| //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expression parsing implementation for C++. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/AST/ASTContext.h" |
| #include "RAIIObjectsForParser.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/Basic/PrettyStackTrace.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Parse/ParseDiagnostic.h" |
| #include "clang/Parse/Parser.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/Scope.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| |
| using namespace clang; |
| |
| static int SelectDigraphErrorMessage(tok::TokenKind Kind) { |
| switch (Kind) { |
| // template name |
| case tok::unknown: return 0; |
| // casts |
| case tok::kw_const_cast: return 1; |
| case tok::kw_dynamic_cast: return 2; |
| case tok::kw_reinterpret_cast: return 3; |
| case tok::kw_static_cast: return 4; |
| default: |
| llvm_unreachable("Unknown type for digraph error message."); |
| } |
| } |
| |
| // Are the two tokens adjacent in the same source file? |
| bool Parser::areTokensAdjacent(const Token &First, const Token &Second) { |
| SourceManager &SM = PP.getSourceManager(); |
| SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation()); |
| SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength()); |
| return FirstEnd == SM.getSpellingLoc(Second.getLocation()); |
| } |
| |
| // Suggest fixit for "<::" after a cast. |
| static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken, |
| Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) { |
| // Pull '<:' and ':' off token stream. |
| if (!AtDigraph) |
| PP.Lex(DigraphToken); |
| PP.Lex(ColonToken); |
| |
| SourceRange Range; |
| Range.setBegin(DigraphToken.getLocation()); |
| Range.setEnd(ColonToken.getLocation()); |
| P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph) |
| << SelectDigraphErrorMessage(Kind) |
| << FixItHint::CreateReplacement(Range, "< ::"); |
| |
| // Update token information to reflect their change in token type. |
| ColonToken.setKind(tok::coloncolon); |
| ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1)); |
| ColonToken.setLength(2); |
| DigraphToken.setKind(tok::less); |
| DigraphToken.setLength(1); |
| |
| // Push new tokens back to token stream. |
| PP.EnterToken(ColonToken); |
| if (!AtDigraph) |
| PP.EnterToken(DigraphToken); |
| } |
| |
| // Check for '<::' which should be '< ::' instead of '[:' when following |
| // a template name. |
| void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType, |
| bool EnteringContext, |
| IdentifierInfo &II, CXXScopeSpec &SS) { |
| if (!Next.is(tok::l_square) || Next.getLength() != 2) |
| return; |
| |
| Token SecondToken = GetLookAheadToken(2); |
| if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken)) |
| return; |
| |
| TemplateTy Template; |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(&II, Tok.getLocation()); |
| bool MemberOfUnknownSpecialization; |
| if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, |
| TemplateName, ObjectType, EnteringContext, |
| Template, MemberOfUnknownSpecialization)) |
| return; |
| |
| FixDigraph(*this, PP, Next, SecondToken, tok::unknown, |
| /*AtDigraph*/false); |
| } |
| |
| /// \brief Emits an error for a left parentheses after a double colon. |
| /// |
| /// When a '(' is found after a '::', emit an error. Attempt to fix the token |
| /// stream by removing the '(', and the matching ')' if found. |
| void Parser::CheckForLParenAfterColonColon() { |
| if (!Tok.is(tok::l_paren)) |
| return; |
| |
| SourceLocation l_parenLoc = ConsumeParen(), r_parenLoc; |
| Token Tok1 = getCurToken(); |
| if (!Tok1.is(tok::identifier) && !Tok1.is(tok::star)) |
| return; |
| |
| if (Tok1.is(tok::identifier)) { |
| Token Tok2 = GetLookAheadToken(1); |
| if (Tok2.is(tok::r_paren)) { |
| ConsumeToken(); |
| PP.EnterToken(Tok1); |
| r_parenLoc = ConsumeParen(); |
| } |
| } else if (Tok1.is(tok::star)) { |
| Token Tok2 = GetLookAheadToken(1); |
| if (Tok2.is(tok::identifier)) { |
| Token Tok3 = GetLookAheadToken(2); |
| if (Tok3.is(tok::r_paren)) { |
| ConsumeToken(); |
| ConsumeToken(); |
| PP.EnterToken(Tok2); |
| PP.EnterToken(Tok1); |
| r_parenLoc = ConsumeParen(); |
| } |
| } |
| } |
| |
| Diag(l_parenLoc, diag::err_paren_after_colon_colon) |
| << FixItHint::CreateRemoval(l_parenLoc) |
| << FixItHint::CreateRemoval(r_parenLoc); |
| } |
| |
| /// \brief Parse global scope or nested-name-specifier if present. |
| /// |
| /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which |
| /// may be preceded by '::'). Note that this routine will not parse ::new or |
| /// ::delete; it will just leave them in the token stream. |
| /// |
| /// '::'[opt] nested-name-specifier |
| /// '::' |
| /// |
| /// nested-name-specifier: |
| /// type-name '::' |
| /// namespace-name '::' |
| /// nested-name-specifier identifier '::' |
| /// nested-name-specifier 'template'[opt] simple-template-id '::' |
| /// |
| /// |
| /// \param SS the scope specifier that will be set to the parsed |
| /// nested-name-specifier (or empty) |
| /// |
| /// \param ObjectType if this nested-name-specifier is being parsed following |
| /// the "." or "->" of a member access expression, this parameter provides the |
| /// type of the object whose members are being accessed. |
| /// |
| /// \param EnteringContext whether we will be entering into the context of |
| /// the nested-name-specifier after parsing it. |
| /// |
| /// \param MayBePseudoDestructor When non-NULL, points to a flag that |
| /// indicates whether this nested-name-specifier may be part of a |
| /// pseudo-destructor name. In this case, the flag will be set false |
| /// if we don't actually end up parsing a destructor name. Moreorover, |
| /// if we do end up determining that we are parsing a destructor name, |
| /// the last component of the nested-name-specifier is not parsed as |
| /// part of the scope specifier. |
| /// |
| /// \param IsTypename If \c true, this nested-name-specifier is known to be |
| /// part of a type name. This is used to improve error recovery. |
| /// |
| /// \param LastII When non-NULL, points to an IdentifierInfo* that will be |
| /// filled in with the leading identifier in the last component of the |
| /// nested-name-specifier, if any. |
| /// |
| /// \returns true if there was an error parsing a scope specifier |
| bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS, |
| ParsedType ObjectType, |
| bool EnteringContext, |
| bool *MayBePseudoDestructor, |
| bool IsTypename, |
| IdentifierInfo **LastII) { |
| assert(getLangOpts().CPlusPlus && |
| "Call sites of this function should be guarded by checking for C++"); |
| |
| if (Tok.is(tok::annot_cxxscope)) { |
| assert(!LastII && "want last identifier but have already annotated scope"); |
| Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), |
| Tok.getAnnotationRange(), |
| SS); |
| ConsumeToken(); |
| return false; |
| } |
| |
| if (Tok.is(tok::annot_template_id)) { |
| // If the current token is an annotated template id, it may already have |
| // a scope specifier. Restore it. |
| TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); |
| SS = TemplateId->SS; |
| } |
| |
| if (LastII) |
| *LastII = nullptr; |
| |
| bool HasScopeSpecifier = false; |
| |
| if (Tok.is(tok::coloncolon)) { |
| // ::new and ::delete aren't nested-name-specifiers. |
| tok::TokenKind NextKind = NextToken().getKind(); |
| if (NextKind == tok::kw_new || NextKind == tok::kw_delete) |
| return false; |
| |
| // '::' - Global scope qualifier. |
| if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS)) |
| return true; |
| |
| CheckForLParenAfterColonColon(); |
| |
| HasScopeSpecifier = true; |
| } |
| |
| bool CheckForDestructor = false; |
| if (MayBePseudoDestructor && *MayBePseudoDestructor) { |
| CheckForDestructor = true; |
| *MayBePseudoDestructor = false; |
| } |
| |
| if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) { |
| DeclSpec DS(AttrFactory); |
| SourceLocation DeclLoc = Tok.getLocation(); |
| SourceLocation EndLoc = ParseDecltypeSpecifier(DS); |
| |
| SourceLocation CCLoc; |
| if (!TryConsumeToken(tok::coloncolon, CCLoc)) { |
| AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc); |
| return false; |
| } |
| |
| if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc)) |
| SS.SetInvalid(SourceRange(DeclLoc, CCLoc)); |
| |
| HasScopeSpecifier = true; |
| } |
| |
| while (true) { |
| if (HasScopeSpecifier) { |
| // C++ [basic.lookup.classref]p5: |
| // If the qualified-id has the form |
| // |
| // ::class-name-or-namespace-name::... |
| // |
| // the class-name-or-namespace-name is looked up in global scope as a |
| // class-name or namespace-name. |
| // |
| // To implement this, we clear out the object type as soon as we've |
| // seen a leading '::' or part of a nested-name-specifier. |
| ObjectType = ParsedType(); |
| |
| if (Tok.is(tok::code_completion)) { |
| // Code completion for a nested-name-specifier, where the code |
| // code completion token follows the '::'. |
| Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext); |
| // Include code completion token into the range of the scope otherwise |
| // when we try to annotate the scope tokens the dangling code completion |
| // token will cause assertion in |
| // Preprocessor::AnnotatePreviousCachedTokens. |
| SS.setEndLoc(Tok.getLocation()); |
| cutOffParsing(); |
| return true; |
| } |
| } |
| |
| // nested-name-specifier: |
| // nested-name-specifier 'template'[opt] simple-template-id '::' |
| |
| // Parse the optional 'template' keyword, then make sure we have |
| // 'identifier <' after it. |
| if (Tok.is(tok::kw_template)) { |
| // If we don't have a scope specifier or an object type, this isn't a |
| // nested-name-specifier, since they aren't allowed to start with |
| // 'template'. |
| if (!HasScopeSpecifier && !ObjectType) |
| break; |
| |
| TentativeParsingAction TPA(*this); |
| SourceLocation TemplateKWLoc = ConsumeToken(); |
| |
| UnqualifiedId TemplateName; |
| if (Tok.is(tok::identifier)) { |
| // Consume the identifier. |
| TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); |
| ConsumeToken(); |
| } else if (Tok.is(tok::kw_operator)) { |
| // We don't need to actually parse the unqualified-id in this case, |
| // because a simple-template-id cannot start with 'operator', but |
| // go ahead and parse it anyway for consistency with the case where |
| // we already annotated the template-id. |
| if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, |
| TemplateName)) { |
| TPA.Commit(); |
| break; |
| } |
| |
| if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId && |
| TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) { |
