blob: c44742709b1d9046a989fcec4aeffb64e745d4d5 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import "dart:collection";
import "dart:math" as math;
import "typed_wrappers.dart";
import "unmodifiable_wrappers.dart";
typedef K _KeyForValue<K, V>(V value);
/// A base class for delegating iterables.
///
/// Subclasses can provide a [_base] that should be delegated to. Unlike
/// [DelegatingIterable], this allows the base to be created on demand.
abstract class _DelegatingIterableBase<E> implements Iterable<E> {
Iterable<E> get _base;
const _DelegatingIterableBase();
bool any(bool test(E element)) => _base.any(test);
bool contains(Object element) => _base.contains(element);
E elementAt(int index) => _base.elementAt(index);
bool every(bool test(E element)) => _base.every(test);
Iterable/*<T>*/ expand/*<T>*/(Iterable/*<T>*/ f(E element)) =>
_base.expand(f);
E get first => _base.first;
E firstWhere(bool test(E element), {E orElse()}) =>
_base.firstWhere(test, orElse: orElse);
/*=T*/ fold/*<T>*/(
/*=T*/ initialValue,
/*=T*/ combine(/*=T*/ previousValue, E element)) =>
_base.fold(initialValue, combine);
void forEach(void f(E element)) => _base.forEach(f);
bool get isEmpty => _base.isEmpty;
bool get isNotEmpty => _base.isNotEmpty;
Iterator<E> get iterator => _base.iterator;
String join([String separator = ""]) => _base.join(separator);
E get last => _base.last;
E lastWhere(bool test(E element), {E orElse()}) =>
_base.lastWhere(test, orElse: orElse);
int get length => _base.length;
Iterable/*<T>*/ map/*<T>*/(/*=T*/ f(E element)) => _base.map(f);
E reduce(E combine(E value, E element)) => _base.reduce(combine);
E get single => _base.single;
E singleWhere(bool test(E element)) => _base.singleWhere(test);
Iterable<E> skip(int n) => _base.skip(n);
Iterable<E> skipWhile(bool test(E value)) => _base.skipWhile(test);
Iterable<E> take(int n) => _base.take(n);
Iterable<E> takeWhile(bool test(E value)) => _base.takeWhile(test);
List<E> toList({bool growable: true}) => _base.toList(growable: growable);
Set<E> toSet() => _base.toSet();
Iterable<E> where(bool test(E element)) => _base.where(test);
String toString() => _base.toString();
}
/// An [Iterable] that delegates all operations to a base iterable.
///
/// This class can be used to hide non-`Iterable` methods of an iterable object,
/// or it can be extended to add extra functionality on top of an existing
/// iterable object.
class DelegatingIterable<E> extends _DelegatingIterableBase<E> {
final Iterable<E> _base;
/// Creates a wrapper that forwards operations to [base].
const DelegatingIterable(Iterable<E> base) : _base = base;
/// Creates a wrapper that asserts the types of values in [base].
///
/// This soundly converts an [Iterable] without a generic type to an
/// `Iterable<E>` by asserting that its elements are instances of `E` whenever
/// they're accessed. If they're not, it throws a [CastError].
///
/// This forwards all operations to [base], so any changes in [base] will be
/// reflected in [this]. If [base] is already an `Iterable<E>`, it's returned
/// unmodified.
static Iterable/*<E>*/ typed/*<E>*/(Iterable base) =>
base is Iterable/*<E>*/ ? base : new TypedIterable/*<E>*/(base);
}
/// A [List] that delegates all operations to a base list.
///
/// This class can be used to hide non-`List` methods of a list object, or it
/// can be extended to add extra functionality on top of an existing list
/// object.
class DelegatingList<E> extends DelegatingIterable<E> implements List<E> {
const DelegatingList(List<E> base) : super(base);
/// Creates a wrapper that asserts the types of values in [base].
///
/// This soundly converts a [List] without a generic type to a `List<E>` by
/// asserting that its elements are instances of `E` whenever they're
/// accessed. If they're not, it throws a [CastError]. Note that even if an
/// operation throws a [CastError], it may still mutate the underlying
/// collection.
