func() {
// Read the client preface
buf := make([]byte, len(ClientPreface))
if _, err := io.ReadFull(sc.conn, buf); err != nil {
errc <- err
} else if !bytes.Equal(buf, clientPreface) {
errc <- fmt.Errorf("bogus greeting %q", buf)
} else {
errc <- nil
}
}()
timer := time.NewTimer(prefaceTimeout) // TODO: configurable on *Server?
defer timer.Stop()
select {
case <-timer.C:
return errors.New("timeout waiting for client preface")
case err := <-errc:
if err == nil {
sc.vlogf("client %v said hello", sc.conn.RemoteAddr())
}
return err
}
}
// writeDataFromHandler writes the data described in req to stream.id.
//
// The provided ch is used to avoid allocating new channels for each
// write operation. It's expected that the caller reuses writeData and ch
// over time.
//
// The flow control currently happens in the Handler where it waits
// for 1 or more bytes to be available to then write here. So at this
// point we know that we have flow control. But this might have to
// change when priority is implemented, so the serve goroutine knows
// the total amount of bytes waiting to be sent and can can have more
// scheduling decisions available.
func (sc *serverConn) writeDataFromHandler(stream *stream, writeData *writeData, ch chan error) error {
sc.writeFrameFromHandler(frameWriteMsg{
write: writeData,
stream: stream,
done: ch,
})
select {
case err := <-ch:
return err
case <-sc.doneServing:
return errClientDisconnected
case <-stream.cw:
return errStreamBroken
}
}
// writeFrameFromHandler sends wm to sc.wantWriteFrameCh, but aborts
// if the connection has gone away.
//
// This must not be run from the serve goroutine itself, else it might
// deadlock writing to sc.wantWriteFrameCh (which is only mildly
// buffered and is read by serve itself). If you're on the serve
// goroutine, call writeFrame instead.
func (sc *serverConn) writeFrameFromHandler(wm frameWriteMsg) {
sc.serveG.checkNotOn() // NOT
select {
case sc.wantWriteFrameCh <- wm:
case <-sc.doneServing:
// Client has closed their connection to the server.
}
}
// writeFrame schedules a frame to write and sends it if there's nothing
// already being written.
//
// There is no pushback here (the serve goroutine never blocks). It's
// the http.Handlers that block, waiting for their previous frames to
// make it onto the wire
//
// If you're not on the serve goroutine, use writeFrameFromHandler instead.
func (sc *serverConn) writeFrame(wm frameWriteMsg) {
sc.serveG.check()
sc.writeSched.add(wm)
sc.scheduleFrameWrite()
}
// startFrameWrite starts a goroutine to write wm (in a separate
// goroutine since that might block on the network), and updates the
// serve goroutine's state about the world, updated from info in wm.
func (sc *serverConn) startFrameWrite(wm frameWriteMsg) {
sc.serveG.check()
if sc.writingFrame {
panic("internal error: can only be writing one frame at a time")
}
sc.writingFrame = true
st := wm.stream
if st != nil {
switch st.state {
case stateHalfClosedLocal:
panic("internal error: attempt to send frame on half-closed-local stream")
case stateClosed:
if st.sentReset || st.gotReset {
// Skip this frame. But fake the frame write to reschedule:
sc.wroteFrameCh <- struct{}{}
return
}
panic(fmt.Sprintf("internal error: attempt to send a write %v on a closed stream", wm))
}
}
sc.needsFrameFlush = true
if endsStream(wm.write) {
if st == nil {
panic("internal error: expecting non-nil stream")
}
switch st.state {
case stateOpen:
// Here we would go to stateHalfClosedLocal in
// theory, but since our handler is done and
// the net/http package provides no mechanism
// for finishing writing to a ResponseWriter
// while still reading data (see possible TODO
// at top of this file), we go into closed
// state here anyway, after telling the peer
// we're hanging up on them.
st.state = stateHalfClosedLocal // won't last long, but necessary for closeStream via resetStream
errCancel := StreamError{st.id, ErrCodeCancel}
sc.resetStream(errCancel)
case stateHalfClosedRemote:
sc.closeStream(st, nil)
}
}
go sc.writeFrameAsync(wm)
}
// scheduleFrameWrite tickles the frame writing scheduler.
//
// If a frame is already being written, nothing happens. This will be called again
// when the frame is done being written.