| Diag(TemplateName.getSourceRange().getBegin(), |
| diag::err_id_after_template_in_nested_name_spec) |
| << TemplateName.getSourceRange(); |
| TPA.Commit(); |
| break; |
| } |
| } else { |
| TPA.Revert(); |
| break; |
| } |
| |
| // If the next token is not '<', we have a qualified-id that refers |
| // to a template name, such as T::template apply, but is not a |
| // template-id. |
| if (Tok.isNot(tok::less)) { |
| TPA.Revert(); |
| break; |
| } |
| |
| // Commit to parsing the template-id. |
| TPA.Commit(); |
| TemplateTy Template; |
| if (TemplateNameKind TNK |
| = Actions.ActOnDependentTemplateName(getCurScope(), |
| SS, TemplateKWLoc, TemplateName, |
| ObjectType, EnteringContext, |
| Template)) { |
| if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc, |
| TemplateName, false)) |
| return true; |
| } else |
| return true; |
| |
| continue; |
| } |
| |
| if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) { |
| // We have |
| // |
| // template-id '::' |
| // |
| // So we need to check whether the template-id is a simple-template-id of |
| // the right kind (it should name a type or be dependent), and then |
| // convert it into a type within the nested-name-specifier. |
| TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); |
| if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { |
| *MayBePseudoDestructor = true; |
| return false; |
| } |
| |
| if (LastII) |
| *LastII = TemplateId->Name; |
| |
| // Consume the template-id token. |
| ConsumeToken(); |
| |
| assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!"); |
| SourceLocation CCLoc = ConsumeToken(); |
| |
| HasScopeSpecifier = true; |
| |
| ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| |
| if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), |
| SS, |
| TemplateId->TemplateKWLoc, |
| TemplateId->Template, |
| TemplateId->TemplateNameLoc, |
| TemplateId->LAngleLoc, |
| TemplateArgsPtr, |
| TemplateId->RAngleLoc, |
| CCLoc, |
| EnteringContext)) { |
| SourceLocation StartLoc |
| = SS.getBeginLoc().isValid()? SS.getBeginLoc() |
| : TemplateId->TemplateNameLoc; |
| SS.SetInvalid(SourceRange(StartLoc, CCLoc)); |
| } |
| |
| continue; |
| } |
| |
| // The rest of the nested-name-specifier possibilities start with |
| // tok::identifier. |
| if (Tok.isNot(tok::identifier)) |
| break; |
| |
| IdentifierInfo &II = *Tok.getIdentifierInfo(); |
| |
| // nested-name-specifier: |
| // type-name '::' |
| // namespace-name '::' |
| // nested-name-specifier identifier '::' |
| Token Next = NextToken(); |
| |
| // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover |
| // and emit a fixit hint for it. |
| if (Next.is(tok::colon) && !ColonIsSacred) { |
| if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, |
| Tok.getLocation(), |
| Next.getLocation(), ObjectType, |
| EnteringContext) && |
| // If the token after the colon isn't an identifier, it's still an |
| // error, but they probably meant something else strange so don't |
| // recover like this. |
| PP.LookAhead(1).is(tok::identifier)) { |
| Diag(Next, diag::err_unexpected_colon_in_nested_name_spec) |
| << FixItHint::CreateReplacement(Next.getLocation(), "::"); |
| // Recover as if the user wrote '::'. |
| Next.setKind(tok::coloncolon); |
| } |
| } |
| |
| if (Next.is(tok::coloncolon)) { |
| if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) && |
| !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(), |
| II, ObjectType)) { |
| *MayBePseudoDestructor = true; |
| return false; |
| } |
| |
| if (ColonIsSacred) { |
| const Token &Next2 = GetLookAheadToken(2); |
| if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) || |
| Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) { |
| Diag(Next2, diag::err_unexpected_token_in_nested_name_spec) |
| << Next2.getName() |
| << FixItHint::CreateReplacement(Next.getLocation(), ":"); |
| Token ColonColon; |
| PP.Lex(ColonColon); |
| ColonColon.setKind(tok::colon); |
| PP.EnterToken(ColonColon); |
| break; |
| } |
| } |
| |
| if (LastII) |
| *LastII = &II; |
| |
| // We have an identifier followed by a '::'. Lookup this name |
| // as the name in a nested-name-specifier. |
| Token Identifier = Tok; |
| SourceLocation IdLoc = ConsumeToken(); |
| assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) && |
| "NextToken() not working properly!"); |
| Token ColonColon = Tok; |
| SourceLocation CCLoc = ConsumeToken(); |
| |
| CheckForLParenAfterColonColon(); |
| |
| bool IsCorrectedToColon = false; |
| bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr; |
| if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc, |
| ObjectType, EnteringContext, SS, |
| false, CorrectionFlagPtr)) { |
| // Identifier is not recognized as a nested name, but we can have |
| // mistyped '::' instead of ':'. |
| if (CorrectionFlagPtr && IsCorrectedToColon) { |
| ColonColon.setKind(tok::colon); |
| PP.EnterToken(Tok); |
| PP.EnterToken(ColonColon); |
| Tok = Identifier; |
| break; |
| } |
| SS.SetInvalid(SourceRange(IdLoc, CCLoc)); |
| } |
| HasScopeSpecifier = true; |
| continue; |
| } |
| |
| CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS); |
| |
| // nested-name-specifier: |
| // type-name '<' |
| if (Next.is(tok::less)) { |
| TemplateTy Template; |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(&II, Tok.getLocation()); |
| bool MemberOfUnknownSpecialization; |
| if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, |
| /*hasTemplateKeyword=*/false, |
| TemplateName, |
| ObjectType, |
| EnteringContext, |
| Template, |
| MemberOfUnknownSpecialization)) { |
| // We have found a template name, so annotate this token |
| // with a template-id annotation. We do not permit the |
| // template-id to be translated into a type annotation, |
| // because some clients (e.g., the parsing of class template |
| // specializations) still want to see the original template-id |
| // token. |
| ConsumeToken(); |
| if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), |
| TemplateName, false)) |
| return true; |
| continue; |
| } |
| |
| if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && |
| (IsTypename || IsTemplateArgumentList(1))) { |
| // We have something like t::getAs<T>, where getAs is a |
| // member of an unknown specialization. However, this will only |
| // parse correctly as a template, so suggest the keyword 'template' |
| // before 'getAs' and treat this as a dependent template name. |
| unsigned DiagID = diag::err_missing_dependent_template_keyword; |
| if (getLangOpts().MicrosoftExt) |
| DiagID = diag::warn_missing_dependent_template_keyword; |
| |
| Diag(Tok.getLocation(), DiagID) |
| << II.getName() |
| << FixItHint::CreateInsertion(Tok.getLocation(), "template "); |
| |
| if (TemplateNameKind TNK |
| = Actions.ActOnDependentTemplateName(getCurScope(), |
| SS, SourceLocation(), |
| TemplateName, ObjectType, |
| EnteringContext, Template)) { |
| // Consume the identifier. |
| ConsumeToken(); |
| if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), |
| TemplateName, false)) |
| return true; |
| } |
| else |
| return true; |
| |
| continue; |
| } |
| } |
| |
| // We don't have any tokens that form the beginning of a |
| // nested-name-specifier, so we're done. |
| break; |
| } |
| |
| // Even if we didn't see any pieces of a nested-name-specifier, we |
| // still check whether there is a tilde in this position, which |
| // indicates a potential pseudo-destructor. |
| if (CheckForDestructor && Tok.is(tok::tilde)) |
| *MayBePseudoDestructor = true; |
| |
| return false; |
| } |
| |
| /// ParseCXXIdExpression - Handle id-expression. |
| /// |
| /// id-expression: |
| /// unqualified-id |
| /// qualified-id |
| /// |
| /// qualified-id: |
| /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id |
| /// '::' identifier |
| /// '::' operator-function-id |
| /// '::' template-id |
| /// |
| /// NOTE: The standard specifies that, for qualified-id, the parser does not |
| /// expect: |
| /// |
| /// '::' conversion-function-id |
| /// '::' '~' class-name |
| /// |
| /// This may cause a slight inconsistency on diagnostics: |
| /// |
| /// class C {}; |
| /// namespace A {} |
| /// void f() { |
| /// :: A :: ~ C(); // Some Sema error about using destructor with a |
| /// // namespace. |
| /// :: ~ C(); // Some Parser error like 'unexpected ~'. |
| /// } |
| /// |
| /// We simplify the parser a bit and make it work like: |
| /// |
| /// qualified-id: |
| /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id |
| /// '::' unqualified-id |
| /// |
| /// That way Sema can handle and report similar errors for namespaces and the |
| /// global scope. |
| /// |
| /// The isAddressOfOperand parameter indicates that this id-expression is a |
| /// direct operand of the address-of operator. This is, besides member contexts, |
| /// the only place where a qualified-id naming a non-static class member may |
| /// appear. |
| /// |
| ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) { |
| // qualified-id: |
| // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id |
| // '::' unqualified-id |
| // |
| CXXScopeSpec SS; |
| ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false); |
| |
| SourceLocation TemplateKWLoc; |
| UnqualifiedId Name; |
| if (ParseUnqualifiedId(SS, |
| /*EnteringContext=*/false, |
| /*AllowDestructorName=*/false, |
| /*AllowConstructorName=*/false, |
| /*ObjectType=*/ ParsedType(), |
| TemplateKWLoc, |
| Name)) |
| return ExprError(); |
| |
| // This is only the direct operand of an & operator if it is not |
| // followed by a postfix-expression suffix. |
| if (isAddressOfOperand && isPostfixExpressionSuffixStart()) |
| isAddressOfOperand = false; |
| |
| return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name, |
| Tok.is(tok::l_paren), isAddressOfOperand); |
| } |
| |
| /// ParseLambdaExpression - Parse a C++11 lambda expression. |
| /// |
| /// lambda-expression: |
| /// lambda-introducer lambda-declarator[opt] compound-statement |
| /// |
| /// lambda-introducer: |
| /// '[' lambda-capture[opt] ']' |
| /// |
| /// lambda-capture: |
| /// capture-default |
| /// capture-list |
| /// capture-default ',' capture-list |
| /// |
| /// capture-default: |
| /// '&' |
| /// '=' |
| /// |
| /// capture-list: |
| /// capture |
| /// capture-list ',' capture |
| /// |
| /// capture: |
| /// simple-capture |
| /// init-capture [C++1y] |
| /// |
| /// simple-capture: |
| /// identifier |
| /// '&' identifier |
| /// 'this' |
| /// |
| /// init-capture: [C++1y] |
| /// identifier initializer |
| /// '&' identifier initializer |
| /// |
| /// lambda-declarator: |
| /// '(' parameter-declaration-clause ')' attribute-specifier[opt] |
| /// 'mutable'[opt] exception-specification[opt] |
