| //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This coordinates the per-module state used while generating code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenModule.h" |
| #include "CGCUDARuntime.h" |
| #include "CGCXXABI.h" |
| #include "CGCall.h" |
| #include "CGDebugInfo.h" |
| #include "CGObjCRuntime.h" |
| #include "CGOpenCLRuntime.h" |
| #include "CGOpenMPRuntime.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenPGO.h" |
| #include "CodeGenTBAA.h" |
| #include "CoverageMappingGen.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/Module.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/Version.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "clang/Sema/SemaDiagnostic.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/ProfileData/InstrProfReader.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| static const char AnnotationSection[] = "llvm.metadata"; |
| |
| static CGCXXABI *createCXXABI(CodeGenModule &CGM) { |
| switch (CGM.getTarget().getCXXABI().getKind()) { |
| case TargetCXXABI::GenericAArch64: |
| case TargetCXXABI::GenericARM: |
| case TargetCXXABI::Emscripten: // @LOCALMOD Emscripten |
| case TargetCXXABI::iOS: |
| case TargetCXXABI::iOS64: |
| case TargetCXXABI::GenericMIPS: |
| case TargetCXXABI::GenericItanium: |
| return CreateItaniumCXXABI(CGM); |
| case TargetCXXABI::Microsoft: |
| return CreateMicrosoftCXXABI(CGM); |
| } |
| |
| llvm_unreachable("invalid C++ ABI kind"); |
| } |
| |
| CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, |
| const PreprocessorOptions &PPO, |
| const CodeGenOptions &CGO, llvm::Module &M, |
| DiagnosticsEngine &diags, |
| CoverageSourceInfo *CoverageInfo) |
| : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), |
| PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), |
| Target(C.getTargetInfo()), ABI(createCXXABI(*this)), |
| VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), |
| Types(*this), VTables(*this), ObjCRuntime(nullptr), |
| OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), |
| DebugInfo(nullptr), ARCData(nullptr), |
| NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), |
| CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), |
| NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), |
| NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), |
| BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), |
| GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), |
| LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { |
| |
| // Initialize the type cache. |
| llvm::LLVMContext &LLVMContext = M.getContext(); |
| VoidTy = llvm::Type::getVoidTy(LLVMContext); |
| Int8Ty = llvm::Type::getInt8Ty(LLVMContext); |
| Int16Ty = llvm::Type::getInt16Ty(LLVMContext); |
| Int32Ty = llvm::Type::getInt32Ty(LLVMContext); |
| Int64Ty = llvm::Type::getInt64Ty(LLVMContext); |
| FloatTy = llvm::Type::getFloatTy(LLVMContext); |
| DoubleTy = llvm::Type::getDoubleTy(LLVMContext); |
| PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); |
| PointerAlignInBytes = |
| C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); |
| IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); |
| IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); |
| Int8PtrTy = Int8Ty->getPointerTo(0); |
| Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); |
| |
| RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); |
| BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); |
| |
| if (LangOpts.ObjC1) |
| createObjCRuntime(); |
| if (LangOpts.OpenCL) |
| createOpenCLRuntime(); |
| if (LangOpts.OpenMP) |
| createOpenMPRuntime(); |
| if (LangOpts.CUDA) |
| createCUDARuntime(); |
| |
| // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. |
| if (LangOpts.Sanitize.has(SanitizerKind::Thread) || |
| (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) |
| TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), |
| getCXXABI().getMangleContext()); |
| |
| // If debug info or coverage generation is enabled, create the CGDebugInfo |
| // object. |
| if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || |
| CodeGenOpts.EmitGcovArcs || |
| CodeGenOpts.EmitGcovNotes) |
| DebugInfo = new CGDebugInfo(*this); |
| |
| Block.GlobalUniqueCount = 0; |
| |
| if (C.getLangOpts().ObjCAutoRefCount) |
| ARCData = new ARCEntrypoints(); |
| RRData = new RREntrypoints(); |
| |
| if (!CodeGenOpts.InstrProfileInput.empty()) { |
| auto ReaderOrErr = |
| llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); |
| if (std::error_code EC = ReaderOrErr.getError()) { |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "Could not read profile %0: %1"); |
| getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput |
| << EC.message(); |
| } else |
| PGOReader = std::move(ReaderOrErr.get()); |
| } |
| |
| // If coverage mapping generation is enabled, create the |
| // CoverageMappingModuleGen object. |
| if (CodeGenOpts.CoverageMapping) |
| CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); |
| } |
| |
| CodeGenModule::~CodeGenModule() { |
| delete ObjCRuntime; |
| delete OpenCLRuntime; |
| delete OpenMPRuntime; |
| delete CUDARuntime; |
| delete TheTargetCodeGenInfo; |
| delete TBAA; |
| delete DebugInfo; |
| delete ARCData; |
| delete RRData; |
| } |
| |
| void CodeGenModule::createObjCRuntime() { |
| // This is just isGNUFamily(), but we want to force implementors of |
| // new ABIs to decide how best to do this. |
| switch (LangOpts.ObjCRuntime.getKind()) { |
| case ObjCRuntime::GNUstep: |
| case ObjCRuntime::GCC: |
| case ObjCRuntime::ObjFW: |
| ObjCRuntime = CreateGNUObjCRuntime(*this); |
| return; |
| |
| case ObjCRuntime::FragileMacOSX: |
| case ObjCRuntime::MacOSX: |
| case ObjCRuntime::iOS: |
| ObjCRuntime = CreateMacObjCRuntime(*this); |
| return; |
| } |
| llvm_unreachable("bad runtime kind"); |
| } |
| |
| void CodeGenModule::createOpenCLRuntime() { |
| OpenCLRuntime = new CGOpenCLRuntime(*this); |
| } |
| |
| void CodeGenModule::createOpenMPRuntime() { |
| OpenMPRuntime = new CGOpenMPRuntime(*this); |
| } |
| |
| void CodeGenModule::createCUDARuntime() { |
| CUDARuntime = CreateNVCUDARuntime(*this); |
| } |
| |
| void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { |
| Replacements[Name] = C; |
| } |
| |
| void CodeGenModule::applyReplacements() { |
| for (auto &I : Replacements) { |
| StringRef MangledName = I.first(); |
| llvm::Constant *Replacement = I.second; |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| if (!Entry) |
| continue; |
| auto *OldF = cast<llvm::Function>(Entry); |
| auto *NewF = dyn_cast<llvm::Function>(Replacement); |
| if (!NewF) { |
| if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { |
| NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); |
| } else { |
| auto *CE = cast<llvm::ConstantExpr>(Replacement); |
| assert(CE->getOpcode() == llvm::Instruction::BitCast || |
| CE->getOpcode() == llvm::Instruction::GetElementPtr); |
| NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); |
| } |
| } |
| |
| // Replace old with new, but keep the old order. |
| OldF->replaceAllUsesWith(Replacement); |
| if (NewF) { |
| NewF->removeFromParent(); |
| OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); |
| } |
| OldF->eraseFromParent(); |
| } |
| } |
| |
| // This is only used in aliases that we created and we know they have a |
| // linear structure. |
| static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { |
| llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; |
| const llvm::Constant *C = &GA; |
| for (;;) { |
| C = C->stripPointerCasts(); |
| if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) |
| return GO; |
| // stripPointerCasts will not walk over weak aliases. |
| auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); |
| if (!GA2) |
| return nullptr; |
| if (!Visited.insert(GA2).second) |
| return nullptr; |
| C = GA2->getAliasee(); |
| } |
| } |
| |
| void CodeGenModule::checkAliases() { |
| // Check if the constructed aliases are well formed. It is really unfortunate |
| // that we have to do this in CodeGen, but we only construct mangled names |
| // and aliases during codegen. |
| bool Error = false; |
| DiagnosticsEngine &Diags = getDiags(); |
| for (const GlobalDecl &GD : Aliases) { |
| const auto *D = cast<ValueDecl>(GD.getDecl()); |
| const AliasAttr *AA = D->getAttr<AliasAttr>(); |
| StringRef MangledName = getMangledName(GD); |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| auto *Alias = cast<llvm::GlobalAlias>(Entry); |
| const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); |
| if (!GV) { |
| Error = true; |
| Diags.Report(AA->getLocation(), diag::err_cyclic_alias); |
| } else if (GV->isDeclaration()) { |
| Error = true; |
| Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); |
| } |
| |
| llvm::Constant *Aliasee = Alias->getAliasee(); |
| llvm::GlobalValue *AliaseeGV; |
| if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) |
| AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); |
| else |
| AliaseeGV = cast<llvm::GlobalValue>(Aliasee); |
| |
| if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { |
| StringRef AliasSection = SA->getName(); |
| if (AliasSection != AliaseeGV->getSection()) |
| Diags.Report(SA->getLocation(), diag::warn_alias_with_section) |
| << AliasSection; |
| } |
| |
| // We have to handle alias to weak aliases in here. LLVM itself disallows |
| // this since the object semantics would not match the IL one. For |
| // compatibility with gcc we implement it by just pointing the alias |
| // to its aliasee's aliasee. We also warn, since the user is probably |
| // expecting the link to be weak. |
| if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { |
| if (GA->mayBeOverridden()) { |
| Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) |
| << GV->getName() << GA->getName(); |
| Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
| GA->getAliasee(), Alias->getType()); |
| Alias->setAliasee(Aliasee); |
| } |
| } |
| } |
| if (!Error) |
| return; |
| |
| for (const GlobalDecl &GD : Aliases) { |
| StringRef MangledName = getMangledName(GD); |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| auto *Alias = cast<llvm::GlobalAlias>(Entry); |
| Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); |
| Alias->eraseFromParent(); |
| } |
| } |
| |
| void CodeGenModule::clear() { |
| DeferredDeclsToEmit.clear(); |
| if (OpenMPRuntime) |
| OpenMPRuntime->clear(); |
| } |
| |
| void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, |
| StringRef MainFile) { |
| if (!hasDiagnostics()) |
| return; |
| if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { |
| if (MainFile.empty()) |
| MainFile = "<stdin>"; |
| Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; |
| } else |
| Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing |
| << Mismatched; |
| } |
| |
| void CodeGenModule::Release() { |
| EmitDeferred(); |
| applyReplacements(); |
| checkAliases(); |
| EmitCXXGlobalInitFunc(); |
| EmitCXXGlobalDtorFunc(); |
| EmitCXXThreadLocalInitFunc(); |
| if (ObjCRuntime) |
| if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) |
| AddGlobalCtor(ObjCInitFunction); |
| if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && |
| CUDARuntime) { |
| if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) |
| AddGlobalCtor(CudaCtorFunction); |
| if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) |
| AddGlobalDtor(CudaDtorFunction); |
| } |
| if (PGOReader && PGOStats.hasDiagnostics()) |
| PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); |
| EmitCtorList(GlobalCtors, "llvm.global_ctors"); |
| EmitCtorList(GlobalDtors, "llvm.global_dtors"); |
| EmitGlobalAnnotations(); |
| EmitStaticExternCAliases(); |
| EmitDeferredUnusedCoverageMappings(); |
| if (CoverageMapping) |
| CoverageMapping->emit(); |
| emitLLVMUsed(); |
| |
| if (CodeGenOpts.Autolink && |
| (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { |
| EmitModuleLinkOptions(); |
| } |