//
// If a frame isn't being written we need to send one, the best frame
// to send is selected, preferring first things that aren't
// stream-specific (e.g. ACKing settings), and then finding the
// highest priority stream.
//
// If a frame isn't being written and there's nothing else to send, we
// flush the write buffer.
func (sc *serverConn) scheduleFrameWrite() {
sc.serveG.check()
if sc.writingFrame {
return
}
if sc.needToSendGoAway {
sc.needToSendGoAway = false
sc.startFrameWrite(frameWriteMsg{
write: &writeGoAway{
maxStreamID: sc.maxStreamID,
code: sc.goAwayCode,
},
})
return
}
if sc.needToSendSettingsAck {
sc.needToSendSettingsAck = false
sc.startFrameWrite(frameWriteMsg{write: writeSettingsAck{}})
return
}
if !sc.inGoAway {
if wm, ok := sc.writeSched.take(); ok {
sc.startFrameWrite(wm)
return
}
}
if sc.needsFrameFlush {
sc.startFrameWrite(frameWriteMsg{write: flushFrameWriter{}})
sc.needsFrameFlush = false // after startFrameWrite, since it sets this true
return
}
}
func (sc *serverConn) goAway(code ErrCode) {
sc.serveG.check()
if sc.inGoAway {
return
}
if code != ErrCodeNo {
sc.shutDownIn(250 * time.Millisecond)
} else {
// TODO: configurable
sc.shutDownIn(1 * time.Second)
}
sc.inGoAway = true
sc.needToSendGoAway = true
sc.goAwayCode = code
sc.scheduleFrameWrite()
}
func (sc *serverConn) shutDownIn(d time.Duration) {
sc.serveG.check()
sc.shutdownTimer = time.NewTimer(d)
sc.shutdownTimerCh = sc.shutdownTimer.C
}
func (sc *serverConn) resetStream(se StreamError) {
sc.serveG.check()
sc.writeFrame(frameWriteMsg{write: se})
if st, ok := sc.streams[se.StreamID]; ok {
st.sentReset = true
sc.closeStream(st, se)
}
}
// curHeaderStreamID returns the stream ID of the header block we're
// currently in the middle of reading. If this returns non-zero, the
// next frame must be a CONTINUATION with this stream id.
func (sc *serverConn) curHeaderStreamID() uint32 {
sc.serveG.check()
st := sc.req.stream
if st == nil {
return 0
}
return st.id
}
// processFrameFromReader processes the serve loop's read from readFrameCh from the
// frame-reading goroutine.
// processFrameFromReader returns whether the connection should be kept open.
func (sc *serverConn) processFrameFromReader(fg frameAndGate, fgValid bool) bool {
sc.serveG.check()
var clientGone bool
var err error
if !fgValid {
err = <-sc.readFrameErrCh
if err == ErrFrameTooLarge {
sc.goAway(ErrCodeFrameSize)
return true // goAway will close the loop
}
clientGone = err == io.EOF || strings.Contains(err.Error(), "use of closed network connection")
if clientGone {
// TODO: could we also get into this state if
// the peer does a half close
// (e.g. CloseWrite) because they're done
// sending frames but they're still wanting
// our open replies? Investigate.
// TODO: add CloseWrite to crypto/tls.Conn first
// so we have a way to test this? I suppose
// just for testing we could have a non-TLS mode.
return false
}
}
if fgValid {
f := fg.f
sc.vlogf("got %v: %#v", f.Header(), f)
err = sc.processFrame(f)
fg.g.Done() // unblock the readFrames goroutine
if err == nil {
return true
}
}
switch ev := err.(type) {
case StreamError:
sc.resetStream(ev)
return true
case goAwayFlowError:
sc.goAway(ErrCodeFlowControl)
return true
case ConnectionError:
sc.logf("%v: %v", sc.conn.RemoteAddr(), ev)
sc.goAway(ErrCode(ev))
return true // goAway will handle shutdown
default:
if !fgValid {
sc.logf("disconnecting; error reading frame from client %s: %v", sc.conn.RemoteAddr(), err)
} else {
sc.logf("disconnection due to other error: %v", err)
}
}
return false
}
func (sc *serverConn) processFrame(f Frame) error {
sc.serveG.check()
// First frame received must be SETTINGS.