| /// trailing-return-type[opt] |
| /// |
| ExprResult Parser::ParseLambdaExpression() { |
| // Parse lambda-introducer. |
| LambdaIntroducer Intro; |
| Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro); |
| if (DiagID) { |
| Diag(Tok, DiagID.getValue()); |
| SkipUntil(tok::r_square, StopAtSemi); |
| SkipUntil(tok::l_brace, StopAtSemi); |
| SkipUntil(tok::r_brace, StopAtSemi); |
| return ExprError(); |
| } |
| |
| return ParseLambdaExpressionAfterIntroducer(Intro); |
| } |
| |
| /// TryParseLambdaExpression - Use lookahead and potentially tentative |
| /// parsing to determine if we are looking at a C++0x lambda expression, and parse |
| /// it if we are. |
| /// |
| /// If we are not looking at a lambda expression, returns ExprError(). |
| ExprResult Parser::TryParseLambdaExpression() { |
| assert(getLangOpts().CPlusPlus11 |
| && Tok.is(tok::l_square) |
| && "Not at the start of a possible lambda expression."); |
| |
| const Token Next = NextToken(), After = GetLookAheadToken(2); |
| |
| // If lookahead indicates this is a lambda... |
| if (Next.is(tok::r_square) || // [] |
| Next.is(tok::equal) || // [= |
| (Next.is(tok::amp) && // [&] or [&, |
| (After.is(tok::r_square) || |
| After.is(tok::comma))) || |
| (Next.is(tok::identifier) && // [identifier] |
| After.is(tok::r_square))) { |
| return ParseLambdaExpression(); |
| } |
| |
| // If lookahead indicates an ObjC message send... |
| // [identifier identifier |
| if (Next.is(tok::identifier) && After.is(tok::identifier)) { |
| return ExprEmpty(); |
| } |
| |
| // Here, we're stuck: lambda introducers and Objective-C message sends are |
| // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a |
| // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of |
| // writing two routines to parse a lambda introducer, just try to parse |
| // a lambda introducer first, and fall back if that fails. |
| // (TryParseLambdaIntroducer never produces any diagnostic output.) |
| LambdaIntroducer Intro; |
| if (TryParseLambdaIntroducer(Intro)) |
| return ExprEmpty(); |
| |
| return ParseLambdaExpressionAfterIntroducer(Intro); |
| } |
| |
| /// \brief Parse a lambda introducer. |
| /// \param Intro A LambdaIntroducer filled in with information about the |
| /// contents of the lambda-introducer. |
| /// \param SkippedInits If non-null, we are disambiguating between an Obj-C |
| /// message send and a lambda expression. In this mode, we will |
| /// sometimes skip the initializers for init-captures and not fully |
| /// populate \p Intro. This flag will be set to \c true if we do so. |
| /// \return A DiagnosticID if it hit something unexpected. The location for |
| /// for the diagnostic is that of the current token. |
| Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro, |
| bool *SkippedInits) { |
| typedef Optional<unsigned> DiagResult; |
| |
| assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['."); |
| BalancedDelimiterTracker T(*this, tok::l_square); |
| T.consumeOpen(); |
| |
| Intro.Range.setBegin(T.getOpenLocation()); |
| |
| bool first = true; |
| |
| // Parse capture-default. |
| if (Tok.is(tok::amp) && |
| (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) { |
| Intro.Default = LCD_ByRef; |
| Intro.DefaultLoc = ConsumeToken(); |
| first = false; |
| } else if (Tok.is(tok::equal)) { |
| Intro.Default = LCD_ByCopy; |
| Intro.DefaultLoc = ConsumeToken(); |
| first = false; |
| } |
| |
| while (Tok.isNot(tok::r_square)) { |
| if (!first) { |
| if (Tok.isNot(tok::comma)) { |
| // Provide a completion for a lambda introducer here. Except |
| // in Objective-C, where this is Almost Surely meant to be a message |
| // send. In that case, fail here and let the ObjC message |
| // expression parser perform the completion. |
| if (Tok.is(tok::code_completion) && |
| !(getLangOpts().ObjC1 && Intro.Default == LCD_None && |
| !Intro.Captures.empty())) { |
| Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, |
| /*AfterAmpersand=*/false); |
| cutOffParsing(); |
| break; |
| } |
| |
| return DiagResult(diag::err_expected_comma_or_rsquare); |
| } |
| ConsumeToken(); |
| } |
| |
| if (Tok.is(tok::code_completion)) { |
| // If we're in Objective-C++ and we have a bare '[', then this is more |
| // likely to be a message receiver. |
| if (getLangOpts().ObjC1 && first) |
| Actions.CodeCompleteObjCMessageReceiver(getCurScope()); |
| else |
| Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, |
| /*AfterAmpersand=*/false); |
| cutOffParsing(); |
| break; |
| } |
| |
| first = false; |
| |
| // Parse capture. |
| LambdaCaptureKind Kind = LCK_ByCopy; |
| SourceLocation Loc; |
| IdentifierInfo *Id = nullptr; |
| SourceLocation EllipsisLoc; |
| ExprResult Init; |
| |
| if (Tok.is(tok::kw_this)) { |
| Kind = LCK_This; |
| Loc = ConsumeToken(); |
| } else { |
| if (Tok.is(tok::amp)) { |
| Kind = LCK_ByRef; |
| ConsumeToken(); |
| |
| if (Tok.is(tok::code_completion)) { |
| Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, |
| /*AfterAmpersand=*/true); |
| cutOffParsing(); |
| break; |
| } |
| } |
| |
| if (Tok.is(tok::identifier)) { |
| Id = Tok.getIdentifierInfo(); |
| Loc = ConsumeToken(); |
| } else if (Tok.is(tok::kw_this)) { |
| // FIXME: If we want to suggest a fixit here, will need to return more |
| // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be |
| // Clear()ed to prevent emission in case of tentative parsing? |
| return DiagResult(diag::err_this_captured_by_reference); |
| } else { |
| return DiagResult(diag::err_expected_capture); |
| } |
| |
| if (Tok.is(tok::l_paren)) { |
| BalancedDelimiterTracker Parens(*this, tok::l_paren); |
| Parens.consumeOpen(); |
| |
| ExprVector Exprs; |
| CommaLocsTy Commas; |
| if (SkippedInits) { |
| Parens.skipToEnd(); |
| *SkippedInits = true; |
| } else if (ParseExpressionList(Exprs, Commas)) { |
| Parens.skipToEnd(); |
| Init = ExprError(); |
| } else { |
| Parens.consumeClose(); |
| Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(), |
| Parens.getCloseLocation(), |
| Exprs); |
| } |
| } else if (Tok.is(tok::l_brace) || Tok.is(tok::equal)) { |
| // Each lambda init-capture forms its own full expression, which clears |
| // Actions.MaybeODRUseExprs. So create an expression evaluation context |
| // to save the necessary state, and restore it later. |
| EnterExpressionEvaluationContext EC(Actions, |
| Sema::PotentiallyEvaluated); |
| TryConsumeToken(tok::equal); |
| |
| if (!SkippedInits) |
| Init = ParseInitializer(); |
| else if (Tok.is(tok::l_brace)) { |
| BalancedDelimiterTracker Braces(*this, tok::l_brace); |
| Braces.consumeOpen(); |
| Braces.skipToEnd(); |
| *SkippedInits = true; |
| } else { |
| // We're disambiguating this: |
| // |
| // [..., x = expr |
| // |
| // We need to find the end of the following expression in order to |
| // determine whether this is an Obj-C message send's receiver, a |
| // C99 designator, or a lambda init-capture. |
| // |
| // Parse the expression to find where it ends, and annotate it back |
| // onto the tokens. We would have parsed this expression the same way |
| // in either case: both the RHS of an init-capture and the RHS of an |
| // assignment expression are parsed as an initializer-clause, and in |
| // neither case can anything be added to the scope between the '[' and |
| // here. |
| // |
| // FIXME: This is horrible. Adding a mechanism to skip an expression |
| // would be much cleaner. |
| // FIXME: If there is a ',' before the next ']' or ':', we can skip to |
| // that instead. (And if we see a ':' with no matching '?', we can |
| // classify this as an Obj-C message send.) |
| SourceLocation StartLoc = Tok.getLocation(); |
| InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true); |
| Init = ParseInitializer(); |
| |
| if (Tok.getLocation() != StartLoc) { |
| // Back out the lexing of the token after the initializer. |
| PP.RevertCachedTokens(1); |
| |
| // Replace the consumed tokens with an appropriate annotation. |
| Tok.setLocation(StartLoc); |
| Tok.setKind(tok::annot_primary_expr); |
| setExprAnnotation(Tok, Init); |
| Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation()); |
| PP.AnnotateCachedTokens(Tok); |
| |
| // Consume the annotated initializer. |
| ConsumeToken(); |
| } |
| } |
| } else |
| TryConsumeToken(tok::ellipsis, EllipsisLoc); |
| } |
| // If this is an init capture, process the initialization expression |
| // right away. For lambda init-captures such as the following: |
| // const int x = 10; |
| // auto L = [i = x+1](int a) { |
| // return [j = x+2, |
| // &k = x](char b) { }; |
| // }; |
| // keep in mind that each lambda init-capture has to have: |
| // - its initialization expression executed in the context |
| // of the enclosing/parent decl-context. |
| // - but the variable itself has to be 'injected' into the |
| // decl-context of its lambda's call-operator (which has |
| // not yet been created). |
| // Each init-expression is a full-expression that has to get |
| // Sema-analyzed (for capturing etc.) before its lambda's |
| // call-operator's decl-context, scope & scopeinfo are pushed on their |
| // respective stacks. Thus if any variable is odr-used in the init-capture |
| // it will correctly get captured in the enclosing lambda, if one exists. |
| // The init-variables above are created later once the lambdascope and |
| // call-operators decl-context is pushed onto its respective stack. |
| |
| // Since the lambda init-capture's initializer expression occurs in the |
| // context of the enclosing function or lambda, therefore we can not wait |
| // till a lambda scope has been pushed on before deciding whether the |
| // variable needs to be captured. We also need to process all |
| // lvalue-to-rvalue conversions and discarded-value conversions, |
| // so that we can avoid capturing certain constant variables. |
| // For e.g., |
| // void test() { |
| // const int x = 10; |
| // auto L = [&z = x](char a) { <-- don't capture by the current lambda |
| // return [y = x](int i) { <-- don't capture by enclosing lambda |
| // return y; |
| // } |
| // }; |
| // If x was not const, the second use would require 'L' to capture, and |
| // that would be an error. |
| |
| ParsedType InitCaptureParsedType; |
| if (Init.isUsable()) { |
| // Get the pointer and store it in an lvalue, so we can use it as an |
| // out argument. |
| Expr *InitExpr = Init.get(); |
| // This performs any lvalue-to-rvalue conversions if necessary, which |
| // can affect what gets captured in the containing decl-context. |
| QualType InitCaptureType = Actions.performLambdaInitCaptureInitialization( |
| Loc, Kind == LCK_ByRef, Id, InitExpr); |
| Init = InitExpr; |