///
/// This forwards all operations to [base], so any changes in [base] will be
/// reflected in [this]. If [base] is already a `List<E>`, it's returned
/// unmodified.
static List/*<E>*/ typed/*<E>*/(List base) =>
base is List/*<E>*/ ? base : new TypedList/*<E>*/(base);
List<E> get _listBase => _base;
E operator [](int index) => _listBase[index];
void operator []=(int index, E value) {
_listBase[index] = value;
}
void add(E value) {
_listBase.add(value);
}
void addAll(Iterable<E> iterable) {
_listBase.addAll(iterable);
}
Map<int, E> asMap() => _listBase.asMap();
void clear() {
_listBase.clear();
}
void fillRange(int start, int end, [E fillValue]) {
_listBase.fillRange(start, end, fillValue);
}
Iterable<E> getRange(int start, int end) => _listBase.getRange(start, end);
int indexOf(E element, [int start = 0]) => _listBase.indexOf(element, start);
void insert(int index, E element) {
_listBase.insert(index, element);
}
void insertAll(int index, Iterable<E> iterable) {
_listBase.insertAll(index, iterable);
}
int lastIndexOf(E element, [int start]) =>
_listBase.lastIndexOf(element, start);
void set length(int newLength) {
_listBase.length = newLength;
}
bool remove(Object value) => _listBase.remove(value);
E removeAt(int index) => _listBase.removeAt(index);
E removeLast() => _listBase.removeLast();
void removeRange(int start, int end) {
_listBase.removeRange(start, end);
}
void removeWhere(bool test(E element)) {
_listBase.removeWhere(test);
}
void replaceRange(int start, int end, Iterable<E> iterable) {
_listBase.replaceRange(start, end, iterable);
}
void retainWhere(bool test(E element)) {
_listBase.retainWhere(test);
}
Iterable<E> get reversed => _listBase.reversed;
void setAll(int index, Iterable<E> iterable) {
_listBase.setAll(index, iterable);
}
void setRange(int start, int end, Iterable<E> iterable, [int skipCount = 0]) {
_listBase.setRange(start, end, iterable, skipCount);
}
void shuffle([math.Random random]) {
_listBase.shuffle(random);
}
void sort([int compare(E a, E b)]) {
_listBase.sort(compare);
}
List<E> sublist(int start, [int end]) => _listBase.sublist(start, end);
}
/// A [Set] that delegates all operations to a base set.
///
/// This class can be used to hide non-`Set` methods of a set object, or it can
/// be extended to add extra functionality on top of an existing set object.
class DelegatingSet<E> extends DelegatingIterable<E> implements Set<E> {
const DelegatingSet(Set<E> base) : super(base);
/// Creates a wrapper that asserts the types of values in [base].
///
/// This soundly converts a [Set] without a generic type to a `Set<E>` by
/// asserting that its elements are instances of `E` whenever they're
/// accessed. If they're not, it throws a [CastError]. Note that even if an
/// operation throws a [CastError], it may still mutate the underlying
/// collection.
///
/// This forwards all operations to [base], so any changes in [base] will be
/// reflected in [this]. If [base] is already a `Set<E>`, it's returned
/// unmodified.
static Set/*<E>*/ typed/*<E>*/(Set base) =>
base is Set/*<E>*/ ? base : new TypedSet/*<E>*/(base);
Set<E> get _setBase => _base;
bool add(E value) => _setBase.add(value);
void addAll(Iterable<E> elements) {
_setBase.addAll(elements);
}
void clear() {
_setBase.clear();
}
bool containsAll(Iterable<Object> other) => _setBase.containsAll(other);
Set<E> difference(Set<E> other) => _setBase.difference(other);
Set<E> intersection(Set<Object> other) => _setBase.intersection(other);
E lookup(Object element) => _setBase.lookup(element);
bool remove(Object value) => _setBase.remove(value);
void removeAll(Iterable<Object> elements) {
_setBase.removeAll(elements);
}
void removeWhere(bool test(E element)) {
_setBase.removeWhere(test);
}
void retainAll(Iterable<Object> elements) {
_setBase.retainAll(elements);
}
void retainWhere(bool test(E element)) {
_setBase.retainWhere(test);
}
Set<E> union(Set<E> other) => _setBase.union(other);
Set<E> toSet() => new DelegatingSet<E>(_setBase.toSet());
}
/// A [Queue] that delegates all operations to a base queue.
///
/// This class can be used to hide non-`Queue` methods of a queue object, or it
/// can be extended to add extra functionality on top of an existing queue
/// object.
class DelegatingQueue<E> extends DelegatingIterable<E> implements Queue<E> {
const DelegatingQueue(Queue<E> queue) : super(queue);
/// Creates a wrapper that asserts the types of values in [base].
///
/// This soundly converts a [Queue] without a generic type to a `Queue<E>` by
/// asserting that its elements are instances of `E` whenever they're
/// accessed. If they're not, it throws a [CastError]. Note that even if an
/// operation throws a [CastError], it may still mutate the underlying
/// collection.