if !sc.sawFirstSettings {
if _, ok := f.(*SettingsFrame); !ok {
return ConnectionError(ErrCodeProtocol)
}
sc.sawFirstSettings = true
}
if s := sc.curHeaderStreamID(); s != 0 {
if cf, ok := f.(*ContinuationFrame); !ok {
return ConnectionError(ErrCodeProtocol)
} else if cf.Header().StreamID != s {
return ConnectionError(ErrCodeProtocol)
}
}
switch f := f.(type) {
case *SettingsFrame:
return sc.processSettings(f)
case *HeadersFrame:
return sc.processHeaders(f)
case *ContinuationFrame:
return sc.processContinuation(f)
case *WindowUpdateFrame:
return sc.processWindowUpdate(f)
case *PingFrame:
return sc.processPing(f)
case *DataFrame:
return sc.processData(f)
case *RSTStreamFrame:
return sc.processResetStream(f)
case *PriorityFrame:
return sc.processPriority(f)
case *PushPromiseFrame:
// A client cannot push. Thus, servers MUST treat the receipt of a PUSH_PROMISE
// frame as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.
return ConnectionError(ErrCodeProtocol)
default:
log.Printf("Ignoring frame: %v", f.Header())
return nil
}
}
func (sc *serverConn) processPing(f *PingFrame) error {
sc.serveG.check()
if f.Flags.Has(FlagSettingsAck) {
// 6.7 PING: " An endpoint MUST NOT respond to PING frames
// containing this flag."
return nil
}
if f.StreamID != 0 {
// "PING frames are not associated with any individual
// stream. If a PING frame is received with a stream
// identifier field value other than 0x0, the recipient MUST
// respond with a connection error (Section 5.4.1) of type
// PROTOCOL_ERROR."
return ConnectionError(ErrCodeProtocol)
}
sc.writeFrame(frameWriteMsg{write: writePingAck{f}})
return nil
}
func (sc *serverConn) processWindowUpdate(f *WindowUpdateFrame) error {
sc.serveG.check()
switch {
case f.StreamID != 0: // stream-level flow control
st := sc.streams[f.StreamID]
if st == nil {
// "WINDOW_UPDATE can be sent by a peer that has sent a
// frame bearing the END_STREAM flag. This means that a
// receiver could receive a WINDOW_UPDATE frame on a "half
// closed (remote)" or "closed" stream. A receiver MUST
// NOT treat this as an error, see Section 5.1."
return nil
}
if !st.flow.add(int32(f.Increment)) {
return StreamError{f.StreamID, ErrCodeFlowControl}
}
default: // connection-level flow control
if !sc.flow.add(int32(f.Increment)) {
return goAwayFlowError{}
}
}
sc.scheduleFrameWrite()
return nil
}
func (sc *serverConn) processResetStream(f *RSTStreamFrame) error {
sc.serveG.check()
state, st := sc.state(f.StreamID)
if state == stateIdle {
// 6.4 "RST_STREAM frames MUST NOT be sent for a
// stream in the "idle" state. If a RST_STREAM frame
// identifying an idle stream is received, the
// recipient MUST treat this as a connection error
// (Section 5.4.1) of type PROTOCOL_ERROR.
return ConnectionError(ErrCodeProtocol)
}
if st != nil {
st.gotReset = true
sc.closeStream(st, StreamError{f.StreamID, f.ErrCode})
}
return nil
}
func (sc *serverConn) closeStream(st *stream, err error) {
sc.serveG.check()
if st.state == stateIdle || st.state == stateClosed {
panic(fmt.Sprintf("invariant; can't close stream in state %v", st.state))
}
st.state = stateClosed
sc.curOpenStreams--
delete(sc.streams, st.id)
if p := st.body; p != nil {
p.Close(err)
}
st.cw.Close() // signals Handler's CloseNotifier, unblocks writes, etc
sc.writeSched.forgetStream(st.id)
}
func (sc *serverConn) processSettings(f *SettingsFrame) error {
sc.serveG.check()
if f.IsAck() {
sc.unackedSettings--
if sc.unackedSettings < 0 {
// Why is the peer ACKing settings we never sent?