| InitCaptureParsedType.set(InitCaptureType); |
| } |
| Intro.addCapture(Kind, Loc, Id, EllipsisLoc, Init, InitCaptureParsedType); |
| } |
| |
| T.consumeClose(); |
| Intro.Range.setEnd(T.getCloseLocation()); |
| return DiagResult(); |
| } |
| |
| /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer. |
| /// |
| /// Returns true if it hit something unexpected. |
| bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) { |
| TentativeParsingAction PA(*this); |
| |
| bool SkippedInits = false; |
| Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits)); |
| |
| if (DiagID) { |
| PA.Revert(); |
| return true; |
| } |
| |
| if (SkippedInits) { |
| // Parse it again, but this time parse the init-captures too. |
| PA.Revert(); |
| Intro = LambdaIntroducer(); |
| DiagID = ParseLambdaIntroducer(Intro); |
| assert(!DiagID && "parsing lambda-introducer failed on reparse"); |
| return false; |
| } |
| |
| PA.Commit(); |
| return false; |
| } |
| |
| /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda |
| /// expression. |
| ExprResult Parser::ParseLambdaExpressionAfterIntroducer( |
| LambdaIntroducer &Intro) { |
| SourceLocation LambdaBeginLoc = Intro.Range.getBegin(); |
| Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda); |
| |
| PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc, |
| "lambda expression parsing"); |
| |
| |
| |
| // FIXME: Call into Actions to add any init-capture declarations to the |
| // scope while parsing the lambda-declarator and compound-statement. |
| |
| // Parse lambda-declarator[opt]. |
| DeclSpec DS(AttrFactory); |
| Declarator D(DS, Declarator::LambdaExprContext); |
| TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); |
| Actions.PushLambdaScope(); |
| |
| if (Tok.is(tok::l_paren)) { |
| ParseScope PrototypeScope(this, |
| Scope::FunctionPrototypeScope | |
| Scope::FunctionDeclarationScope | |
| Scope::DeclScope); |
| |
| SourceLocation DeclEndLoc; |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| T.consumeOpen(); |
| SourceLocation LParenLoc = T.getOpenLocation(); |
| |
| // Parse parameter-declaration-clause. |
| ParsedAttributes Attr(AttrFactory); |
| SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; |
| SourceLocation EllipsisLoc; |
| |
| if (Tok.isNot(tok::r_paren)) { |
| Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth); |
| ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc); |
| // For a generic lambda, each 'auto' within the parameter declaration |
| // clause creates a template type parameter, so increment the depth. |
| if (Actions.getCurGenericLambda()) |
| ++CurTemplateDepthTracker; |
| } |
| T.consumeClose(); |
| SourceLocation RParenLoc = T.getCloseLocation(); |
| DeclEndLoc = RParenLoc; |
| |
| // GNU-style attributes must be parsed before the mutable specifier to be |
| // compatible with GCC. |
| MaybeParseGNUAttributes(Attr, &DeclEndLoc); |
| |
| // Parse 'mutable'[opt]. |
| SourceLocation MutableLoc; |
| if (TryConsumeToken(tok::kw_mutable, MutableLoc)) |
| DeclEndLoc = MutableLoc; |
| |
| // Parse exception-specification[opt]. |
| ExceptionSpecificationType ESpecType = EST_None; |
| SourceRange ESpecRange; |
| SmallVector<ParsedType, 2> DynamicExceptions; |
| SmallVector<SourceRange, 2> DynamicExceptionRanges; |
| ExprResult NoexceptExpr; |
| ESpecType = tryParseExceptionSpecification(ESpecRange, |
| DynamicExceptions, |
| DynamicExceptionRanges, |
| NoexceptExpr); |
| |
| if (ESpecType != EST_None) |
| DeclEndLoc = ESpecRange.getEnd(); |
| |
| // Parse attribute-specifier[opt]. |
| MaybeParseCXX11Attributes(Attr, &DeclEndLoc); |
| |
| SourceLocation FunLocalRangeEnd = DeclEndLoc; |
| |
| // Parse trailing-return-type[opt]. |
| TypeResult TrailingReturnType; |
| if (Tok.is(tok::arrow)) { |
| FunLocalRangeEnd = Tok.getLocation(); |
| SourceRange Range; |
| TrailingReturnType = ParseTrailingReturnType(Range); |
| if (Range.getEnd().isValid()) |
| DeclEndLoc = Range.getEnd(); |
| } |
| |
| PrototypeScope.Exit(); |
| |
| SourceLocation NoLoc; |
| D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, |
| /*isAmbiguous=*/false, |
| LParenLoc, |
| ParamInfo.data(), ParamInfo.size(), |
| EllipsisLoc, RParenLoc, |
| DS.getTypeQualifiers(), |
| /*RefQualifierIsLValueRef=*/true, |
| /*RefQualifierLoc=*/NoLoc, |
| /*ConstQualifierLoc=*/NoLoc, |
| /*VolatileQualifierLoc=*/NoLoc, |
| MutableLoc, |
| ESpecType, ESpecRange.getBegin(), |
| DynamicExceptions.data(), |
| DynamicExceptionRanges.data(), |
| DynamicExceptions.size(), |
| NoexceptExpr.isUsable() ? |
| NoexceptExpr.get() : nullptr, |
| LParenLoc, FunLocalRangeEnd, D, |
| TrailingReturnType), |
| Attr, DeclEndLoc); |
| } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow) || |
| Tok.is(tok::kw___attribute) || |
| (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) { |
| // It's common to forget that one needs '()' before 'mutable', an attribute |
| // specifier, or the result type. Deal with this. |
| unsigned TokKind = 0; |
| switch (Tok.getKind()) { |
| case tok::kw_mutable: TokKind = 0; break; |
| case tok::arrow: TokKind = 1; break; |
| case tok::kw___attribute: |
| case tok::l_square: TokKind = 2; break; |
| default: llvm_unreachable("Unknown token kind"); |
| } |
| |
| Diag(Tok, diag::err_lambda_missing_parens) |
| << TokKind |
| << FixItHint::CreateInsertion(Tok.getLocation(), "() "); |
| SourceLocation DeclLoc = Tok.getLocation(); |
| SourceLocation DeclEndLoc = DeclLoc; |
| |
| // GNU-style attributes must be parsed before the mutable specifier to be |
| // compatible with GCC. |
| ParsedAttributes Attr(AttrFactory); |
| MaybeParseGNUAttributes(Attr, &DeclEndLoc); |
| |
| // Parse 'mutable', if it's there. |
| SourceLocation MutableLoc; |
| if (Tok.is(tok::kw_mutable)) { |
| MutableLoc = ConsumeToken(); |
| DeclEndLoc = MutableLoc; |
| } |
| |
| // Parse attribute-specifier[opt]. |
| MaybeParseCXX11Attributes(Attr, &DeclEndLoc); |
| |
| // Parse the return type, if there is one. |
| TypeResult TrailingReturnType; |
| if (Tok.is(tok::arrow)) { |
| SourceRange Range; |
| TrailingReturnType = ParseTrailingReturnType(Range); |
| if (Range.getEnd().isValid()) |
| DeclEndLoc = Range.getEnd(); |
| } |
| |
| SourceLocation NoLoc; |
| D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, |
| /*isAmbiguous=*/false, |
| /*LParenLoc=*/NoLoc, |
| /*Params=*/nullptr, |
| /*NumParams=*/0, |
| /*EllipsisLoc=*/NoLoc, |
| /*RParenLoc=*/NoLoc, |
| /*TypeQuals=*/0, |
| /*RefQualifierIsLValueRef=*/true, |
| /*RefQualifierLoc=*/NoLoc, |
| /*ConstQualifierLoc=*/NoLoc, |
| /*VolatileQualifierLoc=*/NoLoc, |
| MutableLoc, |
| EST_None, |
| /*ESpecLoc=*/NoLoc, |
| /*Exceptions=*/nullptr, |
| /*ExceptionRanges=*/nullptr, |
| /*NumExceptions=*/0, |
| /*NoexceptExpr=*/nullptr, |
| DeclLoc, DeclEndLoc, D, |
| TrailingReturnType), |
| Attr, DeclEndLoc); |
| } |
| |
| |
| // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using |
| // it. |
| unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope; |
| ParseScope BodyScope(this, ScopeFlags); |
| |
| Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope()); |
| |
| // Parse compound-statement. |
| if (!Tok.is(tok::l_brace)) { |
| Diag(Tok, diag::err_expected_lambda_body); |
| Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); |
| return ExprError(); |
| } |
| |
| StmtResult Stmt(ParseCompoundStatementBody()); |
| BodyScope.Exit(); |
| |
| if (!Stmt.isInvalid()) |
| return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope()); |
| |
| Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); |
| return ExprError(); |
| } |
| |
| /// ParseCXXCasts - This handles the various ways to cast expressions to another |
| /// type. |
| /// |
| /// postfix-expression: [C++ 5.2p1] |
| /// 'dynamic_cast' '<' type-name '>' '(' expression ')' |
| /// 'static_cast' '<' type-name '>' '(' expression ')' |
| /// 'reinterpret_cast' '<' type-name '>' '(' expression ')' |
| /// 'const_cast' '<' type-name '>' '(' expression ')' |
| /// |
| ExprResult Parser::ParseCXXCasts() { |
| tok::TokenKind Kind = Tok.getKind(); |
| const char *CastName = nullptr; // For error messages |
| |
| switch (Kind) { |
| default: llvm_unreachable("Unknown C++ cast!"); |
| case tok::kw_const_cast: CastName = "const_cast"; break; |
| case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break; |
| case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break; |
| case tok::kw_static_cast: CastName = "static_cast"; break; |
| } |
| |
| SourceLocation OpLoc = ConsumeToken(); |
| SourceLocation LAngleBracketLoc = Tok.getLocation(); |
| |
| // Check for "<::" which is parsed as "[:". If found, fix token stream, |
| // diagnose error, suggest fix, and recover parsing. |
| if (Tok.is(tok::l_square) && Tok.getLength() == 2) { |
| Token Next = NextToken(); |
| if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next)) |
| FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true); |
| } |
| |
| if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName)) |
| return ExprError(); |
| |
| // Parse the common declaration-specifiers piece. |
| DeclSpec DS(AttrFactory); |
| ParseSpecifierQualifierList(DS); |
| |
| // Parse the abstract-declarator, if present. |
| Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); |
| ParseDeclarator(DeclaratorInfo); |
| |
| SourceLocation RAngleBracketLoc = Tok.getLocation(); |
| |
| if (ExpectAndConsume(tok::greater)) |
| return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less); |
| |
| SourceLocation LParenLoc, RParenLoc; |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| |
| if (T.expectAndConsume(diag::err_expected_lparen_after, CastName)) |
| return ExprError(); |
| |
| ExprResult Result = ParseExpression(); |
| |
| // Match the ')'. |
| T.consumeClose(); |
| |
| if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType()) |
| Result = Actions.ActOnCXXNamedCast(OpLoc, Kind, |
| LAngleBracketLoc, DeclaratorInfo, |
| RAngleBracketLoc, |
| T.getOpenLocation(), Result.get(), |
| T.getCloseLocation()); |
| |
| return Result; |
| } |
| |
| /// ParseCXXTypeid - This handles the C++ typeid expression. |
| /// |
| /// postfix-expression: [C++ 5.2p1] |
| /// 'typeid' '(' expression ')' |
| /// 'typeid' '(' type-id ')' |
| /// |
| ExprResult Parser::ParseCXXTypeid() { |
| assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!"); |
| |
| SourceLocation OpLoc = ConsumeToken(); |
| SourceLocation LParenLoc, RParenLoc; |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| |
| // typeid expressions are always parenthesized. |
| if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid")) |
| return ExprError(); |
| LParenLoc = T.getOpenLocation(); |
| |
| ExprResult Result; |
| |
| // C++0x [expr.typeid]p3: |