| if (CodeGenOpts.DwarfVersion) |
| // We actually want the latest version when there are conflicts. |
| // We can change from Warning to Latest if such mode is supported. |
| getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", |
| CodeGenOpts.DwarfVersion); |
| if (DebugInfo) |
| // We support a single version in the linked module. The LLVM |
| // parser will drop debug info with a different version number |
| // (and warn about it, too). |
| getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", |
| llvm::DEBUG_METADATA_VERSION); |
| |
| // We need to record the widths of enums and wchar_t, so that we can generate |
| // the correct build attributes in the ARM backend. |
| llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); |
| if ( Arch == llvm::Triple::arm |
| || Arch == llvm::Triple::armeb |
| || Arch == llvm::Triple::thumb |
| || Arch == llvm::Triple::thumbeb) { |
| // Width of wchar_t in bytes |
| uint64_t WCharWidth = |
| Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); |
| getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); |
| |
| // The minimum width of an enum in bytes |
| uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; |
| getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); |
| } |
| |
| if (uint32_t PLevel = Context.getLangOpts().PICLevel) { |
| llvm::PICLevel::Level PL = llvm::PICLevel::Default; |
| switch (PLevel) { |
| case 0: break; |
| case 1: PL = llvm::PICLevel::Small; break; |
| case 2: PL = llvm::PICLevel::Large; break; |
| default: llvm_unreachable("Invalid PIC Level"); |
| } |
| |
| getModule().setPICLevel(PL); |
| } |
| |
| SimplifyPersonality(); |
| |
| if (getCodeGenOpts().EmitDeclMetadata) |
| EmitDeclMetadata(); |
| |
| if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) |
| EmitCoverageFile(); |
| |
| if (DebugInfo) |
| DebugInfo->finalize(); |
| |
| EmitVersionIdentMetadata(); |
| |
| EmitTargetMetadata(); |
| } |
| |
| void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { |
| // Make sure that this type is translated. |
| Types.UpdateCompletedType(TD); |
| } |
| |
| llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { |
| if (!TBAA) |
| return nullptr; |
| return TBAA->getTBAAInfo(QTy); |
| } |
| |
| llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { |
| if (!TBAA) |
| return nullptr; |
| return TBAA->getTBAAInfoForVTablePtr(); |
| } |
| |
| llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { |
| if (!TBAA) |
| return nullptr; |
| return TBAA->getTBAAStructInfo(QTy); |
| } |
| |
| llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { |
| if (!TBAA) |
| return nullptr; |
| return TBAA->getTBAAStructTypeInfo(QTy); |
| } |
| |
| llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, |
| llvm::MDNode *AccessN, |
| uint64_t O) { |
| if (!TBAA) |
| return nullptr; |
| return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); |
| } |
| |
| /// Decorate the instruction with a TBAA tag. For both scalar TBAA |
| /// and struct-path aware TBAA, the tag has the same format: |
| /// base type, access type and offset. |
| /// When ConvertTypeToTag is true, we create a tag based on the scalar type. |
| void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, |
| llvm::MDNode *TBAAInfo, |
| bool ConvertTypeToTag) { |
| if (ConvertTypeToTag && TBAA) |
| Inst->setMetadata(llvm::LLVMContext::MD_tbaa, |
| TBAA->getTBAAScalarTagInfo(TBAAInfo)); |
| else |
| Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); |
| } |
| |
| void CodeGenModule::Error(SourceLocation loc, StringRef message) { |
| unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); |
| getDiags().Report(Context.getFullLoc(loc), diagID) << message; |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified stmt yet. |
| void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { |
| unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) |
| << Msg << S->getSourceRange(); |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified decl yet. |
| void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { |
| unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; |
| } |
| |
| llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { |
| return llvm::ConstantInt::get(SizeTy, size.getQuantity()); |
| } |
| |
| void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, |
| const NamedDecl *D) const { |
| // Internal definitions always have default visibility. |
| if (GV->hasLocalLinkage()) { |
| GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| return; |
| } |
| |
| // Set visibility for definitions. |
| LinkageInfo LV = D->getLinkageAndVisibility(); |
| if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) |
| GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); |
| } |
| |
| static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { |
| return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) |
| .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) |
| .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) |
| .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) |
| .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); |
| } |
| |
| static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( |
| CodeGenOptions::TLSModel M) { |
| switch (M) { |
| case CodeGenOptions::GeneralDynamicTLSModel: |
| return llvm::GlobalVariable::GeneralDynamicTLSModel; |
| case CodeGenOptions::LocalDynamicTLSModel: |
| return llvm::GlobalVariable::LocalDynamicTLSModel; |
| case CodeGenOptions::InitialExecTLSModel: |
| return llvm::GlobalVariable::InitialExecTLSModel; |
| case CodeGenOptions::LocalExecTLSModel: |
| return llvm::GlobalVariable::LocalExecTLSModel; |
| } |
| llvm_unreachable("Invalid TLS model!"); |
| } |
| |
| void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { |
| assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); |
| |
| llvm::GlobalValue::ThreadLocalMode TLM; |
| TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); |
| |
| // Override the TLS model if it is explicitly specified. |
| if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { |
| TLM = GetLLVMTLSModel(Attr->getModel()); |
| } |
| |
| GV->setThreadLocalMode(TLM); |
| } |
| |
| StringRef CodeGenModule::getMangledName(GlobalDecl GD) { |
| StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; |
| if (!FoundStr.empty()) |
| return FoundStr; |
| |
| const auto *ND = cast<NamedDecl>(GD.getDecl()); |
| SmallString<256> Buffer; |
| StringRef Str; |
| if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { |
| llvm::raw_svector_ostream Out(Buffer); |
| if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) |
| getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); |
| else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) |
| getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); |
| else |
| getCXXABI().getMangleContext().mangleName(ND, Out); |
| Str = Out.str(); |
| } else { |
| IdentifierInfo *II = ND->getIdentifier(); |
| assert(II && "Attempt to mangle unnamed decl."); |
| Str = II->getName(); |
| } |
| |
| // Keep the first result in the case of a mangling collision. |
| auto Result = Manglings.insert(std::make_pair(Str, GD)); |
| return FoundStr = Result.first->first(); |
| } |
| |
| StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, |
| const BlockDecl *BD) { |
| MangleContext &MangleCtx = getCXXABI().getMangleContext(); |
| const Decl *D = GD.getDecl(); |
| |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| if (!D) |
| MangleCtx.mangleGlobalBlock(BD, |
| dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); |
| else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) |
| MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); |
| else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) |
| MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); |
| else |
| MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); |
| |
| auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); |
| return Result.first->first(); |
| } |
| |
| llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { |
| return getModule().getNamedValue(Name); |
| } |
| |
| /// AddGlobalCtor - Add a function to the list that will be called before |
| /// main() runs. |
| void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, |
| llvm::Constant *AssociatedData) { |
| // FIXME: Type coercion of void()* types. |
| GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); |
| } |
| |
| /// AddGlobalDtor - Add a function to the list that will be called |
| /// when the module is unloaded. |
| void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { |
| // FIXME: Type coercion of void()* types. |
| GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); |
| } |
| |
| void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { |
| // Ctor function type is void()*. |
| llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); |
| llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); |
| |
| // Get the type of a ctor entry, { i32, void ()*, i8* }. |
| llvm::StructType *CtorStructTy = llvm::StructType::get( |
| Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); |
| |
| // Construct the constructor and destructor arrays. |
| SmallVector<llvm::Constant *, 8> Ctors; |
| for (const auto &I : Fns) { |
| llvm::Constant *S[] = { |
| llvm::ConstantInt::get(Int32Ty, I.Priority, false), |
| llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), |
| (I.AssociatedData |
| ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) |
| : llvm::Constant::getNullValue(VoidPtrTy))}; |
| Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); |
| } |
| |
| if (!Ctors.empty()) { |
| llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); |
| new llvm::GlobalVariable(TheModule, AT, false, |
| llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(AT, Ctors), |
| GlobalName); |
| } |
| } |
| |
| llvm::GlobalValue::LinkageTypes |
| CodeGenModule::getFunctionLinkage(GlobalDecl GD) { |
| const auto *D = cast<FunctionDecl>(GD.getDecl()); |
| |
| GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); |
| |
| if (isa<CXXDestructorDecl>(D) && |
| getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), |
| GD.getDtorType())) { |
| // Destructor variants in the Microsoft C++ ABI are always internal or |
| // linkonce_odr thunks emitted on an as-needed basis. |
| return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage |
| : llvm::GlobalValue::LinkOnceODRLinkage; |
| } |
| |
| return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); |
| } |
| |
| void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { |
| const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
| |
| if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { |
| if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { |
| // Don't dllexport/import destructor thunks. |
| F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| return; |
| } |
| } |
| |
| if (FD->hasAttr<DLLImportAttr>()) |
| F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
| else if (FD->hasAttr<DLLExportAttr>()) |
| F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); |
| else |
| F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); |
| } |
| |
| void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, |
| llvm::Function *F) { |
| setNonAliasAttributes(D, F); |
| } |
| |
| void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, |
| const CGFunctionInfo &Info, |
| llvm::Function *F) { |
| unsigned CallingConv; |
| AttributeListType AttributeList; |
| ConstructAttributeList(Info, D, AttributeList, CallingConv, false); |
| F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); |
| F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| } |
| |
| /// Determines whether the language options require us to model |
| /// unwind exceptions. We treat -fexceptions as mandating this |
| /// except under the fragile ObjC ABI with only ObjC exceptions |
| /// enabled. This means, for example, that C with -fexceptions |