// The spec doesn't mention this case, but
// hang up on them anyway.
return ConnectionError(ErrCodeProtocol)
}
return nil
}
if err := f.ForeachSetting(sc.processSetting); err != nil {
return err
}
sc.needToSendSettingsAck = true
sc.scheduleFrameWrite()
return nil
}
func (sc *serverConn) processSetting(s Setting) error {
sc.serveG.check()
if err := s.Valid(); err != nil {
return err
}
sc.vlogf("processing setting %v", s)
switch s.ID {
case SettingHeaderTableSize:
sc.headerTableSize = s.Val
sc.hpackEncoder.SetMaxDynamicTableSize(s.Val)
case SettingEnablePush:
sc.pushEnabled = s.Val != 0
case SettingMaxConcurrentStreams:
sc.clientMaxStreams = s.Val
case SettingInitialWindowSize:
return sc.processSettingInitialWindowSize(s.Val)
case SettingMaxFrameSize:
sc.writeSched.maxFrameSize = s.Val
case SettingMaxHeaderListSize:
sc.maxHeaderListSize = s.Val
default:
// Unknown setting: "An endpoint that receives a SETTINGS
// frame with any unknown or unsupported identifier MUST
// ignore that setting."
}
return nil
}
func (sc *serverConn) processSettingInitialWindowSize(val uint32) error {
sc.serveG.check()
// Note: val already validated to be within range by
// processSetting's Valid call.
// "A SETTINGS frame can alter the initial flow control window
// size for all current streams. When the value of
// SETTINGS_INITIAL_WINDOW_SIZE changes, a receiver MUST
// adjust the size of all stream flow control windows that it
// maintains by the difference between the new value and the
// old value."
old := sc.initialWindowSize
sc.initialWindowSize = int32(val)
growth := sc.initialWindowSize - old // may be negative
for _, st := range sc.streams {
if !st.flow.add(growth) {
// 6.9.2 Initial Flow Control Window Size
// "An endpoint MUST treat a change to
// SETTINGS_INITIAL_WINDOW_SIZE that causes any flow
// control window to exceed the maximum size as a
// connection error (Section 5.4.1) of type
// FLOW_CONTROL_ERROR."
return ConnectionError(ErrCodeFlowControl)
}
}
return nil
}
func (sc *serverConn) processData(f *DataFrame) error {
sc.serveG.check()
// "If a DATA frame is received whose stream is not in "open"
// or "half closed (local)" state, the recipient MUST respond
// with a stream error (Section 5.4.2) of type STREAM_CLOSED."
id := f.Header().StreamID
st, ok := sc.streams[id]
if !ok || st.state != stateOpen {
// This includes sending a RST_STREAM if the stream is
// in stateHalfClosedLocal (which currently means that
// the http.Handler returned, so it's done reading &
// done writing). Try to stop the client from sending
// more DATA.
return StreamError{id, ErrCodeStreamClosed}
}
if st.body == nil {
panic("internal error: should have a body in this state")
}
data := f.Data()
// Sender sending more than they'd declared?
if st.declBodyBytes != -1 && st.bodyBytes+int64(len(data)) > st.declBodyBytes {
st.body.Close(fmt.Errorf("sender tried to send more than declared Content-Length of %d bytes", st.declBodyBytes))
return StreamError{id, ErrCodeStreamClosed}
}
if len(data) > 0 {
// Check whether the client has flow control quota.
if int(st.inflow.available()) < len(data) {
return StreamError{id, ErrCodeFlowControl}
}
st.inflow.take(int32(len(data)))
wrote, err := st.body.Write(data)
if err != nil {
return StreamError{id, ErrCodeStreamClosed}
}
if wrote != len(data) {
panic("internal error: bad Writer")
}
st.bodyBytes += int64(len(data))
}
if f.StreamEnded() {
if st.declBodyBytes != -1 && st.declBodyBytes != st.bodyBytes {
st.body.Close(fmt.Errorf("request declared a Content-Length of %d but only wrote %d bytes",
st.declBodyBytes, st.bodyBytes))
} else {
st.body.Close(io.EOF)
}
st.state = stateHalfClosedRemote
}
return nil
}
func (sc *serverConn) processHeaders(f *HeadersFrame) error {
sc.serveG.check()
id := f.Header().StreamID
if sc.inGoAway {
// Ignore.
return nil
}
// http://http2.github.io/http2-spec/#rfc.section.5.1.1
if id%2 != 1 || id <= sc.maxStreamID || sc.req.stream != nil {
// Streams initiated by a client MUST use odd-numbered
// stream identifiers. [...] The identifier of a newly
// established stream MUST be numerically greater than all
// streams that the initiating endpoint has opened or
// reserved. [...] An endpoint that receives an unexpected
// stream identifier MUST respond with a connection error
// (Section 5.4.1) of type PROTOCOL_ERROR.