| // When typeid is applied to an expression other than an lvalue of a |
| // polymorphic class type [...] The expression is an unevaluated |
| // operand (Clause 5). |
| // |
| // Note that we can't tell whether the expression is an lvalue of a |
| // polymorphic class type until after we've parsed the expression; we |
| // speculatively assume the subexpression is unevaluated, and fix it up |
| // later. |
| // |
| // We enter the unevaluated context before trying to determine whether we |
| // have a type-id, because the tentative parse logic will try to resolve |
| // names, and must treat them as unevaluated. |
| EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated, |
| Sema::ReuseLambdaContextDecl); |
| |
| if (isTypeIdInParens()) { |
| TypeResult Ty = ParseTypeName(); |
| |
| // Match the ')'. |
| T.consumeClose(); |
| RParenLoc = T.getCloseLocation(); |
| if (Ty.isInvalid() || RParenLoc.isInvalid()) |
| return ExprError(); |
| |
| Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true, |
| Ty.get().getAsOpaquePtr(), RParenLoc); |
| } else { |
| Result = ParseExpression(); |
| |
| // Match the ')'. |
| if (Result.isInvalid()) |
| SkipUntil(tok::r_paren, StopAtSemi); |
| else { |
| T.consumeClose(); |
| RParenLoc = T.getCloseLocation(); |
| if (RParenLoc.isInvalid()) |
| return ExprError(); |
| |
| Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false, |
| Result.get(), RParenLoc); |
| } |
| } |
| |
| return Result; |
| } |
| |
| /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression. |
| /// |
| /// '__uuidof' '(' expression ')' |
| /// '__uuidof' '(' type-id ')' |
| /// |
| ExprResult Parser::ParseCXXUuidof() { |
| assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!"); |
| |
| SourceLocation OpLoc = ConsumeToken(); |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| |
| // __uuidof expressions are always parenthesized. |
| if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof")) |
| return ExprError(); |
| |
| ExprResult Result; |
| |
| if (isTypeIdInParens()) { |
| TypeResult Ty = ParseTypeName(); |
| |
| // Match the ')'. |
| T.consumeClose(); |
| |
| if (Ty.isInvalid()) |
| return ExprError(); |
| |
| Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true, |
| Ty.get().getAsOpaquePtr(), |
| T.getCloseLocation()); |
| } else { |
| EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); |
| Result = ParseExpression(); |
| |
| // Match the ')'. |
| if (Result.isInvalid()) |
| SkipUntil(tok::r_paren, StopAtSemi); |
| else { |
| T.consumeClose(); |
| |
| Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), |
| /*isType=*/false, |
| Result.get(), T.getCloseLocation()); |
| } |
| } |
| |
| return Result; |
| } |
| |
| /// \brief Parse a C++ pseudo-destructor expression after the base, |
| /// . or -> operator, and nested-name-specifier have already been |
| /// parsed. |
| /// |
| /// postfix-expression: [C++ 5.2] |
| /// postfix-expression . pseudo-destructor-name |
| /// postfix-expression -> pseudo-destructor-name |
| /// |
| /// pseudo-destructor-name: |
| /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name |
| /// ::[opt] nested-name-specifier template simple-template-id :: |
| /// ~type-name |
| /// ::[opt] nested-name-specifier[opt] ~type-name |
| /// |
| ExprResult |
| Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| CXXScopeSpec &SS, |
| ParsedType ObjectType) { |
| // We're parsing either a pseudo-destructor-name or a dependent |
| // member access that has the same form as a |
| // pseudo-destructor-name. We parse both in the same way and let |
| // the action model sort them out. |
| // |
| // Note that the ::[opt] nested-name-specifier[opt] has already |
| // been parsed, and if there was a simple-template-id, it has |
| // been coalesced into a template-id annotation token. |
| UnqualifiedId FirstTypeName; |
| SourceLocation CCLoc; |
| if (Tok.is(tok::identifier)) { |
| FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); |
| ConsumeToken(); |
| assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); |
| CCLoc = ConsumeToken(); |
| } else if (Tok.is(tok::annot_template_id)) { |
| // FIXME: retrieve TemplateKWLoc from template-id annotation and |
| // store it in the pseudo-dtor node (to be used when instantiating it). |
| FirstTypeName.setTemplateId( |
| (TemplateIdAnnotation *)Tok.getAnnotationValue()); |
| ConsumeToken(); |
| assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); |
| CCLoc = ConsumeToken(); |
| } else { |
| FirstTypeName.setIdentifier(nullptr, SourceLocation()); |
| } |
| |
| // Parse the tilde. |
| assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"); |
| SourceLocation TildeLoc = ConsumeToken(); |
| |
| if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) { |
| DeclSpec DS(AttrFactory); |
| ParseDecltypeSpecifier(DS); |
| if (DS.getTypeSpecType() == TST_error) |
| return ExprError(); |
| return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, |
| OpKind, TildeLoc, DS, |
| Tok.is(tok::l_paren)); |
| } |
| |
| if (!Tok.is(tok::identifier)) { |
| Diag(Tok, diag::err_destructor_tilde_identifier); |
| return ExprError(); |
| } |
| |
| // Parse the second type. |
| UnqualifiedId SecondTypeName; |
| IdentifierInfo *Name = Tok.getIdentifierInfo(); |
| SourceLocation NameLoc = ConsumeToken(); |
| SecondTypeName.setIdentifier(Name, NameLoc); |
| |
| // If there is a '<', the second type name is a template-id. Parse |
| // it as such. |
| if (Tok.is(tok::less) && |
| ParseUnqualifiedIdTemplateId(SS, SourceLocation(), |
| Name, NameLoc, |
| false, ObjectType, SecondTypeName, |
| /*AssumeTemplateName=*/true)) |
| return ExprError(); |
| |
| return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, |
| OpLoc, OpKind, |
| SS, FirstTypeName, CCLoc, |
| TildeLoc, SecondTypeName, |
| Tok.is(tok::l_paren)); |
| } |
| |
| /// ParseCXXBoolLiteral - This handles the C++ Boolean literals. |
| /// |
| /// boolean-literal: [C++ 2.13.5] |
| /// 'true' |
| /// 'false' |
| ExprResult Parser::ParseCXXBoolLiteral() { |
| tok::TokenKind Kind = Tok.getKind(); |
| return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind); |
| } |
| |
| /// ParseThrowExpression - This handles the C++ throw expression. |
| /// |
| /// throw-expression: [C++ 15] |
| /// 'throw' assignment-expression[opt] |
| ExprResult Parser::ParseThrowExpression() { |
| assert(Tok.is(tok::kw_throw) && "Not throw!"); |
| SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token. |
| |
| // If the current token isn't the start of an assignment-expression, |
| // then the expression is not present. This handles things like: |
| // "C ? throw : (void)42", which is crazy but legal. |
| switch (Tok.getKind()) { // FIXME: move this predicate somewhere common. |
| case tok::semi: |
| case tok::r_paren: |
| case tok::r_square: |
| case tok::r_brace: |
| case tok::colon: |
| case tok::comma: |
| return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr); |
| |
| default: |
| ExprResult Expr(ParseAssignmentExpression()); |
| if (Expr.isInvalid()) return Expr; |
| return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get()); |
| } |
| } |
| |
| /// ParseCXXThis - This handles the C++ 'this' pointer. |
| /// |
| /// C++ 9.3.2: In the body of a non-static member function, the keyword this is |
| /// a non-lvalue expression whose value is the address of the object for which |
| /// the function is called. |
| ExprResult Parser::ParseCXXThis() { |
| assert(Tok.is(tok::kw_this) && "Not 'this'!"); |
| SourceLocation ThisLoc = ConsumeToken(); |
| return Actions.ActOnCXXThis(ThisLoc); |
| } |
| |
| /// ParseCXXTypeConstructExpression - Parse construction of a specified type. |
| /// Can be interpreted either as function-style casting ("int(x)") |
| /// or class type construction ("ClassType(x,y,z)") |
| /// or creation of a value-initialized type ("int()"). |
| /// See [C++ 5.2.3]. |
| /// |
| /// postfix-expression: [C++ 5.2p1] |
| /// simple-type-specifier '(' expression-list[opt] ')' |
| /// [C++0x] simple-type-specifier braced-init-list |
| /// typename-specifier '(' expression-list[opt] ')' |
| /// [C++0x] typename-specifier braced-init-list |
| /// |
| ExprResult |
| Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) { |
| Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); |
| ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get(); |
| |
| assert((Tok.is(tok::l_paren) || |
| (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) |
| && "Expected '(' or '{'!"); |
| |
| if (Tok.is(tok::l_brace)) { |
| ExprResult Init = ParseBraceInitializer(); |
| if (Init.isInvalid()) |
| return Init; |
| Expr *InitList = Init.get(); |
| return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(), |
| MultiExprArg(&InitList, 1), |
| SourceLocation()); |
| } else { |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| T.consumeOpen(); |
| |
| ExprVector Exprs; |
| CommaLocsTy CommaLocs; |
| |
| if (Tok.isNot(tok::r_paren)) { |
| if (ParseExpressionList(Exprs, CommaLocs)) { |
| SkipUntil(tok::r_paren, StopAtSemi); |
| return ExprError(); |
| } |
| } |
| |
| // Match the ')'. |
| T.consumeClose(); |
| |
| // TypeRep could be null, if it references an invalid typedef. |
| if (!TypeRep) |
| return ExprError(); |
| |
| assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& |
| "Unexpected number of commas!"); |
| return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), |
| Exprs, |
| T.getCloseLocation()); |
| } |
| } |
| |
| /// ParseCXXCondition - if/switch/while condition expression. |
| /// |
| /// condition: |
| /// expression |
| /// type-specifier-seq declarator '=' assignment-expression |
| /// [C++11] type-specifier-seq declarator '=' initializer-clause |
| /// [C++11] type-specifier-seq declarator braced-init-list |
| /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] |
| /// '=' assignment-expression |
| /// |
| /// \param ExprOut if the condition was parsed as an expression, the parsed |
| /// expression. |
| /// |
| /// \param DeclOut if the condition was parsed as a declaration, the parsed |
| /// declaration. |
| /// |
| /// \param Loc The location of the start of the statement that requires this |
| /// condition, e.g., the "for" in a for loop. |
| /// |
| /// \param ConvertToBoolean Whether the condition expression should be |
| /// converted to a boolean value. |
| /// |
| /// \returns true if there was a parsing, false otherwise. |
| bool Parser::ParseCXXCondition(ExprResult &ExprOut, |
| Decl *&DeclOut, |
| SourceLocation Loc, |
| bool ConvertToBoolean) { |
| if (Tok.is(tok::code_completion)) { |
| Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition); |
| cutOffParsing(); |
| return true; |