| /// enables this. |
| static bool hasUnwindExceptions(const LangOptions &LangOpts) { |
| // If exceptions are completely disabled, obviously this is false. |
| if (!LangOpts.Exceptions) return false; |
| |
| // If C++ exceptions are enabled, this is true. |
| if (LangOpts.CXXExceptions) return true; |
| |
| // If ObjC exceptions are enabled, this depends on the ABI. |
| if (LangOpts.ObjCExceptions) { |
| return LangOpts.ObjCRuntime.hasUnwindExceptions(); |
| } |
| |
| return true; |
| } |
| |
| void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, |
| llvm::Function *F) { |
| llvm::AttrBuilder B; |
| |
| if (CodeGenOpts.UnwindTables) |
| B.addAttribute(llvm::Attribute::UWTable); |
| |
| if (!hasUnwindExceptions(LangOpts)) |
| B.addAttribute(llvm::Attribute::NoUnwind); |
| |
| if (D->hasAttr<NakedAttr>()) { |
| // Naked implies noinline: we should not be inlining such functions. |
| B.addAttribute(llvm::Attribute::Naked); |
| B.addAttribute(llvm::Attribute::NoInline); |
| } else if (D->hasAttr<NoDuplicateAttr>()) { |
| B.addAttribute(llvm::Attribute::NoDuplicate); |
| } else if (D->hasAttr<NoInlineAttr>()) { |
| B.addAttribute(llvm::Attribute::NoInline); |
| } else if (D->hasAttr<AlwaysInlineAttr>() && |
| !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, |
| llvm::Attribute::NoInline)) { |
| // (noinline wins over always_inline, and we can't specify both in IR) |
| B.addAttribute(llvm::Attribute::AlwaysInline); |
| } |
| |
| if (D->hasAttr<ColdAttr>()) { |
| if (!D->hasAttr<OptimizeNoneAttr>()) |
| B.addAttribute(llvm::Attribute::OptimizeForSize); |
| B.addAttribute(llvm::Attribute::Cold); |
| } |
| |
| if (D->hasAttr<MinSizeAttr>()) |
| B.addAttribute(llvm::Attribute::MinSize); |
| |
| if (LangOpts.getStackProtector() == LangOptions::SSPOn) |
| B.addAttribute(llvm::Attribute::StackProtect); |
| else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) |
| B.addAttribute(llvm::Attribute::StackProtectStrong); |
| else if (LangOpts.getStackProtector() == LangOptions::SSPReq) |
| B.addAttribute(llvm::Attribute::StackProtectReq); |
| |
| F->addAttributes(llvm::AttributeSet::FunctionIndex, |
| llvm::AttributeSet::get( |
| F->getContext(), llvm::AttributeSet::FunctionIndex, B)); |
| |
| if (D->hasAttr<OptimizeNoneAttr>()) { |
| // OptimizeNone implies noinline; we should not be inlining such functions. |
| F->addFnAttr(llvm::Attribute::OptimizeNone); |
| F->addFnAttr(llvm::Attribute::NoInline); |
| |
| // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. |
| assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && |
| "OptimizeNone and OptimizeForSize on same function!"); |
| assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && |
| "OptimizeNone and MinSize on same function!"); |
| assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && |
| "OptimizeNone and AlwaysInline on same function!"); |
| |
| // Attribute 'inlinehint' has no effect on 'optnone' functions. |
| // Explicitly remove it from the set of function attributes. |
| F->removeFnAttr(llvm::Attribute::InlineHint); |
| } |
| |
| if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) |
| F->setUnnamedAddr(true); |
| else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) |
| if (MD->isVirtual()) |
| F->setUnnamedAddr(true); |
| |
| unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); |
| if (alignment) |
| F->setAlignment(alignment); |
| |
| // @LOCALMOD-START Emscripten |
| if (getTarget().getCXXABI().arePointersToMemberFunctionsAligned()) { |
| // C++ ABI requires 2-byte alignment for member functions. |
| if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) |
| F->setAlignment(2); |
| } |
| // @LOCALMOD-END Emscripten |
| } |
| |
| void CodeGenModule::SetCommonAttributes(const Decl *D, |
| llvm::GlobalValue *GV) { |
| if (const auto *ND = dyn_cast<NamedDecl>(D)) |
| setGlobalVisibility(GV, ND); |
| else |
| GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| |
| if (D->hasAttr<UsedAttr>()) |
| addUsedGlobal(GV); |
| } |
| |
| void CodeGenModule::setAliasAttributes(const Decl *D, |
| llvm::GlobalValue *GV) { |
| SetCommonAttributes(D, GV); |
| |
| // Process the dllexport attribute based on whether the original definition |
| // (not necessarily the aliasee) was exported. |
| if (D->hasAttr<DLLExportAttr>()) |
| GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
| } |
| |
| void CodeGenModule::setNonAliasAttributes(const Decl *D, |
| llvm::GlobalObject *GO) { |
| SetCommonAttributes(D, GO); |
| |
| if (const SectionAttr *SA = D->getAttr<SectionAttr>()) |
| GO->setSection(SA->getName()); |
| |
| getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); |
| } |
| |
| void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, |
| llvm::Function *F, |
| const CGFunctionInfo &FI) { |
| SetLLVMFunctionAttributes(D, FI, F); |
| SetLLVMFunctionAttributesForDefinition(D, F); |
| |
| F->setLinkage(llvm::Function::InternalLinkage); |
| |
| setNonAliasAttributes(D, F); |
| } |
| |
| static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, |
| const NamedDecl *ND) { |
| // Set linkage and visibility in case we never see a definition. |
| LinkageInfo LV = ND->getLinkageAndVisibility(); |
| if (LV.getLinkage() != ExternalLinkage) { |
| // Don't set internal linkage on declarations. |
| } else { |
| if (ND->hasAttr<DLLImportAttr>()) { |
| GV->setLinkage(llvm::GlobalValue::ExternalLinkage); |
| GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
| } else if (ND->hasAttr<DLLExportAttr>()) { |
| GV->setLinkage(llvm::GlobalValue::ExternalLinkage); |
| GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
| } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { |
| // "extern_weak" is overloaded in LLVM; we probably should have |
| // separate linkage types for this. |
| GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); |
| } |
| |
| // Set visibility on a declaration only if it's explicit. |
| if (LV.isVisibilityExplicit()) |
| GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); |
| } |
| } |
| |
| void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, |
| bool IsIncompleteFunction, |
| bool IsThunk) { |
| if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { |
| // If this is an intrinsic function, set the function's attributes |
| // to the intrinsic's attributes. |
| F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); |
| return; |
| } |
| |
| const auto *FD = cast<FunctionDecl>(GD.getDecl()); |
| |
| if (!IsIncompleteFunction) |
| SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); |
| |
| // Add the Returned attribute for "this", except for iOS 5 and earlier |
| // where substantial code, including the libstdc++ dylib, was compiled with |
| // GCC and does not actually return "this". |
| if (!IsThunk && getCXXABI().HasThisReturn(GD) && |
| !(getTarget().getTriple().isiOS() && |
| getTarget().getTriple().isOSVersionLT(6))) { |
| assert(!F->arg_empty() && |
| F->arg_begin()->getType() |
| ->canLosslesslyBitCastTo(F->getReturnType()) && |
| "unexpected this return"); |
| F->addAttribute(1, llvm::Attribute::Returned); |
| } |
| |
| // Only a few attributes are set on declarations; these may later be |
| // overridden by a definition. |
| |
| setLinkageAndVisibilityForGV(F, FD); |
| |
| if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) |
| F->setSection(SA->getName()); |
| |
| // A replaceable global allocation function does not act like a builtin by |
| // default, only if it is invoked by a new-expression or delete-expression. |
| if (FD->isReplaceableGlobalAllocationFunction()) |
| F->addAttribute(llvm::AttributeSet::FunctionIndex, |
| llvm::Attribute::NoBuiltin); |
| } |
| |
| void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { |
| assert(!GV->isDeclaration() && |
| "Only globals with definition can force usage."); |
| LLVMUsed.emplace_back(GV); |
| } |
| |
| void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { |
| assert(!GV->isDeclaration() && |
| "Only globals with definition can force usage."); |
| LLVMCompilerUsed.emplace_back(GV); |
| } |
| |
| static void emitUsed(CodeGenModule &CGM, StringRef Name, |
| std::vector<llvm::WeakVH> &List) { |
| // Don't create llvm.used if there is no need. |
| if (List.empty()) |
| return; |
| |
| // Convert List to what ConstantArray needs. |
| SmallVector<llvm::Constant*, 8> UsedArray; |
| UsedArray.resize(List.size()); |
| for (unsigned i = 0, e = List.size(); i != e; ++i) { |
| UsedArray[i] = |
| llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( |
| cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); |
| } |
| |
| if (UsedArray.empty()) |
| return; |
| llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); |
| |
| auto *GV = new llvm::GlobalVariable( |
| CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(ATy, UsedArray), Name); |
| |
| GV->setSection("llvm.metadata"); |
| } |
| |
| void CodeGenModule::emitLLVMUsed() { |
| emitUsed(*this, "llvm.used", LLVMUsed); |
| emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); |
| } |
| |
| void CodeGenModule::AppendLinkerOptions(StringRef Opts) { |
| auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); |
| LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); |
| } |
| |
| void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { |
| llvm::SmallString<32> Opt; |
| getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); |
| auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); |
| LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); |
| } |
| |
| void CodeGenModule::AddDependentLib(StringRef Lib) { |
| llvm::SmallString<24> Opt; |
| getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); |
| auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); |
| LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); |
| } |
| |
| /// \brief Add link options implied by the given module, including modules |
| /// it depends on, using a postorder walk. |
| static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, |
| SmallVectorImpl<llvm::Metadata *> &Metadata, |
| llvm::SmallPtrSet<Module *, 16> &Visited) { |
| // Import this module's parent. |
| if (Mod->Parent && Visited.insert(Mod->Parent).second) { |
| addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); |
| } |
| |
| // Import this module's dependencies. |
| for (unsigned I = Mod->Imports.size(); I > 0; --I) { |
| if (Visited.insert(Mod->Imports[I - 1]).second) |
| addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); |
| } |
| |
| // Add linker options to link against the libraries/frameworks |
| // described by this module. |
| llvm::LLVMContext &Context = CGM.getLLVMContext(); |
| for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { |
| // Link against a framework. Frameworks are currently Darwin only, so we |
| // don't to ask TargetCodeGenInfo for the spelling of the linker option. |
| if (Mod->LinkLibraries[I-1].IsFramework) { |
| llvm::Metadata *Args[2] = { |
| llvm::MDString::get(Context, "-framework"), |
| llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; |
| |
| Metadata.push_back(llvm::MDNode::get(Context, Args)); |
| continue; |
| } |
| |
| // Link against a library. |
| llvm::SmallString<24> Opt; |
| CGM.getTargetCodeGenInfo().getDependentLibraryOption( |
| Mod->LinkLibraries[I-1].Library, Opt); |
| auto *OptString = llvm::MDString::get(Context, Opt); |
| Metadata.push_back(llvm::MDNode::get(Context, OptString)); |
| } |
| } |
| |
| void CodeGenModule::EmitModuleLinkOptions() { |
| // Collect the set of all of the modules we want to visit to emit link |
| // options, which is essentially the imported modules and all of their |
| // non-explicit child modules. |
| llvm::SetVector<clang::Module *> LinkModules; |
| llvm::SmallPtrSet<clang::Module *, 16> Visited; |
| SmallVector<clang::Module *, 16> Stack; |
| |
| // Seed the stack with imported modules. |
| for (Module *M : ImportedModules) |
| if (Visited.insert(M).second) |
| Stack.push_back(M); |
| |