///
/// This forwards all operations to [base], so any changes in [base] will be
/// reflected in [this]. If [base] is already a `Queue<E>`, it's returned
/// unmodified.
static Queue/*<E>*/ typed/*<E>*/(Queue base) =>
base is Queue/*<E>*/ ? base : new TypedQueue/*<E>*/(base);
Queue<E> get _baseQueue => _base;
void add(E value) {
_baseQueue.add(value);
}
void addAll(Iterable<E> iterable) {
_baseQueue.addAll(iterable);
}
void addFirst(E value) {
_baseQueue.addFirst(value);
}
void addLast(E value) {
_baseQueue.addLast(value);
}
void clear() {
_baseQueue.clear();
}
bool remove(Object object) => _baseQueue.remove(object);
void removeWhere(bool test(E element)) { _baseQueue.removeWhere(test); }
void retainWhere(bool test(E element)) { _baseQueue.retainWhere(test); }
E removeFirst() => _baseQueue.removeFirst();
E removeLast() => _baseQueue.removeLast();
}
/// A [Map] that delegates all operations to a base map.
///
/// This class can be used to hide non-`Map` methods of an object that extends
/// `Map`, or it can be extended to add extra functionality on top of an
/// existing map object.
class DelegatingMap<K, V> implements Map<K, V> {
final Map<K, V> _base;
const DelegatingMap(Map<K, V> base) : _base = base;
/// Creates a wrapper that asserts the types of keys and values in [base].
///
/// This soundly converts a [Map] without generic types to a `Map<K, V>` by
/// asserting that its keys are instances of `E` and its values are instances
/// of `V` whenever they're accessed. If they're not, it throws a [CastError].
/// Note that even if an operation throws a [CastError], it may still mutate
/// the underlying collection.
///
/// This forwards all operations to [base], so any changes in [base] will be
/// reflected in [this]. If [base] is already a `Map<K, V>`, it's returned
/// unmodified.
static Map/*<K, V>*/ typed/*<K, V>*/(Map base) =>
base is Map<K, V> ? base : new TypedMap<K, V>(base);
V operator [](Object key) => _base[key];
void operator []=(K key, V value) {
_base[key] = value;
}
void addAll(Map<K, V> other) {
_base.addAll(other);
}
void clear() {
_base.clear();
}
bool containsKey(Object key) => _base.containsKey(key);
bool containsValue(Object value) => _base.containsValue(value);
void forEach(void f(K key, V value)) {
_base.forEach(f);
}
bool get isEmpty => _base.isEmpty;
bool get isNotEmpty => _base.isNotEmpty;
Iterable<K> get keys => _base.keys;
int get length => _base.length;
V putIfAbsent(K key, V ifAbsent()) => _base.putIfAbsent(key, ifAbsent);
V remove(Object key) => _base.remove(key);
Iterable<V> get values => _base.values;
String toString() => _base.toString();
}
/// An unmodifiable [Set] view of the keys of a [Map].
///
/// The set delegates all operations to the underlying map.
///
/// A `Map` can only contain each key once, so its keys can always
/// be viewed as a `Set` without any loss, even if the [Map.keys]
/// getter only shows an [Iterable] view of the keys.
///
/// Note that [lookup] is not supported for this set.
class MapKeySet<E> extends _DelegatingIterableBase<E>
with UnmodifiableSetMixin<E> {
final Map<E, dynamic> _baseMap;
MapKeySet(Map<E, dynamic> base) : _baseMap = base;
Iterable<E> get _base => _baseMap.keys;
bool contains(Object element) => _baseMap.containsKey(element);
bool get isEmpty => _baseMap.isEmpty;
bool get isNotEmpty => _baseMap.isNotEmpty;
int get length => _baseMap.length;
String toString() => "{${_base.join(', ')}}";
bool containsAll(Iterable<Object> other) => other.every(contains);
/// Returns a new set with the the elements of [this] that are not in [other].
///
/// That is, the returned set contains all the elements of this [Set] that are
/// not elements of [other] according to `other.contains`.
///
/// Note that the returned set will use the default equality operation, which
/// may be different than the equality operation [this] uses.
Set<E> difference(Set<E> other) =>
where((element) => !other.contains(element)).toSet();
/// Returns a new set which is the intersection between [this] and [other].
///
/// That is, the returned set contains all the elements of this [Set] that are
/// also elements of [other] according to `other.contains`.
///
/// Note that the returned set will use the default equality operation, which
/// may be different than the equality operation [this] uses.
Set<E> intersection(Set<Object> other) => where(other.contains).toSet();
/// Throws an [UnsupportedError] since there's no corresponding method for
/// [Map]s.
E lookup(E element) => throw new UnsupportedError(
"MapKeySet doesn't support lookup().");
/// Returns a new set which contains all the elements of [this] and [other].