| } |
| |
| ParsedAttributesWithRange attrs(AttrFactory); |
| MaybeParseCXX11Attributes(attrs); |
| |
| if (!isCXXConditionDeclaration()) { |
| ProhibitAttributes(attrs); |
| |
| // Parse the expression. |
| ExprOut = ParseExpression(); // expression |
| DeclOut = nullptr; |
| if (ExprOut.isInvalid()) |
| return true; |
| |
| // If required, convert to a boolean value. |
| if (ConvertToBoolean) |
| ExprOut |
| = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get()); |
| return ExprOut.isInvalid(); |
| } |
| |
| // type-specifier-seq |
| DeclSpec DS(AttrFactory); |
| DS.takeAttributesFrom(attrs); |
| ParseSpecifierQualifierList(DS); |
| |
| // declarator |
| Declarator DeclaratorInfo(DS, Declarator::ConditionContext); |
| ParseDeclarator(DeclaratorInfo); |
| |
| // simple-asm-expr[opt] |
| if (Tok.is(tok::kw_asm)) { |
| SourceLocation Loc; |
| ExprResult AsmLabel(ParseSimpleAsm(&Loc)); |
| if (AsmLabel.isInvalid()) { |
| SkipUntil(tok::semi, StopAtSemi); |
| return true; |
| } |
| DeclaratorInfo.setAsmLabel(AsmLabel.get()); |
| DeclaratorInfo.SetRangeEnd(Loc); |
| } |
| |
| // If attributes are present, parse them. |
| MaybeParseGNUAttributes(DeclaratorInfo); |
| |
| // Type-check the declaration itself. |
| DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), |
| DeclaratorInfo); |
| DeclOut = Dcl.get(); |
| ExprOut = ExprError(); |
| |
| // '=' assignment-expression |
| // If a '==' or '+=' is found, suggest a fixit to '='. |
| bool CopyInitialization = isTokenEqualOrEqualTypo(); |
| if (CopyInitialization) |
| ConsumeToken(); |
| |
| ExprResult InitExpr = ExprError(); |
| if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { |
| Diag(Tok.getLocation(), |
| diag::warn_cxx98_compat_generalized_initializer_lists); |
| InitExpr = ParseBraceInitializer(); |
| } else if (CopyInitialization) { |
| InitExpr = ParseAssignmentExpression(); |
| } else if (Tok.is(tok::l_paren)) { |
| // This was probably an attempt to initialize the variable. |
| SourceLocation LParen = ConsumeParen(), RParen = LParen; |
| if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) |
| RParen = ConsumeParen(); |
| Diag(DeclOut ? DeclOut->getLocation() : LParen, |
| diag::err_expected_init_in_condition_lparen) |
| << SourceRange(LParen, RParen); |
| } else { |
| Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(), |
| diag::err_expected_init_in_condition); |
| } |
| |
| if (!InitExpr.isInvalid()) |
| Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization, |
| DS.containsPlaceholderType()); |
| else |
| Actions.ActOnInitializerError(DeclOut); |
| |
| // FIXME: Build a reference to this declaration? Convert it to bool? |
| // (This is currently handled by Sema). |
| |
| Actions.FinalizeDeclaration(DeclOut); |
| |
| return false; |
| } |
| |
| /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. |
| /// This should only be called when the current token is known to be part of |
| /// simple-type-specifier. |
| /// |
| /// simple-type-specifier: |
| /// '::'[opt] nested-name-specifier[opt] type-name |
| /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO] |
| /// char |
| /// wchar_t |
| /// bool |
| /// short |
| /// int |
| /// long |
| /// signed |
| /// unsigned |
| /// float |
| /// double |
| /// void |
| /// [GNU] typeof-specifier |
| /// [C++0x] auto [TODO] |
| /// |
| /// type-name: |
| /// class-name |
| /// enum-name |
| /// typedef-name |
| /// |
| void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) { |
| DS.SetRangeStart(Tok.getLocation()); |
| const char *PrevSpec; |
| unsigned DiagID; |
| SourceLocation Loc = Tok.getLocation(); |
| const clang::PrintingPolicy &Policy = |
| Actions.getASTContext().getPrintingPolicy(); |
| |
| switch (Tok.getKind()) { |
| case tok::identifier: // foo::bar |
| case tok::coloncolon: // ::foo::bar |
| llvm_unreachable("Annotation token should already be formed!"); |
| default: |
| llvm_unreachable("Not a simple-type-specifier token!"); |
| |
| // type-name |
| case tok::annot_typename: { |
| if (getTypeAnnotation(Tok)) |
| DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, |
| getTypeAnnotation(Tok), Policy); |
| else |
| DS.SetTypeSpecError(); |
| |
| DS.SetRangeEnd(Tok.getAnnotationEndLoc()); |
| ConsumeToken(); |
| |
| // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id' |
| // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an |
| // Objective-C interface. If we don't have Objective-C or a '<', this is |
| // just a normal reference to a typedef name. |
| if (Tok.is(tok::less) && getLangOpts().ObjC1) |
| ParseObjCProtocolQualifiers(DS); |
| |
| DS.Finish(Diags, PP, Policy); |
| return; |
| } |
| |
| // builtin types |
| case tok::kw_short: |
| DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_long: |
| DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw___int64: |
| DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_signed: |
| DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_unsigned: |
| DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_void: |
| DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_char: |
| DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_int: |
| DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw___int128: |
| DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_half: |
| DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_float: |
| DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_double: |
| DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_wchar_t: |
| DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_char16_t: |
| DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_char32_t: |
| DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::kw_bool: |
| DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); |
| break; |
| case tok::annot_decltype: |
| case tok::kw_decltype: |
| DS.SetRangeEnd(ParseDecltypeSpecifier(DS)); |
| return DS.Finish(Diags, PP, Policy); |
| |
| // GNU typeof support. |
| case tok::kw_typeof: |
| ParseTypeofSpecifier(DS); |
| DS.Finish(Diags, PP, Policy); |
| return; |
| } |
| if (Tok.is(tok::annot_typename)) |
| DS.SetRangeEnd(Tok.getAnnotationEndLoc()); |
| else |
| DS.SetRangeEnd(Tok.getLocation()); |
| ConsumeToken(); |
| DS.Finish(Diags, PP, Policy); |
| } |
| |
| /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++ |
| /// [dcl.name]), which is a non-empty sequence of type-specifiers, |
| /// e.g., "const short int". Note that the DeclSpec is *not* finished |
| /// by parsing the type-specifier-seq, because these sequences are |
| /// typically followed by some form of declarator. Returns true and |
| /// emits diagnostics if this is not a type-specifier-seq, false |
| /// otherwise. |
| /// |
| /// type-specifier-seq: [C++ 8.1] |
| /// type-specifier type-specifier-seq[opt] |
| /// |
| bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) { |
| ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier); |
| DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy()); |
| return false; |
| } |
| |
| /// \brief Finish parsing a C++ unqualified-id that is a template-id of |
| /// some form. |
| /// |
| /// This routine is invoked when a '<' is encountered after an identifier or |
| /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine |
| /// whether the unqualified-id is actually a template-id. This routine will |
| /// then parse the template arguments and form the appropriate template-id to |
| /// return to the caller. |
| /// |
| /// \param SS the nested-name-specifier that precedes this template-id, if |
| /// we're actually parsing a qualified-id. |
| /// |
| /// \param Name for constructor and destructor names, this is the actual |
| /// identifier that may be a template-name. |
| /// |
| /// \param NameLoc the location of the class-name in a constructor or |
| /// destructor. |
| /// |
| /// \param EnteringContext whether we're entering the scope of the |
| /// nested-name-specifier. |
| /// |
| /// \param ObjectType if this unqualified-id occurs within a member access |
| /// expression, the type of the base object whose member is being accessed. |
| /// |
| /// \param Id as input, describes the template-name or operator-function-id |
| /// that precedes the '<'. If template arguments were parsed successfully, |
| /// will be updated with the template-id. |
| /// |
| /// \param AssumeTemplateId When true, this routine will assume that the name |
| /// refers to a template without performing name lookup to verify. |
| /// |
| /// \returns true if a parse error occurred, false otherwise. |
| bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| bool EnteringContext, |
| ParsedType ObjectType, |
| UnqualifiedId &Id, |
| bool AssumeTemplateId) { |
| assert((AssumeTemplateId || Tok.is(tok::less)) && |
| "Expected '<' to finish parsing a template-id"); |
| |
| TemplateTy Template; |
| TemplateNameKind TNK = TNK_Non_template; |
| switch (Id.getKind()) { |
| case UnqualifiedId::IK_Identifier: |
| case UnqualifiedId::IK_OperatorFunctionId: |
| case UnqualifiedId::IK_LiteralOperatorId: |
| if (AssumeTemplateId) { |
| TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc, |
| Id, ObjectType, EnteringContext, |
| Template); |
| if (TNK == TNK_Non_template) |
| return true; |
| } else { |
| bool MemberOfUnknownSpecialization; |
| TNK = Actions.isTemplateName(getCurScope(), SS, |
| TemplateKWLoc.isValid(), Id, |
| ObjectType, EnteringContext, Template, |
| MemberOfUnknownSpecialization); |
| |
| if (TNK == TNK_Non_template && MemberOfUnknownSpecialization && |
| ObjectType && IsTemplateArgumentList()) { |
| // We have something like t->getAs<T>(), where getAs is a |
| // member of an unknown specialization. However, this will only |
| // parse correctly as a template, so suggest the keyword 'template' |
| // before 'getAs' and treat this as a dependent template name. |
| std::string Name; |
| if (Id.getKind() == UnqualifiedId::IK_Identifier) |
| Name = Id.Identifier->getName(); |
| else { |
| Name = "operator "; |
| if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId) |
| Name += getOperatorSpelling(Id.OperatorFunctionId.Operator); |
| else |
| Name += Id.Identifier->getName(); |
| } |
| Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword) |
| << Name |
| << FixItHint::CreateInsertion(Id.StartLocation, "template "); |
| TNK = Actions.ActOnDependentTemplateName(getCurScope(), |
| SS, TemplateKWLoc, Id, |
| ObjectType, EnteringContext, |
| Template); |
| if (TNK == TNK_Non_template) |
| return true; |
| } |
| } |
| break; |
| |
| case UnqualifiedId::IK_ConstructorName: { |
| UnqualifiedId TemplateName; |
| bool MemberOfUnknownSpecialization; |
| TemplateName.setIdentifier(Name, NameLoc); |
| TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), |
| TemplateName, ObjectType, |
| EnteringContext, Template, |
| MemberOfUnknownSpecialization); |
| break; |
| } |
| |
| case UnqualifiedId::IK_DestructorName: { |
| UnqualifiedId TemplateName; |
| bool MemberOfUnknownSpecialization; |
| TemplateName.setIdentifier(Name, NameLoc); |
| if (ObjectType) { |
| TNK = Actions.ActOnDependentTemplateName(getCurScope(), |
| SS, TemplateKWLoc, TemplateName, |
| ObjectType, EnteringContext, |
| Template); |
| if (TNK == TNK_Non_template) |
| return true; |
| } else { |
| TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), |
| TemplateName, ObjectType, |
| EnteringContext, Template, |
| MemberOfUnknownSpecialization); |
| |
| if (TNK == TNK_Non_template && !Id.DestructorName.get()) { |
| Diag(NameLoc, diag::err_destructor_template_id) |
| << Name << SS.getRange(); |
| return true; |
| } |
| } |
| break; |
| } |
| |
| default: |
| return false; |
| } |
| |
| if (TNK == TNK_Non_template) |
| return false; |
| |
| // Parse the enclosed template argument list. |
| SourceLocation LAngleLoc, RAngleLoc; |
| TemplateArgList TemplateArgs; |
| if (Tok.is(tok::less) && |
| ParseTemplateIdAfterTemplateName(Template, Id.StartLocation, |
| SS, true, LAngleLoc, |
| TemplateArgs, |
| RAngleLoc)) |
| return true; |
| |
| if (Id.getKind() == UnqualifiedId::IK_Identifier || |
| Id.getKind() == UnqualifiedId::IK_OperatorFunctionId || |
| Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) { |
| // Form a parsed representation of the template-id to be stored in the |
| // UnqualifiedId. |
| TemplateIdAnnotation *TemplateId |
| = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds); |
| |
| // FIXME: Store name for literal operator too. |
| if (Id.getKind() == UnqualifiedId::IK_Identifier) { |
| TemplateId->Name = Id.Identifier; |
| TemplateId->Operator = OO_None; |
| TemplateId->TemplateNameLoc = Id.StartLocation; |
| } else { |
| TemplateId->Name = nullptr; |
| TemplateId->Operator = Id.OperatorFunctionId.Operator; |
| TemplateId->TemplateNameLoc = Id.StartLocation; |
| } |
| |
| TemplateId->SS = SS; |
| TemplateId->TemplateKWLoc = TemplateKWLoc; |
| TemplateId->Template = Template; |
| TemplateId->Kind = TNK; |
| TemplateId->LAngleLoc = LAngleLoc; |
| TemplateId->RAngleLoc = RAngleLoc; |
| ParsedTemplateArgument *Args = TemplateId->getTemplateArgs(); |
| for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); |
| Arg != ArgEnd; ++Arg) |
| Args[Arg] = TemplateArgs[Arg]; |
| |
| Id.setTemplateId(TemplateId); |
| return false; |
| } |
| |
| // Bundle the template arguments together. |
| ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs); |
| |
| // Constructor and destructor names. |
| TypeResult Type |
| = Actions.ActOnTemplateIdType(SS, TemplateKWLoc, |
| Template, NameLoc, |
| LAngleLoc, TemplateArgsPtr, RAngleLoc, |
| /*IsCtorOrDtorName=*/true); |
| if (Type.isInvalid()) |
| return true; |
| |
| if (Id.getKind() == UnqualifiedId::IK_ConstructorName) |
| Id.setConstructorName(Type.get(), NameLoc, RAngleLoc); |
| else |
| Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc); |
| |
| return false; |
| } |
| |
| /// \brief Parse an operator-function-id or conversion-function-id as part |
| /// of a C++ unqualified-id. |
| /// |
| /// This routine is responsible only for parsing the operator-function-id or |
| /// conversion-function-id; it does not handle template arguments in any way. |
| /// |
| /// \code |
| /// operator-function-id: [C++ 13.5] |
| /// 'operator' operator |
| /// |
| /// operator: one of |
| /// new delete new[] delete[] |
| /// + - * / % ^ & | ~ |
| /// ! = < > += -= *= /= %= |
| /// ^= &= |= << >> >>= <<= == != |
| /// <= >= && || ++ -- , ->* -> |
| /// () [] |
| /// |
| /// conversion-function-id: [C++ 12.3.2] |
| /// operator conversion-type-id |
| /// |
| /// conversion-type-id: |
| /// type-specifier-seq conversion-declarator[opt] |
| /// |
| /// conversion-declarator: |
| /// ptr-operator conversion-declarator[opt] |
| /// \endcode |
| /// |
| /// \param SS The nested-name-specifier that preceded this unqualified-id. If |
| /// non-empty, then we are parsing the unqualified-id of a qualified-id. |
| /// |
| /// \param EnteringContext whether we are entering the scope of the |
| /// nested-name-specifier. |
| /// |
| /// \param ObjectType if this unqualified-id occurs within a member access |
| /// expression, the type of the base object whose member is being accessed. |
| /// |
| /// \param Result on a successful parse, contains the parsed unqualified-id. |
| /// |
| /// \returns true if parsing fails, false otherwise. |
| bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, |
| ParsedType ObjectType, |
| UnqualifiedId &Result) { |
| assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword"); |
| |
| // Consume the 'operator' keyword. |
| SourceLocation KeywordLoc = ConsumeToken(); |
| |
| // Determine what kind of operator name we have. |
| unsigned SymbolIdx = 0; |
| SourceLocation SymbolLocations[3]; |
| OverloadedOperatorKind Op = OO_None; |
| switch (Tok.getKind()) { |
| case tok::kw_new: |
| case tok::kw_delete: { |
| bool isNew = Tok.getKind() == tok::kw_new; |
| // Consume the 'new' or 'delete'. |
| SymbolLocations[SymbolIdx++] = ConsumeToken(); |
| // Check for array new/delete. |
| if (Tok.is(tok::l_square) && |
| (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) { |
| // Consume the '[' and ']'. |
| BalancedDelimiterTracker T(*this, tok::l_square); |
| T.consumeOpen(); |
| T.consumeClose(); |
| if (T.getCloseLocation().isInvalid()) |
| return true; |
| |
| SymbolLocations[SymbolIdx++] = T.getOpenLocation(); |
| SymbolLocations[SymbolIdx++] = T.getCloseLocation(); |
| Op = isNew? OO_Array_New : OO_Array_Delete; |
| } else { |
| Op = isNew? OO_New : OO_Delete; |
| } |
| break; |
| } |
| |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| case tok::Token: \ |
| SymbolLocations[SymbolIdx++] = ConsumeToken(); \ |
| Op = OO_##Name; \ |
| break; |
| #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) |
| #include "clang/Basic/OperatorKinds.def" |
| |
| case tok::l_paren: { |
| // Consume the '(' and ')'. |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| T.consumeOpen(); |
| T.consumeClose(); |
| if (T.getCloseLocation().isInvalid()) |
| return true; |
| |
| SymbolLocations[SymbolIdx++] = T.getOpenLocation(); |
| SymbolLocations[SymbolIdx++] = T.getCloseLocation(); |
| Op = OO_Call; |
| break; |
| } |
| |
| case tok::l_square: { |
| // Consume the '[' and ']'. |
| BalancedDelimiterTracker T(*this, tok::l_square); |
| T.consumeOpen(); |
| T.consumeClose(); |
| if (T.getCloseLocation().isInvalid()) |
| return true; |
| |
| SymbolLocations[SymbolIdx++] = T.getOpenLocation(); |
| SymbolLocations[SymbolIdx++] = T.getCloseLocation(); |
| Op = OO_Subscript; |
| break; |
| } |
| |
| case tok::code_completion: { |
| // Code completion for the operator name. |
| Actions.CodeCompleteOperatorName(getCurScope()); |
| cutOffParsing(); |
| // Don't try to parse any further. |
| return true; |
| } |
| |
| default: |
| break; |
| } |
| |
| if (Op != OO_None) { |
| // We have parsed an operator-function-id. |
| Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations); |
| return false; |
| } |
| |
| // Parse a literal-operator-id. |
| // |
| // literal-operator-id: C++11 [over.literal] |
| // operator string-literal identifier |
| // operator user-defined-string-literal |
| |
| if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) { |
| Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator); |
| |
| SourceLocation DiagLoc; |
| unsigned DiagId = 0; |
| |
| // We're past translation phase 6, so perform string literal concatenation |
| // before checking for "". |
| SmallVector<Token, 4> Toks; |
| SmallVector<SourceLocation, 4> TokLocs; |
| while (isTokenStringLiteral()) { |
| if (!Tok.is(tok::string_literal) && !DiagId) { |
| // C++11 [over.literal]p1: |
| // The string-literal or user-defined-string-literal in a |
| // literal-operator-id shall have no encoding-prefix [...]. |
| DiagLoc = Tok.getLocation(); |
| DiagId = diag::err_literal_operator_string_prefix; |
| } |
| Toks.push_back(Tok); |
| TokLocs.push_back(ConsumeStringToken()); |
| } |
| |
| StringLiteralParser Literal(Toks, PP); |
| if (Literal.hadError) |
| return true; |
| |
| // Grab the literal operator's suffix, which will be either the next token |
| // or a ud-suffix from the string literal. |
| IdentifierInfo *II = nullptr; |
| SourceLocation SuffixLoc; |
| if (!Literal.getUDSuffix().empty()) { |
| II = &PP.getIdentifierTable().get(Literal.getUDSuffix()); |
| SuffixLoc = |
| Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()], |
| Literal.getUDSuffixOffset(), |
| PP.getSourceManager(), getLangOpts()); |
| } else if (Tok.is(tok::identifier)) { |
| II = Tok.getIdentifierInfo(); |
| SuffixLoc = ConsumeToken(); |
| TokLocs.push_back(SuffixLoc); |
| } else { |
| Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; |
| return true; |
| } |
| |
| // The string literal must be empty. |
| if (!Literal.GetString().empty() || Literal.Pascal) { |
| // C++11 [over.literal]p1: |
| // The string-literal or user-defined-string-literal in a |
| // literal-operator-id shall [...] contain no characters |
| // other than the implicit terminating '\0'. |
| DiagLoc = TokLocs.front(); |
| DiagId = diag::err_literal_operator_string_not_empty; |
| } |
| |
| if (DiagId) { |
| // This isn't a valid literal-operator-id, but we think we know |
| // what the user meant. Tell them what they should have written. |
| SmallString<32> Str; |
| Str += "\"\" "; |
| Str += II->getName(); |
| Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement( |
| SourceRange(TokLocs.front(), TokLocs.back()), Str); |
| } |
| |
| Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc); |
| |
| return Actions.checkLiteralOperatorId(SS, Result); |
| } |
| |
| // Parse a conversion-function-id. |
| // |
| // conversion-function-id: [C++ 12.3.2] |
| // operator conversion-type-id |
| // |
| // conversion-type-id: |
| // type-specifier-seq conversion-declarator[opt] |
| // |
| // conversion-declarator: |
| // ptr-operator conversion-declarator[opt] |
| |
| // Parse the type-specifier-seq. |
| DeclSpec DS(AttrFactory); |
| if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType? |
| return true; |
| |
| // Parse the conversion-declarator, which is merely a sequence of |
| // ptr-operators. |
| Declarator D(DS, Declarator::ConversionIdContext); |
| ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr); |
| |
| // Finish up the type. |
| TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D); |