return ConnectionError(ErrCodeProtocol)
}
if id > sc.maxStreamID {
sc.maxStreamID = id
}
st := &stream{
id: id,
state: stateOpen,
}
if f.StreamEnded() {
st.state = stateHalfClosedRemote
}
st.cw.Init()
st.flow.conn = &sc.flow // link to conn-level counter
st.flow.add(sc.initialWindowSize)
st.inflow.conn = &sc.inflow // link to conn-level counter
st.inflow.add(initialWindowSize) // TODO: update this when we send a higher initial window size in the initial settings
sc.streams[id] = st
if f.HasPriority() {
adjustStreamPriority(sc.streams, st.id, f.Priority)
}
sc.curOpenStreams++
sc.req = requestParam{
stream: st,
header: make(http.Header),
}
return sc.processHeaderBlockFragment(st, f.HeaderBlockFragment(), f.HeadersEnded())
}
func (sc *serverConn) processContinuation(f *ContinuationFrame) error {
sc.serveG.check()
st := sc.streams[f.Header().StreamID]
if st == nil || sc.curHeaderStreamID() != st.id {
return ConnectionError(ErrCodeProtocol)
}
return sc.processHeaderBlockFragment(st, f.HeaderBlockFragment(), f.HeadersEnded())
}
func (sc *serverConn) processHeaderBlockFragment(st *stream, frag []byte, end bool) error {
sc.serveG.check()
if _, err := sc.hpackDecoder.Write(frag); err != nil {
// TODO: convert to stream error I assume?
return err
}
if !end {
return nil
}
if err := sc.hpackDecoder.Close(); err != nil {
// TODO: convert to stream error I assume?
return err
}
defer sc.resetPendingRequest()
if sc.curOpenStreams > sc.advMaxStreams {
// "Endpoints MUST NOT exceed the limit set by their
// peer. An endpoint that receives a HEADERS frame
// that causes their advertised concurrent stream
// limit to be exceeded MUST treat this as a stream
// error (Section 5.4.2) of type PROTOCOL_ERROR or
// REFUSED_STREAM."
if sc.unackedSettings == 0 {
// They should know better.
return StreamError{st.id, ErrCodeProtocol}
}
// Assume it's a network race, where they just haven't
// received our last SETTINGS update. But actually
// this can't happen yet, because we don't yet provide
// a way for users to adjust server parameters at
// runtime.
return StreamError{st.id, ErrCodeRefusedStream}
}
rw, req, err := sc.newWriterAndRequest()
if err != nil {
return err
}
st.body = req.Body.(*requestBody).pipe // may be nil
st.declBodyBytes = req.ContentLength
go sc.runHandler(rw, req)
return nil
}
func (sc *serverConn) processPriority(f *PriorityFrame) error {
adjustStreamPriority(sc.streams, f.StreamID, f.PriorityParam)
return nil
}
func adjustStreamPriority(streams map[uint32]*stream, streamID uint32, priority PriorityParam) {
st, ok := streams[streamID]
if !ok {
// TODO: not quite correct (this streamID might
// already exist in the dep tree, but be closed), but
// close enough for now.
return
}
st.weight = priority.Weight
parent := streams[priority.StreamDep] // might be nil
if parent == st {
// if client tries to set this stream to be the parent of itself
// ignore and keep going
return
}
// section 5.3.3: If a stream is made dependent on one of its
// own dependencies, the formerly dependent stream is first
// moved to be dependent on the reprioritized stream's previous
// parent. The moved dependency retains its weight.
for piter := parent; piter != nil; piter = piter.parent {
if piter == st {
parent.parent = st.parent
break
}
}
st.parent = parent
if priority.Exclusive && (st.parent != nil || priority.StreamDep == 0) {
for _, openStream := range streams {
if openStream != st && openStream.parent == st.parent {
openStream.parent = st
}
}
}
}
// resetPendingRequest zeros out all state related to a HEADERS frame
// and its zero or more CONTINUATION frames sent to start a new
// request.
func (sc *serverConn) resetPendingRequest() {
sc.serveG.check()
sc.req = requestParam{}
}
func (sc *serverConn) newWriterAndRequest() (*responseWriter, *http.Request, error) {
sc.serveG.check()
rp := &sc.req
if rp.invalidHeader || rp.method == "" || rp.path == "" ||
(rp.scheme != "https" && rp.scheme != "http") {
// See 8.1.2.6 Malformed Requests and Responses:
//
// Malformed requests or responses that are detected
// MUST be treated as a stream error (Section 5.4.2)
// of type PROTOCOL_ERROR."