| // Find all of the modules to import, making a little effort to prune |
| // non-leaf modules. |
| while (!Stack.empty()) { |
| clang::Module *Mod = Stack.pop_back_val(); |
| |
| bool AnyChildren = false; |
| |
| // Visit the submodules of this module. |
| for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), |
| SubEnd = Mod->submodule_end(); |
| Sub != SubEnd; ++Sub) { |
| // Skip explicit children; they need to be explicitly imported to be |
| // linked against. |
| if ((*Sub)->IsExplicit) |
| continue; |
| |
| if (Visited.insert(*Sub).second) { |
| Stack.push_back(*Sub); |
| AnyChildren = true; |
| } |
| } |
| |
| // We didn't find any children, so add this module to the list of |
| // modules to link against. |
| if (!AnyChildren) { |
| LinkModules.insert(Mod); |
| } |
| } |
| |
| // Add link options for all of the imported modules in reverse topological |
| // order. We don't do anything to try to order import link flags with respect |
| // to linker options inserted by things like #pragma comment(). |
| SmallVector<llvm::Metadata *, 16> MetadataArgs; |
| Visited.clear(); |
| for (Module *M : LinkModules) |
| if (Visited.insert(M).second) |
| addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); |
| std::reverse(MetadataArgs.begin(), MetadataArgs.end()); |
| LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); |
| |
| // Add the linker options metadata flag. |
| getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", |
| llvm::MDNode::get(getLLVMContext(), |
| LinkerOptionsMetadata)); |
| } |
| |
| void CodeGenModule::EmitDeferred() { |
| // Emit code for any potentially referenced deferred decls. Since a |
| // previously unused static decl may become used during the generation of code |
| // for a static function, iterate until no changes are made. |
| |
| if (!DeferredVTables.empty()) { |
| EmitDeferredVTables(); |
| |
| // Emitting a v-table doesn't directly cause more v-tables to |
| // become deferred, although it can cause functions to be |
| // emitted that then need those v-tables. |
| assert(DeferredVTables.empty()); |
| } |
| |
| // Stop if we're out of both deferred v-tables and deferred declarations. |
| if (DeferredDeclsToEmit.empty()) |
| return; |
| |
| // Grab the list of decls to emit. If EmitGlobalDefinition schedules more |
| // work, it will not interfere with this. |
| std::vector<DeferredGlobal> CurDeclsToEmit; |
| CurDeclsToEmit.swap(DeferredDeclsToEmit); |
| |
| for (DeferredGlobal &G : CurDeclsToEmit) { |
| GlobalDecl D = G.GD; |
| llvm::GlobalValue *GV = G.GV; |
| G.GV = nullptr; |
| |
| assert(!GV || GV == GetGlobalValue(getMangledName(D))); |
| if (!GV) |
| GV = GetGlobalValue(getMangledName(D)); |
| |
| // Check to see if we've already emitted this. This is necessary |
| // for a couple of reasons: first, decls can end up in the |
| // deferred-decls queue multiple times, and second, decls can end |
| // up with definitions in unusual ways (e.g. by an extern inline |
| // function acquiring a strong function redefinition). Just |
| // ignore these cases. |
| if (GV && !GV->isDeclaration()) |
| continue; |
| |
| // Otherwise, emit the definition and move on to the next one. |
| EmitGlobalDefinition(D, GV); |
| |
| // If we found out that we need to emit more decls, do that recursively. |
| // This has the advantage that the decls are emitted in a DFS and related |
| // ones are close together, which is convenient for testing. |
| if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { |
| EmitDeferred(); |
| assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); |
| } |
| } |
| } |
| |
| void CodeGenModule::EmitGlobalAnnotations() { |
| if (Annotations.empty()) |
| return; |
| |
| // Create a new global variable for the ConstantStruct in the Module. |
| llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( |
| Annotations[0]->getType(), Annotations.size()), Annotations); |
| auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, |
| llvm::GlobalValue::AppendingLinkage, |
| Array, "llvm.global.annotations"); |
| gv->setSection(AnnotationSection); |
| } |
| |
| llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { |
| llvm::Constant *&AStr = AnnotationStrings[Str]; |
| if (AStr) |
| return AStr; |
| |
| // Not found yet, create a new global. |
| llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); |
| auto *gv = |
| new llvm::GlobalVariable(getModule(), s->getType(), true, |
| llvm::GlobalValue::PrivateLinkage, s, ".str"); |
| gv->setSection(AnnotationSection); |
| gv->setUnnamedAddr(true); |
| AStr = gv; |
| return gv; |
| } |
| |
| llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { |
| SourceManager &SM = getContext().getSourceManager(); |
| PresumedLoc PLoc = SM.getPresumedLoc(Loc); |
| if (PLoc.isValid()) |
| return EmitAnnotationString(PLoc.getFilename()); |
| return EmitAnnotationString(SM.getBufferName(Loc)); |
| } |
| |
| llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { |
| SourceManager &SM = getContext().getSourceManager(); |
| PresumedLoc PLoc = SM.getPresumedLoc(L); |
| unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : |
| SM.getExpansionLineNumber(L); |
| return llvm::ConstantInt::get(Int32Ty, LineNo); |
| } |
| |
| llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, |
| const AnnotateAttr *AA, |
| SourceLocation L) { |
| // Get the globals for file name, annotation, and the line number. |
| llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), |
| *UnitGV = EmitAnnotationUnit(L), |
| *LineNoCst = EmitAnnotationLineNo(L); |
| |
| // Create the ConstantStruct for the global annotation. |
| llvm::Constant *Fields[4] = { |
| llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), |
| llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), |
| llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), |
| LineNoCst |
| }; |
| return llvm::ConstantStruct::getAnon(Fields); |
| } |
| |
| void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, |
| llvm::GlobalValue *GV) { |
| assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); |
| // Get the struct elements for these annotations. |
| for (const auto *I : D->specific_attrs<AnnotateAttr>()) |
| Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); |
| } |
| |
| bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, |
| SourceLocation Loc) const { |
| const auto &SanitizerBL = getContext().getSanitizerBlacklist(); |
| // Blacklist by function name. |
| if (SanitizerBL.isBlacklistedFunction(Fn->getName())) |
| return true; |
| // Blacklist by location. |
| if (!Loc.isInvalid()) |
| return SanitizerBL.isBlacklistedLocation(Loc); |
| // If location is unknown, this may be a compiler-generated function. Assume |
| // it's located in the main file. |
| auto &SM = Context.getSourceManager(); |
| if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { |
| return SanitizerBL.isBlacklistedFile(MainFile->getName()); |
| } |
| return false; |
| } |
| |
| bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, |
| SourceLocation Loc, QualType Ty, |
| StringRef Category) const { |
| // For now globals can be blacklisted only in ASan and KASan. |
| if (!LangOpts.Sanitize.hasOneOf( |
| SanitizerKind::Address | SanitizerKind::KernelAddress)) |
| return false; |
| const auto &SanitizerBL = getContext().getSanitizerBlacklist(); |
| if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) |
| return true; |
| if (SanitizerBL.isBlacklistedLocation(Loc, Category)) |
| return true; |
| // Check global type. |
| if (!Ty.isNull()) { |
| // Drill down the array types: if global variable of a fixed type is |
| // blacklisted, we also don't instrument arrays of them. |
| while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) |
| Ty = AT->getElementType(); |
| Ty = Ty.getCanonicalType().getUnqualifiedType(); |
| // We allow to blacklist only record types (classes, structs etc.) |
| if (Ty->isRecordType()) { |
| std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); |
| if (SanitizerBL.isBlacklistedType(TypeStr, Category)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { |
| // Never defer when EmitAllDecls is specified. |
| if (LangOpts.EmitAllDecls) |
| return true; |
| |
| return getContext().DeclMustBeEmitted(Global); |
| } |
| |
| bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(Global)) |
| if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| // Implicit template instantiations may change linkage if they are later |
| // explicitly instantiated, so they should not be emitted eagerly. |
| return false; |
| // If OpenMP is enabled and threadprivates must be generated like TLS, delay |
| // codegen for global variables, because they may be marked as threadprivate. |
| if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && |
| getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) |
| return false; |
| |
| return true; |
| } |
| |
| llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( |
| const CXXUuidofExpr* E) { |
| // Sema has verified that IIDSource has a __declspec(uuid()), and that its |
| // well-formed. |
| StringRef Uuid = E->getUuidAsStringRef(Context); |
| std::string Name = "_GUID_" + Uuid.lower(); |
| std::replace(Name.begin(), Name.end(), '-', '_'); |
| |
| // Look for an existing global. |
| if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) |
| return GV; |
| |
| llvm::Constant *Init = EmitUuidofInitializer(Uuid); |
| assert(Init && "failed to initialize as constant"); |
| |
| auto *GV = new llvm::GlobalVariable( |
| getModule(), Init->getType(), |
| /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); |
| if (supportsCOMDAT()) |
| GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); |
| return GV; |
| } |
| |
| llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { |
| const AliasAttr *AA = VD->getAttr<AliasAttr>(); |
| assert(AA && "No alias?"); |
| |
| llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); |
| |
| // See if there is already something with the target's name in the module. |
| llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); |
| if (Entry) { |
| unsigned AS = getContext().getTargetAddressSpace(VD->getType()); |
| return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); |
| } |
| |
| llvm::Constant *Aliasee; |
| if (isa<llvm::FunctionType>(DeclTy)) |
| Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, |
| GlobalDecl(cast<FunctionDecl>(VD)), |
| /*ForVTable=*/false); |
| else |
| Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), |
| llvm::PointerType::getUnqual(DeclTy), |
| nullptr); |
| |
| auto *F = cast<llvm::GlobalValue>(Aliasee); |
| F->setLinkage(llvm::Function::ExternalWeakLinkage); |
| WeakRefReferences.insert(F); |
| |
| return Aliasee; |
| } |
| |
| void CodeGenModule::EmitGlobal(GlobalDecl GD) { |
| const auto *Global = cast<ValueDecl>(GD.getDecl()); |
| |
| // Weak references don't produce any output by themselves. |
| if (Global->hasAttr<WeakRefAttr>()) |
| return; |
| |
| // If this is an alias definition (which otherwise looks like a declaration) |
| // emit it now. |
| if (Global->hasAttr<AliasAttr>()) |
| return EmitAliasDefinition(GD); |
| |
| // If this is CUDA, be selective about which declarations we emit. |
| if (LangOpts.CUDA) { |
| if (LangOpts.CUDAIsDevice) { |
| if (!Global->hasAttr<CUDADeviceAttr>() && |
| !Global->hasAttr<CUDAGlobalAttr>() && |
| !Global->hasAttr<CUDAConstantAttr>() && |
| !Global->hasAttr<CUDASharedAttr>()) |
| return; |
| } else { |
| if (!Global->hasAttr<CUDAHostAttr>() && ( |
| Global->hasAttr<CUDADeviceAttr>() || |
| Global->hasAttr<CUDAConstantAttr>() || |
| Global->hasAttr<CUDASharedAttr>())) |
| return; |
| } |
| } |
| |
| // Ignore declarations, they will be emitted on their first use. |
| if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { |
| // Forward declarations are emitted lazily on first use. |
| if (!FD->doesThisDeclarationHaveABody()) { |
| if (!FD->doesDeclarationForceExternallyVisibleDefinition()) |