///
/// That is, the returned set contains all the elements of this [Set] and all
/// the elements of [other].
///
/// Note that the returned set will use the default equality operation, which
/// may be different than the equality operation [this] uses.
Set<E> union(Set<E> other) => toSet()..addAll(other);
}
/// Creates a modifiable [Set] view of the values of a [Map].
///
/// The `Set` view assumes that the keys of the `Map` can be uniquely determined
/// from the values. The `keyForValue` function passed to the constructor finds
/// the key for a single value. The `keyForValue` function should be consistent
/// with equality. If `value1 == value2` then `keyForValue(value1)` and
/// `keyForValue(value2)` should be considered equal keys by the underlying map,
/// and vice versa.
///
/// Modifying the set will modify the underlying map based on the key returned
/// by `keyForValue`.
///
/// If the `Map` contents are not compatible with the `keyForValue` function,
/// the set will not work consistently, and may give meaningless responses or do
/// inconsistent updates.
///
/// This set can, for example, be used on a map from database record IDs to the
/// records. It exposes the records as a set, and allows for writing both
/// `recordSet.add(databaseRecord)` and `recordMap[id]`.
///
/// Effectively, the map will act as a kind of index for the set.
class MapValueSet<K, V> extends _DelegatingIterableBase<V> implements Set<V> {
final Map<K, V> _baseMap;
final _KeyForValue<K, V> _keyForValue;
/// Creates a new [MapValueSet] based on [base].
///
/// [keyForValue] returns the key in the map that should be associated with
/// the given value. The set's notion of equality is identical to the equality
/// of the return values of [keyForValue].
MapValueSet(Map<K, V> base, K keyForValue(V value))
: _baseMap = base,
_keyForValue = keyForValue;
Iterable<V> get _base => _baseMap.values;
bool contains(Object element) {
if (element != null && element is! V) return false;
var key = _keyForValue(element as V);
return _baseMap.containsKey(key);
}
bool get isEmpty => _baseMap.isEmpty;
bool get isNotEmpty => _baseMap.isNotEmpty;
int get length => _baseMap.length;
String toString() => toSet().toString();
bool add(V value) {
K key = _keyForValue(value);
bool result = false;
_baseMap.putIfAbsent(key, () {
result = true;
return value;
});
return result;
}
void addAll(Iterable<V> elements) => elements.forEach(add);
void clear() => _baseMap.clear();
bool containsAll(Iterable<Object> other) => other.every(contains);
/// Returns a new set with the the elements of [this] that are not in [other].
///
/// That is, the returned set contains all the elements of this [Set] that are
/// not elements of [other] according to `other.contains`.
///
/// Note that the returned set will use the default equality operation, which
/// may be different than the equality operation [this] uses.
Set<V> difference(Set<V> other) =>
where((element) => !other.contains(element)).toSet();
/// Returns a new set which is the intersection between [this] and [other].
///
/// That is, the returned set contains all the elements of this [Set] that are
/// also elements of [other] according to `other.contains`.
///
/// Note that the returned set will use the default equality operation, which
/// may be different than the equality operation [this] uses.
Set<V> intersection(Set<Object> other) => where(other.contains).toSet();
V lookup(Object element) {
if (element != null && element is! V) return null;
var key = _keyForValue(element as V);
return _baseMap[key];
}
bool remove(Object element) {
if (element != null && element is! V) return false;
var key = _keyForValue(element as V);
if (!_baseMap.containsKey(key)) return false;
_baseMap.remove(key);
return true;
}
void removeAll(Iterable<Object> elements) => elements.forEach(remove);
void removeWhere(bool test(V element)) {
var toRemove = [];
_baseMap.forEach((key, value) {
if (test(value)) toRemove.add(key);
});
toRemove.forEach(_baseMap.remove);
}
void retainAll(Iterable<Object> elements) {
var valuesToRetain = new Set<V>.identity();
for (var element in elements) {
if (element != null && element is! V) continue;
var key = _keyForValue(element as V);
if (!_baseMap.containsKey(key)) continue;
valuesToRetain.add(_baseMap[key]);
}
var keysToRemove = [];
_baseMap.forEach((k, v) {
if (!valuesToRetain.contains(v)) keysToRemove.add(k);
});
keysToRemove.forEach(_baseMap.remove);
}
void retainWhere(bool test(V element)) =>
removeWhere((element) => !test(element));
/// Returns a new set which contains all the elements of [this] and [other].
///
/// That is, the returned set contains all the elements of this [Set] and all
/// the elements of [other].
///
/// Note that the returned set will use the default equality operation, which
/// may be different than the equality operation [this] uses.
Set<V> union(Set<V> other) => toSet()..addAll(other);
}