//
// 8.1.2.3 Request Pseudo-Header Fields
// "All HTTP/2 requests MUST include exactly one valid
// value for the :method, :scheme, and :path
// pseudo-header fields"
return nil, nil, StreamError{rp.stream.id, ErrCodeProtocol}
}
var tlsState *tls.ConnectionState // nil if not scheme https
if rp.scheme == "https" {
tlsState = sc.tlsState
}
authority := rp.authority
if authority == "" {
authority = rp.header.Get("Host")
}
needsContinue := rp.header.Get("Expect") == "100-continue"
if needsContinue {
rp.header.Del("Expect")
}
bodyOpen := rp.stream.state == stateOpen
body := &requestBody{
conn: sc,
stream: rp.stream,
needsContinue: needsContinue,
}
// TODO: handle asterisk '*' requests + test
url, err := url.ParseRequestURI(rp.path)
if err != nil {
// TODO: find the right error code?
return nil, nil, StreamError{rp.stream.id, ErrCodeProtocol}
}
req := &http.Request{
Method: rp.method,
URL: url,
RemoteAddr: sc.remoteAddrStr,
Header: rp.header,
RequestURI: rp.path,
Proto: "HTTP/2.0",
ProtoMajor: 2,
ProtoMinor: 0,
TLS: tlsState,
Host: authority,
Body: body,
}
if bodyOpen {
body.pipe = &pipe{
b: buffer{buf: make([]byte, initialWindowSize)}, // TODO: share/remove XXX
}
body.pipe.c.L = &body.pipe.m
if vv, ok := rp.header["Content-Length"]; ok {
req.ContentLength, _ = strconv.ParseInt(vv[0], 10, 64)
} else {
req.ContentLength = -1
}
}
rws := responseWriterStatePool.Get().(*responseWriterState)
bwSave := rws.bw
*rws = responseWriterState{} // zero all the fields
rws.conn = sc
rws.bw = bwSave
rws.bw.Reset(chunkWriter{rws})
rws.stream = rp.stream
rws.req = req
rws.body = body
rws.frameWriteCh = make(chan error, 1)
rw := &responseWriter{rws: rws}
return rw, req, nil
}
// Run on its own goroutine.
func (sc *serverConn) runHandler(rw *responseWriter, req *http.Request) {
defer rw.handlerDone()
// TODO: catch panics like net/http.Server
sc.handler.ServeHTTP(rw, req)
}
// called from handler goroutines.
// h may be nil.
func (sc *serverConn) writeHeaders(st *stream, headerData *writeResHeaders, tempCh chan error) {
sc.serveG.checkNotOn() // NOT on
var errc chan error
if headerData.h != nil {
// If there's a header map (which we don't own), so we have to block on
// waiting for this frame to be written, so an http.Flush mid-handler
// writes out the correct value of keys, before a handler later potentially
// mutates it.
errc = tempCh
}
sc.writeFrameFromHandler(frameWriteMsg{
write: headerData,
stream: st,
done: errc,
})
if errc != nil {
select {
case <-errc:
// Ignore. Just for synchronization.
// Any error will be handled in the writing goroutine.
case <-sc.doneServing:
// Client has closed the connection.
}
}
}
// called from handler goroutines.
func (sc *serverConn) write100ContinueHeaders(st *stream) {
sc.writeFrameFromHandler(frameWriteMsg{
write: write100ContinueHeadersFrame{st.id},
stream: st,
})
}
// A bodyReadMsg tells the server loop that the http.Handler read n
// bytes of the DATA from the client on the given stream.
type bodyReadMsg struct {
st *stream
n int
}
// called from handler goroutines.