| return; |
| |
| StringRef MangledName = getMangledName(GD); |
| |
| // Compute the function info and LLVM type. |
| const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); |
| llvm::Type *Ty = getTypes().GetFunctionType(FI); |
| |
| GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, |
| /*DontDefer=*/false); |
| return; |
| } |
| } else { |
| const auto *VD = cast<VarDecl>(Global); |
| assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); |
| |
| if (VD->isThisDeclarationADefinition() != VarDecl::Definition && |
| !Context.isMSStaticDataMemberInlineDefinition(VD)) |
| return; |
| } |
| |
| // Defer code generation to first use when possible, e.g. if this is an inline |
| // function. If the global must always be emitted, do it eagerly if possible |
| // to benefit from cache locality. |
| if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { |
| // Emit the definition if it can't be deferred. |
| EmitGlobalDefinition(GD); |
| return; |
| } |
| |
| // If we're deferring emission of a C++ variable with an |
| // initializer, remember the order in which it appeared in the file. |
| if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && |
| cast<VarDecl>(Global)->hasInit()) { |
| DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); |
| CXXGlobalInits.push_back(nullptr); |
| } |
| |
| StringRef MangledName = getMangledName(GD); |
| if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { |
| // The value has already been used and should therefore be emitted. |
| addDeferredDeclToEmit(GV, GD); |
| } else if (MustBeEmitted(Global)) { |
| // The value must be emitted, but cannot be emitted eagerly. |
| assert(!MayBeEmittedEagerly(Global)); |
| addDeferredDeclToEmit(/*GV=*/nullptr, GD); |
| } else { |
| // Otherwise, remember that we saw a deferred decl with this name. The |
| // first use of the mangled name will cause it to move into |
| // DeferredDeclsToEmit. |
| DeferredDecls[MangledName] = GD; |
| } |
| } |
| |
| namespace { |
| struct FunctionIsDirectlyRecursive : |
| public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { |
| const StringRef Name; |
| const Builtin::Context &BI; |
| bool Result; |
| FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : |
| Name(N), BI(C), Result(false) { |
| } |
| typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; |
| |
| bool TraverseCallExpr(CallExpr *E) { |
| const FunctionDecl *FD = E->getDirectCallee(); |
| if (!FD) |
| return true; |
| AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); |
| if (Attr && Name == Attr->getLabel()) { |
| Result = true; |
| return false; |
| } |
| unsigned BuiltinID = FD->getBuiltinID(); |
| if (!BuiltinID || !BI.isLibFunction(BuiltinID)) |
| return true; |
| StringRef BuiltinName = BI.GetName(BuiltinID); |
| if (BuiltinName.startswith("__builtin_") && |
| Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { |
| Result = true; |
| return false; |
| } |
| return true; |
| } |
| }; |
| } |
| |
| // isTriviallyRecursive - Check if this function calls another |
| // decl that, because of the asm attribute or the other decl being a builtin, |
| // ends up pointing to itself. |
| bool |
| CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { |
| StringRef Name; |
| if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { |
| // asm labels are a special kind of mangling we have to support. |
| AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); |
| if (!Attr) |
| return false; |
| Name = Attr->getLabel(); |
| } else { |
| Name = FD->getName(); |
| } |
| |
| FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); |
| Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); |
| return Walker.Result; |
| } |
| |
| bool |
| CodeGenModule::shouldEmitFunction(GlobalDecl GD) { |
| if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) |
| return true; |
| const auto *F = cast<FunctionDecl>(GD.getDecl()); |
| if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) |
| return false; |
| // PR9614. Avoid cases where the source code is lying to us. An available |
| // externally function should have an equivalent function somewhere else, |
| // but a function that calls itself is clearly not equivalent to the real |
| // implementation. |
| // This happens in glibc's btowc and in some configure checks. |
| return !isTriviallyRecursive(F); |
| } |
| |
| /// If the type for the method's class was generated by |
| /// CGDebugInfo::createContextChain(), the cache contains only a |
| /// limited DIType without any declarations. Since EmitFunctionStart() |
| /// needs to find the canonical declaration for each method, we need |
| /// to construct the complete type prior to emitting the method. |
| void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { |
| if (!D->isInstance()) |
| return; |
| |
| if (CGDebugInfo *DI = getModuleDebugInfo()) |
| if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { |
| const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); |
| DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); |
| } |
| } |
| |
| void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { |
| const auto *D = cast<ValueDecl>(GD.getDecl()); |
| |
| PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), |
| Context.getSourceManager(), |
| "Generating code for declaration"); |
| |
| if (isa<FunctionDecl>(D)) { |
| // At -O0, don't generate IR for functions with available_externally |
| // linkage. |
| if (!shouldEmitFunction(GD)) |
| return; |
| |
| if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { |
| CompleteDIClassType(Method); |
| // Make sure to emit the definition(s) before we emit the thunks. |
| // This is necessary for the generation of certain thunks. |
| if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) |
| ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); |
| else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) |
| ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); |
| else |
| EmitGlobalFunctionDefinition(GD, GV); |
| |
| if (Method->isVirtual()) |
| getVTables().EmitThunks(GD); |
| |
| return; |
| } |
| |
| return EmitGlobalFunctionDefinition(GD, GV); |
| } |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) |
| return EmitGlobalVarDefinition(VD); |
| |
| llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); |
| } |
| |
| /// GetOrCreateLLVMFunction - If the specified mangled name is not in the |
| /// module, create and return an llvm Function with the specified type. If there |
| /// is something in the module with the specified name, return it potentially |
| /// bitcasted to the right type. |
| /// |
| /// If D is non-null, it specifies a decl that correspond to this. This is used |
| /// to set the attributes on the function when it is first created. |
| llvm::Constant * |
| CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, |
| llvm::Type *Ty, |
| GlobalDecl GD, bool ForVTable, |
| bool DontDefer, bool IsThunk, |
| llvm::AttributeSet ExtraAttrs) { |
| const Decl *D = GD.getDecl(); |
| |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| if (Entry) { |
| if (WeakRefReferences.erase(Entry)) { |
| const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); |
| if (FD && !FD->hasAttr<WeakAttr>()) |
| Entry->setLinkage(llvm::Function::ExternalLinkage); |
| } |
| |
| // Handle dropped DLL attributes. |
| if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) |
| Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| |
| if (Entry->getType()->getElementType() == Ty) |
| return Entry; |
| |
| // Make sure the result is of the correct type. |
| return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); |
| } |
| |
| // This function doesn't have a complete type (for example, the return |
| // type is an incomplete struct). Use a fake type instead, and make |
| // sure not to try to set attributes. |
| bool IsIncompleteFunction = false; |
| |
| llvm::FunctionType *FTy; |
| if (isa<llvm::FunctionType>(Ty)) { |
| FTy = cast<llvm::FunctionType>(Ty); |
| } else { |
| FTy = llvm::FunctionType::get(VoidTy, false); |
| IsIncompleteFunction = true; |
| } |
| |
| llvm::Function *F = llvm::Function::Create(FTy, |
| llvm::Function::ExternalLinkage, |
| MangledName, &getModule()); |
| assert(F->getName() == MangledName && "name was uniqued!"); |
| if (D) |
| SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); |
| if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { |
| llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); |
| F->addAttributes(llvm::AttributeSet::FunctionIndex, |
| llvm::AttributeSet::get(VMContext, |
| llvm::AttributeSet::FunctionIndex, |
| B)); |
| } |
| |
| if (!DontDefer) { |
| // All MSVC dtors other than the base dtor are linkonce_odr and delegate to |
| // each other bottoming out with the base dtor. Therefore we emit non-base |
| // dtors on usage, even if there is no dtor definition in the TU. |
| if (D && isa<CXXDestructorDecl>(D) && |
| getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), |
| GD.getDtorType())) |
| addDeferredDeclToEmit(F, GD); |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| auto DDI = DeferredDecls.find(MangledName); |
| if (DDI != DeferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the |
| // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we |
| // don't need it anymore). |
| addDeferredDeclToEmit(F, DDI->second); |
| DeferredDecls.erase(DDI); |
| |
| // Otherwise, there are cases we have to worry about where we're |
| // using a declaration for which we must emit a definition but where |
| // we might not find a top-level definition: |
| // - member functions defined inline in their classes |
| // - friend functions defined inline in some class |
| // - special member functions with implicit definitions |
| // If we ever change our AST traversal to walk into class methods, |
| // this will be unnecessary. |
| // |
| // We also don't emit a definition for a function if it's going to be an |
| // entry in a vtable, unless it's already marked as used. |
| } else if (getLangOpts().CPlusPlus && D) { |
| // Look for a declaration that's lexically in a record. |
| for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; |
| FD = FD->getPreviousDecl()) { |
| if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { |
| if (FD->doesThisDeclarationHaveABody()) { |
| addDeferredDeclToEmit(F, GD.getWithDecl(FD)); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| // Make sure the result is of the requested type. |
| if (!IsIncompleteFunction) { |
| assert(F->getType()->getElementType() == Ty); |
| return F; |
| } |
| |
| llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); |
| return llvm::ConstantExpr::getBitCast(F, PTy); |
| } |
| |
| /// GetAddrOfFunction - Return the address of the given function. If Ty is |
| /// non-null, then this function will use the specified type if it has to |
| /// create it (this occurs when we see a definition of the function). |
| llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, |
| llvm::Type *Ty, |
| bool ForVTable, |
| bool DontDefer) { |
| // If there was no specific requested type, just convert it now. |
| if (!Ty) |
| Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); |
| |
| StringRef MangledName = getMangledName(GD); |
| return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); |
| } |
| |
| /// CreateRuntimeFunction - Create a new runtime function with the specified |
| /// type and name. |
| llvm::Constant * |
| CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, |
| StringRef Name, |
| llvm::AttributeSet ExtraAttrs) { |
| llvm::Constant *C = |
| GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, |
| /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); |
| if (auto *F = dyn_cast<llvm::Function>(C)) |
| if (F->empty()) |
| F->setCallingConv(getRuntimeCC()); |
| return C; |
| } |
| |
| /// CreateBuiltinFunction - Create a new builtin function with the specified |
| /// type and name. |
| llvm::Constant * |
| CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, |
| StringRef Name, |
| llvm::AttributeSet ExtraAttrs) { |
| llvm::Constant *C = |
| GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, |
| /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); |
| if (auto *F = dyn_cast<llvm::Function>(C)) |
| if (F->empty()) |
| F->setCallingConv(getBuiltinCC()); |
| return C; |
| } |
| |
| /// isTypeConstant - Determine whether an object of this type can be emitted |
| /// as a constant. |
| /// |
| /// If ExcludeCtor is true, the duration when the object's constructor runs |
| /// will not be considered. The caller will need to verify that the object is |
| /// not written to during its construction. |
| bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { |
| if (!Ty.isConstant(Context) && !Ty->isReferenceType()) |
| return false; |
| |
| if (Context.getLangOpts().CPlusPlus) { |
| if (const CXXRecordDecl *Record |
| = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) |
| return ExcludeCtor && !Record->hasMutableFields() && |
| Record->hasTrivialDestructor(); |
| } |
| |
| return true; |
| } |
| |
| /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, |
| /// create and return an llvm GlobalVariable with the specified type. If there |
| /// is something in the module with the specified name, return it potentially |
| /// bitcasted to the right type. |
| /// |
| /// If D is non-null, it specifies a decl that correspond to this. This is used |
| /// to set the attributes on the global when it is first created. |
| llvm::Constant * |
| CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, |
| llvm::PointerType *Ty, |
| const VarDecl *D) { |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| if (Entry) { |
| if (WeakRefReferences.erase(Entry)) { |
| if (D && !D->hasAttr<WeakAttr>()) |
| Entry->setLinkage(llvm::Function::ExternalLinkage); |
| } |
| |
| // Handle dropped DLL attributes. |
| if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) |
| Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| |
| if (Entry->getType() == Ty) |
| return Entry; |
| |
| // Make sure the result is of the correct type. |
| if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) |
| return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); |
| |
| return llvm::ConstantExpr::getBitCast(Entry, Ty); |
| } |
| |
| unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); |
| auto *GV = new llvm::GlobalVariable( |
| getModule(), Ty->getElementType(), false, |
| llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, |
| llvm::GlobalVariable::NotThreadLocal, AddrSpace); |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| auto DDI = DeferredDecls.find(MangledName); |
| if (DDI != DeferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the DeferredDeclsToEmit |
| // list, and remove it from DeferredDecls (since we don't need it anymore). |
| addDeferredDeclToEmit(GV, DDI->second); |
| DeferredDecls.erase(DDI); |
| } |
| |
| // Handle things which are present even on external declarations. |
| if (D) { |
| // FIXME: This code is overly simple and should be merged with other global |
| // handling. |
| GV->setConstant(isTypeConstant(D->getType(), false)); |
| |
| GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); |
| |
| setLinkageAndVisibilityForGV(GV, D); |
| |
| if (D->getTLSKind()) { |
| if (D->getTLSKind() == VarDecl::TLS_Dynamic) |
| CXXThreadLocals.push_back(std::make_pair(D, GV)); |
| setTLSMode(GV, *D); |
| } |
| |
| // If required by the ABI, treat declarations of static data members with |
| // inline initializers as definitions. |
| if (getContext().isMSStaticDataMemberInlineDefinition(D)) { |
| EmitGlobalVarDefinition(D); |
| } |
| |
| // Handle XCore specific ABI requirements. |
| if (getTarget().getTriple().getArch() == llvm::Triple::xcore && |
| D->getLanguageLinkage() == CLanguageLinkage && |
| D->getType().isConstant(Context) && |
| isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) |
| GV->setSection(".cp.rodata"); |
| } |
| |
| if (AddrSpace != Ty->getAddressSpace()) |
| return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); |
| |
| return GV; |
| } |
| |
| |
| llvm::GlobalVariable * |
| CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, |
| llvm::Type *Ty, |
| llvm::GlobalValue::LinkageTypes Linkage) { |
| llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); |
| llvm::GlobalVariable *OldGV = nullptr; |
| |
| if (GV) { |
| // Check if the variable has the right type. |
| if (GV->getType()->getElementType() == Ty) |
| return GV; |
| |
| // Because C++ name mangling, the only way we can end up with an already |
| // existing global with the same name is if it has been declared extern "C". |
| assert(GV->isDeclaration() && "Declaration has wrong type!"); |
| OldGV = GV; |
| } |
| |
| // Create a new variable. |
| GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, |
| Linkage, nullptr, Name); |
| |
| if (OldGV) { |
| // Replace occurrences of the old variable if needed. |
| GV->takeName(OldGV); |
| |
| if (!OldGV->use_empty()) { |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); |
| OldGV->replaceAllUsesWith(NewPtrForOldDecl); |
| } |
| |
| OldGV->eraseFromParent(); |
| } |
| |
| if (supportsCOMDAT() && GV->isWeakForLinker() && |
| !GV->hasAvailableExternallyLinkage()) |
| GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); |
| |
| return GV; |
| } |
| |
| /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the |
| /// given global variable. If Ty is non-null and if the global doesn't exist, |
| /// then it will be created with the specified type instead of whatever the |
| /// normal requested type would be. |
| llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, |
| llvm::Type *Ty) { |
| assert(D->hasGlobalStorage() && "Not a global variable"); |
| QualType ASTTy = D->getType(); |
| if (!Ty) |
| Ty = getTypes().ConvertTypeForMem(ASTTy); |
| |
| llvm::PointerType *PTy = |
| llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); |
| |
| StringRef MangledName = getMangledName(D); |
| return GetOrCreateLLVMGlobal(MangledName, PTy, D); |
| } |
| |
| /// CreateRuntimeVariable - Create a new runtime global variable with the |
| /// specified type and name. |
| llvm::Constant * |
| CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, |
| StringRef Name) { |
| return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); |
| } |
| |
| void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { |
| assert(!D->getInit() && "Cannot emit definite definitions here!"); |
| |
| if (!MustBeEmitted(D)) { |
| // If we have not seen a reference to this variable yet, place it |
| // into the deferred declarations table to be emitted if needed |
| // later. |
| StringRef MangledName = getMangledName(D); |
| if (!GetGlobalValue(MangledName)) { |
| DeferredDecls[MangledName] = D; |
| return; |
| } |
| } |
| |
| // The tentative definition is the only definition. |
| EmitGlobalVarDefinition(D); |
| } |
| |
| CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { |
| return Context.toCharUnitsFromBits( |
| getDataLayout().getTypeStoreSizeInBits(Ty)); |
| } |
| |
| unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, |
| unsigned AddrSpace) { |
| if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { |
| if (D->hasAttr<CUDAConstantAttr>()) |
| AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); |
| else if (D->hasAttr<CUDASharedAttr>()) |
| AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); |
| else |
| AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); |
| } |
| |
| return AddrSpace; |
| } |
| |
| template<typename SomeDecl> |
| void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, |
| llvm::GlobalValue *GV) { |
| if (!getLangOpts().CPlusPlus) |
| return; |
| |
| // Must have 'used' attribute, or else inline assembly can't rely on |
| // the name existing. |
| if (!D->template hasAttr<UsedAttr>()) |
| return; |
| |
| // Must have internal linkage and an ordinary name. |
| if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) |
| return; |
| |
| // Must be in an extern "C" context. Entities declared directly within |
| // a record are not extern "C" even if the record is in such a context. |
| const SomeDecl *First = D->getFirstDecl(); |
| if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) |
| return; |
| |
| // OK, this is an internal linkage entity inside an extern "C" linkage |
| // specification. Make a note of that so we can give it the "expected" |
| // mangled name if nothing else is using that name. |
| std::pair<StaticExternCMap::iterator, bool> R = |
| StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); |
| |
| // If we have multiple internal linkage entities with the same name |
| // in extern "C" regions, none of them gets that name. |
| if (!R.second) |
| R.first->second = nullptr; |
| } |
| |
| static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { |
| if (!CGM.supportsCOMDAT()) |
| return false; |
| |
| if (D.hasAttr<SelectAnyAttr>()) |
| return true; |
| |
| GVALinkage Linkage; |
| if (auto *VD = dyn_cast<VarDecl>(&D)) |
| Linkage = CGM.getContext().GetGVALinkageForVariable(VD); |
| else |
| Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); |
| |
| switch (Linkage) { |
| case GVA_Internal: |
| case GVA_AvailableExternally: |
| case GVA_StrongExternal: |
| return false; |
| case GVA_DiscardableODR: |
| case GVA_StrongODR: |
| return true; |
| } |
| llvm_unreachable("No such linkage"); |
| } |
| |
| void CodeGenModule::maybeSetTrivialComdat(const Decl &D, |
| llvm::GlobalObject &GO) { |
| if (!shouldBeInCOMDAT(*this, D)) |
| return; |
| GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); |
| } |
| |
| void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { |
| llvm::Constant *Init = nullptr; |
| QualType ASTTy = D->getType(); |
| CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| bool NeedsGlobalCtor = false; |
| bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); |
| |
| const VarDecl *InitDecl; |
| const Expr *InitExpr = D->getAnyInitializer(InitDecl); |
| |
| if (!InitExpr) { |
| // This is a tentative definition; tentative definitions are |
| // implicitly initialized with { 0 }. |
| // |
| // Note that tentative definitions are only emitted at the end of |
| // a translation unit, so they should never have incomplete |
| // type. In addition, EmitTentativeDefinition makes sure that we |
| // never attempt to emit a tentative definition if a real one |
| // exists. A use may still exists, however, so we still may need |
| // to do a RAUW. |
| assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); |
| Init = EmitNullConstant(D->getType()); |
| } else { |
| initializedGlobalDecl = GlobalDecl(D); |
| Init = EmitConstantInit(*InitDecl); |
| |
| if (!Init) { |
| QualType T = InitExpr->getType(); |
| if (D->getType()->isReferenceType()) |
| T = D->getType(); |
| |
| if (getLangOpts().CPlusPlus) { |
| Init = EmitNullConstant(T); |
| NeedsGlobalCtor = true; |
| } else { |
| ErrorUnsupported(D, "static initializer"); |
| Init = llvm::UndefValue::get(getTypes().ConvertType(T)); |
| } |
| } else { |
| // We don't need an initializer, so remove the entry for the delayed |
| // initializer position (just in case this entry was delayed) if we |
| // also don't need to register a destructor. |
| if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) |
| DelayedCXXInitPosition.erase(D); |
| } |
| } |
| |
| llvm::Type* InitType = Init->getType(); |
| llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); |
| |
| // Strip off a bitcast if we got one back. |
| if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { |
| assert(CE->getOpcode() == llvm::Instruction::BitCast || |
| CE->getOpcode() == llvm::Instruction::AddrSpaceCast || |
| // All zero index gep. |
| CE->getOpcode() == llvm::Instruction::GetElementPtr); |
| Entry = CE->getOperand(0); |
| } |
| |