// Notes that the handler for the given stream ID read n bytes of its body
// and schedules flow control tokens to be sent.
func (sc *serverConn) noteBodyReadFromHandler(st *stream, n int) {
sc.serveG.checkNotOn() // NOT on
sc.bodyReadCh <- bodyReadMsg{st, n}
}
func (sc *serverConn) noteBodyRead(st *stream, n int) {
sc.serveG.check()
sc.sendWindowUpdate(nil, n) // conn-level
if st.state != stateHalfClosedRemote && st.state != stateClosed {
// Don't send this WINDOW_UPDATE if the stream is closed
// remotely.
sc.sendWindowUpdate(st, n)
}
}
// st may be nil for conn-level
func (sc *serverConn) sendWindowUpdate(st *stream, n int) {
sc.serveG.check()
// "The legal range for the increment to the flow control
// window is 1 to 2^31-1 (2,147,483,647) octets."
// A Go Read call on 64-bit machines could in theory read
// a larger Read than this. Very unlikely, but we handle it here
// rather than elsewhere for now.
const maxUint31 = 1<<31 - 1
for n >= maxUint31 {
sc.sendWindowUpdate32(st, maxUint31)
n -= maxUint31
}
sc.sendWindowUpdate32(st, int32(n))
}
// st may be nil for conn-level
func (sc *serverConn) sendWindowUpdate32(st *stream, n int32) {
sc.serveG.check()
if n == 0 {
return
}
if n < 0 {
panic("negative update")
}
var streamID uint32
if st != nil {
streamID = st.id
}
sc.writeFrame(frameWriteMsg{
write: writeWindowUpdate{streamID: streamID, n: uint32(n)},
stream: st,
})
var ok bool
if st == nil {
ok = sc.inflow.add(n)
} else {
ok = st.inflow.add(n)
}
if !ok {
panic("internal error; sent too many window updates without decrements?")
}
}
type requestBody struct {
stream *stream
conn *serverConn
closed bool
pipe *pipe // non-nil if we have a HTTP entity message body
needsContinue bool // need to send a 100-continue
}
func (b *requestBody) Close() error {
if b.pipe != nil {
b.pipe.Close(errClosedBody)
}
b.closed = true
return nil
}
func (b *requestBody) Read(p []byte) (n int, err error) {
if b.needsContinue {
b.needsContinue = false
b.conn.write100ContinueHeaders(b.stream)
}
if b.pipe == nil {
return 0, io.EOF
}
n, err = b.pipe.Read(p)
if n > 0 {
b.conn.noteBodyReadFromHandler(b.stream, n)
}
return
}
// responseWriter is the http.ResponseWriter implementation. It's
// intentionally small (1 pointer wide) to minimize garbage. The
// responseWriterState pointer inside is zeroed at the end of a
// request (in handlerDone) and calls on the responseWriter thereafter
// simply crash (caller's mistake), but the much larger responseWriterState
// and buffers are reused between multiple requests.
type responseWriter struct {
rws *responseWriterState
}
// Optional http.ResponseWriter interfaces implemented.
var (
_ http.CloseNotifier = (*responseWriter)(nil)
_ http.Flusher = (*responseWriter)(nil)
_ stringWriter = (*responseWriter)(nil)
)
type responseWriterState struct {
// immutable within a request:
stream *stream
req *http.Request
body *requestBody // to close at end of request, if DATA frames didn't
conn *serverConn
// TODO: adjust buffer writing sizes based on server config, frame size updates from peer, etc
bw *bufio.Writer // writing to a chunkWriter{this *responseWriterState}
// mutated by http.Handler goroutine:
handlerHeader http.Header // nil until called
snapHeader http.Header // snapshot of handlerHeader at WriteHeader time
status int // status code passed to WriteHeader
wroteHeader bool // WriteHeader called (explicitly or implicitly). Not necessarily sent to user yet.
sentHeader bool // have we sent the header frame?
handlerDone bool // handler has finished
curWrite writeData
frameWriteCh chan error // re-used whenever we need to block on a frame being written
closeNotifierMu sync.Mutex // guards closeNotifierCh
closeNotifierCh chan bool // nil until first used
}
type chunkWriter struct{ rws *responseWriterState }
func (cw chunkWriter) Write(p []byte) (n int, err error) { return cw.rws.writeChunk(p) }
// writeChunk writes chunks from the bufio.Writer. But because
// bufio.Writer may bypass its chunking, sometimes p may be
// arbitrarily large.
//
// writeChunk is also responsible (on the first chunk) for sending the
// HEADER response.
func (rws *responseWriterState) writeChunk(p []byte) (n int, err error) {
if !rws.wroteHeader {
rws.writeHeader(200)
}
if !rws.sentHeader {
rws.sentHeader = true
var ctype, clen string // implicit ones, if we can calculate it
if rws.handlerDone && rws.snapHeader.Get("Content-Length") == "" {
clen = strconv.Itoa(len(p))
}
if rws.snapHeader.Get("Content-Type") == "" {
ctype = http.DetectContentType(p)
}
endStream := rws.handlerDone && len(p) == 0
rws.conn.writeHeaders(rws.stream, &writeResHeaders{
streamID: rws.stream.id,
httpResCode: rws.status,
h: rws.snapHeader,
endStream: endStream,
contentType: ctype,
contentLength: clen,
}, rws.frameWriteCh)
if endStream {
return 0, nil
}
}
if len(p) == 0 && !rws.handlerDone {
return 0, nil
}
curWrite := &rws.curWrite
curWrite.streamID = rws.stream.id
curWrite.p = p
curWrite.endStream = rws.handlerDone
if err := rws.conn.writeDataFromHandler(rws.stream, curWrite, rws.frameWriteCh); err != nil {
return 0, err
}
return len(p), nil
}
func (w *responseWriter) Flush() {
rws := w.rws
if rws == nil {
panic("Header called after Handler finished")
}
if rws.bw.Buffered() > 0 {
if err := rws.bw.Flush(); err != nil {
// Ignore the error. The frame writer already knows.
return
}
} else {
// The bufio.Writer won't call chunkWriter.Write
// (writeChunk with zero bytes, so we have to do it
// ourselves to force the HTTP response header and/or
// final DATA frame (with END_STREAM) to be sent.
rws.writeChunk(nil)
}
}
func (w *responseWriter) CloseNotify() <-chan bool {
rws := w.rws
if rws == nil {
panic("CloseNotify called after Handler finished")
}
rws.closeNotifierMu.Lock()
ch := rws.closeNotifierCh
if ch == nil {
ch = make(chan bool, 1)
rws.closeNotifierCh = ch
go func() {
rws.stream.cw.Wait() // wait for close
ch <- true
}()
}
rws.closeNotifierMu.Unlock()
return ch
}
func (w *responseWriter) Header() http.Header {
rws := w.rws
if rws == nil {
panic("Header called after Handler finished")
}
if rws.handlerHeader == nil {
rws.handlerHeader = make(http.Header)
}
return rws.handlerHeader
}
func (w *responseWriter) WriteHeader(code int) {
rws := w.rws
if rws == nil {
panic("WriteHeader called after Handler finished")
}
rws.writeHeader(code)
}
func (rws *responseWriterState) writeHeader(code int) {
if !rws.wroteHeader {
rws.wroteHeader = true
rws.status = code
if len(rws.handlerHeader) > 0 {
rws.snapHeader = cloneHeader(rws.handlerHeader)
}
}
}
func cloneHeader(h http.Header) http.Header {
h2 := make(http.Header, len(h))
for k, vv := range h {
vv2 := make([]string, len(vv))
copy(vv2, vv)
h2[k] = vv2
}
return h2
}
// The Life Of A Write is like this:
//
// * Handler calls w.Write or w.WriteString ->
// * -> rws.bw (*bufio.Writer) ->
// * (Handler migth call Flush)
// * -> chunkWriter{rws}
// * -> responseWriterState.writeChunk(p []byte)
// * -> responseWriterState.writeChunk (most of the magic; see comment there)
func (w *responseWriter) Write(p []byte) (n int, err error) {
return w.write(len(p), p, "")
}
func (w *responseWriter) WriteString(s string) (n int, err error) {
return w.write(len(s), nil, s)
}
// either dataB or dataS is non-zero.
func (w *responseWriter) write(lenData int, dataB []byte, dataS string) (n int, err error) {
rws := w.rws
if rws == nil {
panic("Write called after Handler finished")
}
if !rws.wroteHeader {
w.WriteHeader(200)
}
if dataB != nil {
return rws.bw.Write(dataB)
} else {
return rws.bw.WriteString(dataS)
}
}
func (w *responseWriter) handlerDone() {
rws := w.rws
if rws == nil {
panic("handlerDone called twice")
}
rws.handlerDone = true
w.Flush()
w.rws = nil
responseWriterStatePool.Put(rws)
}