| // Entry is now either a Function or GlobalVariable. |
| auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); |
| |
| // We have a definition after a declaration with the wrong type. |
| // We must make a new GlobalVariable* and update everything that used OldGV |
| // (a declaration or tentative definition) with the new GlobalVariable* |
| // (which will be a definition). |
| // |
| // This happens if there is a prototype for a global (e.g. |
| // "extern int x[];") and then a definition of a different type (e.g. |
| // "int x[10];"). This also happens when an initializer has a different type |
| // from the type of the global (this happens with unions). |
| if (!GV || |
| GV->getType()->getElementType() != InitType || |
| GV->getType()->getAddressSpace() != |
| GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { |
| |
| // Move the old entry aside so that we'll create a new one. |
| Entry->setName(StringRef()); |
| |
| // Make a new global with the correct type, this is now guaranteed to work. |
| GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); |
| |
| // Replace all uses of the old global with the new global |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(GV, Entry->getType()); |
| Entry->replaceAllUsesWith(NewPtrForOldDecl); |
| |
| // Erase the old global, since it is no longer used. |
| cast<llvm::GlobalValue>(Entry)->eraseFromParent(); |
| } |
| |
| MaybeHandleStaticInExternC(D, GV); |
| |
| if (D->hasAttr<AnnotateAttr>()) |
| AddGlobalAnnotations(D, GV); |
| |
| GV->setInitializer(Init); |
| |
| // If it is safe to mark the global 'constant', do so now. |
| GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && |
| isTypeConstant(D->getType(), true)); |
| |
| // If it is in a read-only section, mark it 'constant'. |
| if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { |
| const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; |
| if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) |
| GV->setConstant(true); |
| } |
| |
| GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); |
| |
| // Set the llvm linkage type as appropriate. |
| llvm::GlobalValue::LinkageTypes Linkage = |
| getLLVMLinkageVarDefinition(D, GV->isConstant()); |
| |
| // On Darwin, the backing variable for a C++11 thread_local variable always |
| // has internal linkage; all accesses should just be calls to the |
| // Itanium-specified entry point, which has the normal linkage of the |
| // variable. |
| if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && |
| Context.getTargetInfo().getTriple().isMacOSX()) |
| Linkage = llvm::GlobalValue::InternalLinkage; |
| |
| GV->setLinkage(Linkage); |
| if (D->hasAttr<DLLImportAttr>()) |
| GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
| else if (D->hasAttr<DLLExportAttr>()) |
| GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); |
| else |
| GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); |
| |
| if (Linkage == llvm::GlobalVariable::CommonLinkage) |
| // common vars aren't constant even if declared const. |
| GV->setConstant(false); |
| |
| setNonAliasAttributes(D, GV); |
| |
| if (D->getTLSKind() && !GV->isThreadLocal()) { |
| if (D->getTLSKind() == VarDecl::TLS_Dynamic) |
| CXXThreadLocals.push_back(std::make_pair(D, GV)); |
| setTLSMode(GV, *D); |
| } |
| |
| maybeSetTrivialComdat(*D, *GV); |
| |
| // Emit the initializer function if necessary. |
| if (NeedsGlobalCtor || NeedsGlobalDtor) |
| EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); |
| |
| SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); |
| |
| // Emit global variable debug information. |
| if (CGDebugInfo *DI = getModuleDebugInfo()) |
| if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) |
| DI->EmitGlobalVariable(GV, D); |
| } |
| |
| static bool isVarDeclStrongDefinition(const ASTContext &Context, |
| CodeGenModule &CGM, const VarDecl *D, |
| bool NoCommon) { |
| // Don't give variables common linkage if -fno-common was specified unless it |
| // was overridden by a NoCommon attribute. |
| if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) |
| return true; |
| |
| // C11 6.9.2/2: |
| // A declaration of an identifier for an object that has file scope without |
| // an initializer, and without a storage-class specifier or with the |
| // storage-class specifier static, constitutes a tentative definition. |
| if (D->getInit() || D->hasExternalStorage()) |
| return true; |
| |
| // A variable cannot be both common and exist in a section. |
| if (D->hasAttr<SectionAttr>()) |
| return true; |
| |
| // Thread local vars aren't considered common linkage. |
| if (D->getTLSKind()) |
| return true; |
| |
| // Tentative definitions marked with WeakImportAttr are true definitions. |
| if (D->hasAttr<WeakImportAttr>()) |
| return true; |
| |
| // A variable cannot be both common and exist in a comdat. |
| if (shouldBeInCOMDAT(CGM, *D)) |
| return true; |
| |
| // Declarations with a required alignment do not have common linakge in MSVC |
| // mode. |
| if (Context.getLangOpts().MSVCCompat) { |
| if (D->hasAttr<AlignedAttr>()) |
| return true; |
| QualType VarType = D->getType(); |
| if (Context.isAlignmentRequired(VarType)) |
| return true; |
| |
| if (const auto *RT = VarType->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| for (const FieldDecl *FD : RD->fields()) { |
| if (FD->isBitField()) |
| continue; |
| if (FD->hasAttr<AlignedAttr>()) |
| return true; |
| if (Context.isAlignmentRequired(FD->getType())) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( |
| const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { |
| if (Linkage == GVA_Internal) |
| return llvm::Function::InternalLinkage; |
| |
| if (D->hasAttr<WeakAttr>()) { |
| if (IsConstantVariable) |
| return llvm::GlobalVariable::WeakODRLinkage; |
| else |
| return llvm::GlobalVariable::WeakAnyLinkage; |
| } |
| |
| // We are guaranteed to have a strong definition somewhere else, |
| // so we can use available_externally linkage. |
| if (Linkage == GVA_AvailableExternally) |
| return llvm::Function::AvailableExternallyLinkage; |
| |
| // Note that Apple's kernel linker doesn't support symbol |
| // coalescing, so we need to avoid linkonce and weak linkages there. |
| // Normally, this means we just map to internal, but for explicit |
| // instantiations we'll map to external. |
| |
| // In C++, the compiler has to emit a definition in every translation unit |
| // that references the function. We should use linkonce_odr because |
| // a) if all references in this translation unit are optimized away, we |
| // don't need to codegen it. b) if the function persists, it needs to be |
| // merged with other definitions. c) C++ has the ODR, so we know the |
| // definition is dependable. |
| if (Linkage == GVA_DiscardableODR) |
| return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage |
| : llvm::Function::InternalLinkage; |
| |
| // An explicit instantiation of a template has weak linkage, since |
| // explicit instantiations can occur in multiple translation units |
| // and must all be equivalent. However, we are not allowed to |
| // throw away these explicit instantiations. |
| if (Linkage == GVA_StrongODR) |
| return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage |
| : llvm::Function::ExternalLinkage; |
| |
| // C++ doesn't have tentative definitions and thus cannot have common |
| // linkage. |
| if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && |
| !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), |
| CodeGenOpts.NoCommon)) |
| return llvm::GlobalVariable::CommonLinkage; |
| |
| // selectany symbols are externally visible, so use weak instead of |
| // linkonce. MSVC optimizes away references to const selectany globals, so |
| // all definitions should be the same and ODR linkage should be used. |
| // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx |
| if (D->hasAttr<SelectAnyAttr>()) |
| return llvm::GlobalVariable::WeakODRLinkage; |
| |
| // Otherwise, we have strong external linkage. |
| assert(Linkage == GVA_StrongExternal); |
| return llvm::GlobalVariable::ExternalLinkage; |
| } |
| |
| llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( |
| const VarDecl *VD, bool IsConstant) { |
| GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); |
| return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); |
| } |
| |
| /// Replace the uses of a function that was declared with a non-proto type. |
| /// We want to silently drop extra arguments from call sites |
| static void replaceUsesOfNonProtoConstant(llvm::Constant *old, |
| llvm::Function *newFn) { |
| // Fast path. |
| if (old->use_empty()) return; |
| |
| llvm::Type *newRetTy = newFn->getReturnType(); |
| SmallVector<llvm::Value*, 4> newArgs; |
| |
| for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); |
| ui != ue; ) { |
| llvm::Value::use_iterator use = ui++; // Increment before the use is erased. |
| llvm::User *user = use->getUser(); |
| |
| // Recognize and replace uses of bitcasts. Most calls to |
| // unprototyped functions will use bitcasts. |
| if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { |
| if (bitcast->getOpcode() == llvm::Instruction::BitCast) |
| replaceUsesOfNonProtoConstant(bitcast, newFn); |
| continue; |
| } |
| |
| // Recognize calls to the function. |
| llvm::CallSite callSite(user); |
| if (!callSite) continue; |
| if (!callSite.isCallee(&*use)) continue; |
| |
| // If the return types don't match exactly, then we can't |
| // transform this call unless it's dead. |
| if (callSite->getType() != newRetTy && !callSite->use_empty()) |
| continue; |
| |
| // Get the call site's attribute list. |
| SmallVector<llvm::AttributeSet, 8> newAttrs; |
| llvm::AttributeSet oldAttrs = callSite.getAttributes(); |
| |
| // Collect any return attributes from the call. |
| if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) |
| newAttrs.push_back( |
| llvm::AttributeSet::get(newFn->getContext(), |
| oldAttrs.getRetAttributes())); |
| |
| // If the function was passed too few arguments, don't transform. |
| unsigned newNumArgs = newFn->arg_size(); |
| if (callSite.arg_size() < newNumArgs) continue; |
| |
| // If extra arguments were passed, we silently drop them. |
| // If any of the types mismatch, we don't transform. |
| unsigned argNo = 0; |
| bool dontTransform = false; |
| for (llvm::Function::arg_iterator ai = newFn->arg_begin(), |
| ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { |
| if (callSite.getArgument(argNo)->getType() != ai->getType()) { |
| dontTransform = true; |
| break; |
| } |
| |
| // Add any parameter attributes. |
| if (oldAttrs.hasAttributes(argNo + 1)) |
| newAttrs. |
| push_back(llvm:: |
| AttributeSet::get(newFn->getContext(), |
| oldAttrs.getParamAttributes(argNo + 1))); |
| } |
| if (dontTransform) |
| continue; |
| |
| if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) |
| newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), |
| oldAttrs.getFnAttributes())); |
| |
| // Okay, we can transform this. Create the new call instruction and copy |
| // over the required information. |
| newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); |
| |
| llvm::CallSite newCall; |
| if (callSite.isCall()) { |
| newCall = llvm::CallInst::Create(newFn, newArgs, "", |
| callSite.getInstruction()); |
| } else { |
| auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); |
| newCall = llvm::InvokeInst::Create(newFn, |
| oldInvoke->getNormalDest(), |
| oldInvoke->getUnwindDest(), |
| newArgs, "", |
| callSite.getInstruction()); |
| } |
| newArgs.clear(); // for the next iteration |
| |
| if (!newCall->getType()->isVoidTy()) |
| newCall->takeName(callSite.getInstruction()); |
| newCall.setAttributes( |
| llvm::AttributeSet::get(newFn->getContext(), newAttrs)); |
| newCall.setCallingConv(callSite.getCallingConv()); |
| |
| // Finally, remove the old call, replacing any uses with the new one. |
| if (!callSite->use_empty()) |
| callSite->replaceAllUsesWith(newCall.getInstruction()); |
| |
| // Copy debug location attached to CI. |
| if (callSite->getDebugLoc()) |
| newCall->setDebugLoc(callSite->getDebugLoc()); |
| callSite->eraseFromParent(); |
| } |
| } |
| |
| /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we |
| /// implement a function with no prototype, e.g. "int foo() {}". If there are |
| /// existing call uses of the old function in the module, this adjusts them to |
| /// call the new function directly. |
| /// |
| /// This is not just a cleanup: the always_inline pass requires direct calls to |
| /// functions to be able to inline them. If there is a bitcast in the way, it |
| /// won't inline them. Instcombine normally deletes these calls, but it isn't |
| /// run at -O0. |
| static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, |
| llvm::Function *NewFn) { |
| // If we're redefining a global as a function, don't transform it. |
| if (!isa<llvm::Function>(Old)) return; |
| |
| replaceUsesOfNonProtoConstant(Old, NewFn); |
| } |
| |
| void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { |
| TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); |
| // If we have a definition, this might be a deferred decl. If the |
| // instantiation is explicit, make sure we emit it at the end. |
| if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) |
| GetAddrOfGlobalVar(VD); |
| |
| EmitTopLevelDecl(VD); |
| } |
| |
| void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, |
| llvm::GlobalValue *GV) { |
| const auto *D = cast<FunctionDecl>(GD.getDecl()); |
| |
| // Compute the function info and LLVM type. |
| const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); |
| llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); |
| |
| // Get or create the prototype for the function. |
| if (!GV) { |
| llvm::Constant *C = |
| GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); |
| |
| // Strip off a bitcast if we got one back. |
| if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { |
| assert(CE->getOpcode() == llvm::Instruction::BitCast); |
| GV = cast<llvm::GlobalValue>(CE->getOperand(0)); |
| } else { |
| GV = cast<llvm::GlobalValue>(C); |
| } |
| } |
| |
| if (!GV->isDeclaration()) { |
| getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); |
| GlobalDecl OldGD = Manglings.lookup(GV->getName()); |
| if (auto *Prev = OldGD.getDecl()) |
| getDiags().Report(Prev->getLocation(), diag::note_previous_definition); |
| return; |
| } |
| |
| if (GV->getType()->getElementType() != Ty) { |
| // If the types mismatch then we have to rewrite the definition. |
| assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); |
| |
| // F is the Function* for the one with the wrong type, we must make a new |
| // Function* and update everything that used F (a declaration) with the new |
| // Function* (which will be a definition). |
| // |
| // This happens if there is a prototype for a function |
| // (e.g. "int f()") and then a definition of a different type |
| // (e.g. "int f(int x)"). Move the old function aside so that it |
| // doesn't interfere with GetAddrOfFunction. |
| GV->setName(StringRef()); |
| auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); |
| |
| // This might be an implementation of a function without a |
| // prototype, in which case, try to do special replacement of |
| // calls which match the new prototype. The really key thing here |
| // is that we also potentially drop arguments from the call site |
| // so as to make a direct call, which makes the inliner happier |
| // and suppresses a number of optimizer warnings (!) about |
| // dropping arguments. |
| if (!GV->use_empty()) { |
| ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); |
| GV->removeDeadConstantUsers(); |
| } |
| |
| // Replace uses of F with the Function we will endow with a body. |
| if (!GV->use_empty()) { |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); |
| GV->replaceAllUsesWith(NewPtrForOldDecl); |
| } |
| |
| // Ok, delete the old function now, which is dead. |
| GV->eraseFromParent(); |
| |
| GV = NewFn; |
| } |
| |
| // We need to set linkage and visibility on the function before |
| // generating code for it because various parts of IR generation |
| // want to propagate this information down (e.g. to local static |
| // declarations). |
| auto *Fn = cast<llvm::Function>(GV); |
| setFunctionLinkage(GD, Fn); |
| setFunctionDLLStorageClass(GD, Fn); |
| |
| // FIXME: this is redundant with part of setFunctionDefinitionAttributes |
| setGlobalVisibility(Fn, D); |
| |
| MaybeHandleStaticInExternC(D, Fn); |
| |
| maybeSetTrivialComdat(*D, *Fn); |
| |
| CodeGenFunction(*this).GenerateCode(D, Fn, FI); |
| |
| setFunctionDefinitionAttributes(D, Fn); |
| SetLLVMFunctionAttributesForDefinition(D, Fn); |
| |
| if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) |
| AddGlobalCtor(Fn, CA->getPriority()); |
| if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) |
| AddGlobalDtor(Fn, DA->getPriority()); |
| if (D->hasAttr<AnnotateAttr>()) |
| AddGlobalAnnotations(D, Fn); |
| } |
| |
| void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { |
| const auto *D = cast<ValueDecl>(GD.getDecl()); |
| const AliasAttr *AA = D->getAttr<AliasAttr>(); |
| assert(AA && "Not an alias?"); |
| |
| StringRef MangledName = getMangledName(GD); |
| |
| // If there is a definition in the module, then it wins over the alias. |
| // This is dubious, but allow it to be safe. Just ignore the alias. |
| llvm::GlobalValue *Entry = GetGlobalValue(MangledName); |
| if (Entry && !Entry->isDeclaration()) |
| return; |
| |
| Aliases.push_back(GD); |
| |
| llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); |
| |
| // Create a reference to the named value. This ensures that it is emitted |
| // if a deferred decl. |
| llvm::Constant *Aliasee; |
| if (isa<llvm::FunctionType>(DeclTy)) |
| Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, |
| /*ForVTable=*/false); |
| else |
| Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), |
| llvm::PointerType::getUnqual(DeclTy), |
| /*D=*/nullptr); |
| |
| // Create the new alias itself, but don't set a name yet. |
| auto *GA = llvm::GlobalAlias::create( |
| cast<llvm::PointerType>(Aliasee->getType()), |
| llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); |
| |
| if (Entry) { |
| if (GA->getAliasee() == Entry) { |
| Diags.Report(AA->getLocation(), diag::err_cyclic_alias); |
| return; |
| } |
| |
| assert(Entry->isDeclaration()); |
| |
| // If there is a declaration in the module, then we had an extern followed |
| // by the alias, as in: |
| // extern int test6(); |
| // ... |
| // int test6() __attribute__((alias("test7"))); |
| // |
| // Remove it and replace uses of it with the alias. |
| GA->takeName(Entry); |
| |
| Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, |
| Entry->getType())); |
| Entry->eraseFromParent(); |
| } else { |
| GA->setName(MangledName); |
| } |
| |
| // Set attributes which are particular to an alias; this is a |
| // specialization of the attributes which may be set on a global |
| // variable/function. |
| if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || |
| D->isWeakImported()) { |
| GA->setLinkage(llvm::Function::WeakAnyLinkage); |
| } |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) |
| if (VD->getTLSKind()) |
| setTLSMode(GA, *VD); |
| |
| setAliasAttributes(D, GA); |
| } |
| |
| llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, |
| ArrayRef<llvm::Type*> Tys) { |
| return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, |
| Tys); |
| } |
| |
| static llvm::StringMapEntry<llvm::GlobalVariable *> & |
| GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, |
| const StringLiteral *Literal, bool TargetIsLSB, |
| bool &IsUTF16, unsigned &StringLength) { |
| StringRef String = Literal->getString(); |
| unsigned NumBytes = String.size(); |
| |
| // Check for simple case. |
| if (!Literal->containsNonAsciiOrNull()) { |
| StringLength = NumBytes; |
| return *Map.insert(std::make_pair(String, nullptr)).first; |
| } |
| |
| // Otherwise, convert the UTF8 literals into a string of shorts. |
| IsUTF16 = true; |
| |
| SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. |
| const UTF8 *FromPtr = (const UTF8 *)String.data(); |
| UTF16 *ToPtr = &ToBuf[0]; |
| |
| (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, |
| &ToPtr, ToPtr + NumBytes, |
| strictConversion); |
| |
| // ConvertUTF8toUTF16 returns the length in ToPtr. |
| StringLength = ToPtr - &ToBuf[0]; |
| |
| // Add an explicit null. |
| *ToPtr = 0; |
| return *Map.insert(std::make_pair( |
| StringRef(reinterpret_cast<const char *>(ToBuf.data()), |
| (StringLength + 1) * 2), |
| nullptr)).first; |
| } |
| |
| static llvm::StringMapEntry<llvm::GlobalVariable *> & |
| GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, |
| const StringLiteral *Literal, unsigned &StringLength) { |
| StringRef String = Literal->getString(); |
| StringLength = String.size(); |
| return *Map.insert(std::make_pair(String, nullptr)).first; |
| } |
| |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { |
| unsigned StringLength = 0; |
| bool isUTF16 = false; |
| llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = |
| GetConstantCFStringEntry(CFConstantStringMap, Literal, |
| getDataLayout().isLittleEndian(), isUTF16, |
| StringLength); |
| |
| if (auto *C = Entry.second) |
| return C; |
| |
| llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| llvm::Value *V; |
| |
| // If we don't already have it, get __CFConstantStringClassReference. |
| if (!CFConstantStringClassRef) { |
| llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
| Ty = llvm::ArrayType::get(Ty, 0); |
| llvm::Constant *GV = CreateRuntimeVariable(Ty, |
| "__CFConstantStringClassReference"); |
| // Decay array -> ptr |
| V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); |
| CFConstantStringClassRef = V; |
| } |
| else |
| V = CFConstantStringClassRef; |
| |
| QualType CFTy = getContext().getCFConstantStringType(); |
| |
| auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); |
| |
| llvm::Constant *Fields[4]; |
| |
| // Class pointer. |
| Fields[0] = cast<llvm::ConstantExpr>(V); |
| |
| // Flags. |
| llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); |
| Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : |
| llvm::ConstantInt::get(Ty, 0x07C8); |
| |
| // String pointer. |
| llvm::Constant *C = nullptr; |
| if (isUTF16) { |
| ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( |
| reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), |
| Entry.first().size() / 2); |
| C = llvm::ConstantDataArray::get(VMContext, Arr); |
| } else { |
| C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); |
| } |
| |
| // Note: -fwritable-strings doesn't make the backing store strings of |
| // CFStrings writable. (See <rdar://problem/10657500>) |
| auto *GV = |
| new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, |
| llvm::GlobalValue::PrivateLinkage, C, ".str"); |
| GV->setUnnamedAddr(true); |
| // Don't enforce the target's minimum global alignment, since the only use |
| // of the string is via this class initializer. |
| // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without |
| // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing |
| // that changes the section it ends in, which surprises ld64. |
| if (isUTF16) { |
| CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); |
| GV->setAlignment(Align.getQuantity()); |
| GV->setSection("__TEXT,__ustring"); |
| } else { |
| CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); |
| GV->setAlignment(Align.getQuantity()); |
| GV->setSection("__TEXT,__cstring,cstring_literals"); |
| } |
| |
| // String. |
| Fields[2] = |
| llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); |
| |
| if (isUTF16) |
| // Cast the UTF16 string to the correct type. |
| Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); |
| |
| |