| if (Ty.isInvalid()) |
| return true; |
| |
| // Note that this is a conversion-function-id. |
| Result.setConversionFunctionId(KeywordLoc, Ty.get(), |
| D.getSourceRange().getEnd()); |
| return false; |
| } |
| |
| /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the |
| /// name of an entity. |
| /// |
| /// \code |
| /// unqualified-id: [C++ expr.prim.general] |
| /// identifier |
| /// operator-function-id |
| /// conversion-function-id |
| /// [C++0x] literal-operator-id [TODO] |
| /// ~ class-name |
| /// template-id |
| /// |
| /// \endcode |
| /// |
| /// \param SS The nested-name-specifier that preceded this unqualified-id. If |
| /// non-empty, then we are parsing the unqualified-id of a qualified-id. |
| /// |
| /// \param EnteringContext whether we are entering the scope of the |
| /// nested-name-specifier. |
| /// |
| /// \param AllowDestructorName whether we allow parsing of a destructor name. |
| /// |
| /// \param AllowConstructorName whether we allow parsing a constructor name. |
| /// |
| /// \param ObjectType if this unqualified-id occurs within a member access |
| /// expression, the type of the base object whose member is being accessed. |
| /// |
| /// \param Result on a successful parse, contains the parsed unqualified-id. |
| /// |
| /// \returns true if parsing fails, false otherwise. |
| bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, |
| bool AllowDestructorName, |
| bool AllowConstructorName, |
| ParsedType ObjectType, |
| SourceLocation& TemplateKWLoc, |
| UnqualifiedId &Result) { |
| |
| // Handle 'A::template B'. This is for template-ids which have not |
| // already been annotated by ParseOptionalCXXScopeSpecifier(). |
| bool TemplateSpecified = false; |
| if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) && |
| (ObjectType || SS.isSet())) { |
| TemplateSpecified = true; |
| TemplateKWLoc = ConsumeToken(); |
| } |
| |
| // unqualified-id: |
| // identifier |
| // template-id (when it hasn't already been annotated) |
| if (Tok.is(tok::identifier)) { |
| // Consume the identifier. |
| IdentifierInfo *Id = Tok.getIdentifierInfo(); |
| SourceLocation IdLoc = ConsumeToken(); |
| |
| if (!getLangOpts().CPlusPlus) { |
| // If we're not in C++, only identifiers matter. Record the |
| // identifier and return. |
| Result.setIdentifier(Id, IdLoc); |
| return false; |
| } |
| |
| if (AllowConstructorName && |
| Actions.isCurrentClassName(*Id, getCurScope(), &SS)) { |
| // We have parsed a constructor name. |
| ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(), |
| &SS, false, false, |
| ParsedType(), |
| /*IsCtorOrDtorName=*/true, |
| /*NonTrivialTypeSourceInfo=*/true); |
| Result.setConstructorName(Ty, IdLoc, IdLoc); |
| } else { |
| // We have parsed an identifier. |
| Result.setIdentifier(Id, IdLoc); |
| } |
| |
| // If the next token is a '<', we may have a template. |
| if (TemplateSpecified || Tok.is(tok::less)) |
| return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc, |
| EnteringContext, ObjectType, |
| Result, TemplateSpecified); |
| |
| return false; |
| } |
| |
| // unqualified-id: |
| // template-id (already parsed and annotated) |
| if (Tok.is(tok::annot_template_id)) { |
| TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); |
| |
| // If the template-name names the current class, then this is a constructor |
| if (AllowConstructorName && TemplateId->Name && |
| Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { |
| if (SS.isSet()) { |
| // C++ [class.qual]p2 specifies that a qualified template-name |
| // is taken as the constructor name where a constructor can be |
| // declared. Thus, the template arguments are extraneous, so |
| // complain about them and remove them entirely. |
| Diag(TemplateId->TemplateNameLoc, |
| diag::err_out_of_line_constructor_template_id) |
| << TemplateId->Name |
| << FixItHint::CreateRemoval( |
| SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)); |
| ParsedType Ty = Actions.getTypeName(*TemplateId->Name, |
| TemplateId->TemplateNameLoc, |
| getCurScope(), |
| &SS, false, false, |
| ParsedType(), |
| /*IsCtorOrDtorName=*/true, |
| /*NontrivialTypeSourceInfo=*/true); |
| Result.setConstructorName(Ty, TemplateId->TemplateNameLoc, |
| TemplateId->RAngleLoc); |
| ConsumeToken(); |
| return false; |
| } |
| |
| Result.setConstructorTemplateId(TemplateId); |
| ConsumeToken(); |
| return false; |
| } |
| |
| // We have already parsed a template-id; consume the annotation token as |
| // our unqualified-id. |
| Result.setTemplateId(TemplateId); |
| TemplateKWLoc = TemplateId->TemplateKWLoc; |
| ConsumeToken(); |
| return false; |
| } |
| |
| // unqualified-id: |
| // operator-function-id |
| // conversion-function-id |
| if (Tok.is(tok::kw_operator)) { |
| if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result)) |
| return true; |
| |
| // If we have an operator-function-id or a literal-operator-id and the next |
| // token is a '<', we may have a |
| // |
| // template-id: |
| // operator-function-id < template-argument-list[opt] > |
| if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId || |
| Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) && |
| (TemplateSpecified || Tok.is(tok::less))) |
| return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, |
| nullptr, SourceLocation(), |
| EnteringContext, ObjectType, |
| Result, TemplateSpecified); |
| |
| return false; |
| } |
| |
| if (getLangOpts().CPlusPlus && |
| (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) { |
| // C++ [expr.unary.op]p10: |
| // There is an ambiguity in the unary-expression ~X(), where X is a |
| // class-name. The ambiguity is resolved in favor of treating ~ as a |
| // unary complement rather than treating ~X as referring to a destructor. |
| |
| // Parse the '~'. |
| SourceLocation TildeLoc = ConsumeToken(); |
| |
| if (SS.isEmpty() && Tok.is(tok::kw_decltype)) { |
| DeclSpec DS(AttrFactory); |
| SourceLocation EndLoc = ParseDecltypeSpecifier(DS); |
| if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) { |
| Result.setDestructorName(TildeLoc, Type, EndLoc); |
| return false; |
| } |
| return true; |
| } |
| |
| // Parse the class-name. |
| if (Tok.isNot(tok::identifier)) { |
| Diag(Tok, diag::err_destructor_tilde_identifier); |
| return true; |
| } |
| |
| // Parse the class-name (or template-name in a simple-template-id). |
| IdentifierInfo *ClassName = Tok.getIdentifierInfo(); |
| SourceLocation ClassNameLoc = ConsumeToken(); |
| |
| if (TemplateSpecified || Tok.is(tok::less)) { |
| Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc); |
| return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, |
| ClassName, ClassNameLoc, |
| EnteringContext, ObjectType, |
| Result, TemplateSpecified); |
| } |
| |
| // Note that this is a destructor name. |
| ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, |
| ClassNameLoc, getCurScope(), |
| SS, ObjectType, |
| EnteringContext); |
| if (!Ty) |
| return true; |
| |
| Result.setDestructorName(TildeLoc, Ty, ClassNameLoc); |
| return false; |
| } |
| |
| Diag(Tok, diag::err_expected_unqualified_id) |
| << getLangOpts().CPlusPlus; |
| return true; |
| } |
| |
| /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate |
| /// memory in a typesafe manner and call constructors. |
| /// |
| /// This method is called to parse the new expression after the optional :: has |
| /// been already parsed. If the :: was present, "UseGlobal" is true and "Start" |
| /// is its location. Otherwise, "Start" is the location of the 'new' token. |
| /// |
| /// new-expression: |
| /// '::'[opt] 'new' new-placement[opt] new-type-id |
| /// new-initializer[opt] |
| /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' |
| /// new-initializer[opt] |
| /// |
| /// new-placement: |
| /// '(' expression-list ')' |
| /// |
| /// new-type-id: |
| /// type-specifier-seq new-declarator[opt] |
| /// [GNU] attributes type-specifier-seq new-declarator[opt] |
| /// |
| /// new-declarator: |
| /// ptr-operator new-declarator[opt] |
| /// direct-new-declarator |
| /// |
| /// new-initializer: |
| /// '(' expression-list[opt] ')' |
| /// [C++0x] braced-init-list |
| /// |
| ExprResult |
| Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) { |
| assert(Tok.is(tok::kw_new) && "expected 'new' token"); |
| ConsumeToken(); // Consume 'new' |
| |
| // A '(' now can be a new-placement or the '(' wrapping the type-id in the |
| // second form of new-expression. It can't be a new-type-id. |
| |
| ExprVector PlacementArgs; |
| SourceLocation PlacementLParen, PlacementRParen; |
| |
| SourceRange TypeIdParens; |
| DeclSpec DS(AttrFactory); |
| Declarator DeclaratorInfo(DS, Declarator::CXXNewContext); |
| if (Tok.is(tok::l_paren)) { |
| // If it turns out to be a placement, we change the type location. |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| T.consumeOpen(); |
| PlacementLParen = T.getOpenLocation(); |
| if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) { |
| SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); |
| return ExprError(); |
| } |
| |
| T.consumeClose(); |
| PlacementRParen = T.getCloseLocation(); |
| if (PlacementRParen.isInvalid()) { |
| SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); |
| return ExprError(); |
| } |
| |
| if (PlacementArgs.empty()) { |
| // Reset the placement locations. There was no placement. |
| TypeIdParens = T.getRange(); |
| PlacementLParen = PlacementRParen = SourceLocation(); |
| } else { |
| // We still need the type. |
| if (Tok.is(tok::l_paren)) { |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| T.consumeOpen(); |
| MaybeParseGNUAttributes(DeclaratorInfo); |
| ParseSpecifierQualifierList(DS); |
| DeclaratorInfo.SetSourceRange(DS.getSourceRange()); |
| ParseDeclarator(DeclaratorInfo); |
| T.consumeClose(); |
| TypeIdParens = T.getRange(); |
| } else { |
| MaybeParseGNUAttributes(DeclaratorInfo); |
| if (ParseCXXTypeSpecifierSeq(DS)) |
| DeclaratorInfo.setInvalidType(true); |
| else { |
| DeclaratorInfo.SetSourceRange(DS.getSourceRange()); |
| ParseDeclaratorInternal(DeclaratorInfo, |
| &Parser::ParseDirectNewDeclarator); |
| } |
| } |
| } |
| } else { |
| // A new-type-id is a simplified type-id, where essentially the |
| // direct-declarator is replaced by a direct-new-declarator. |
| MaybeParseGNUAttributes(DeclaratorInfo); |
| if (ParseCXXTypeSpecifierSeq(DS)) |
| DeclaratorInfo.setInvalidType(true); |
| else { |
| DeclaratorInfo.SetSourceRange(DS.getSourceRange()); |
| ParseDeclaratorInternal(DeclaratorInfo, |
| &Parser::ParseDirectNewDeclarator); |
| } |
| } |
| if (DeclaratorInfo.isInvalidType()) { |
| SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); |
| return ExprError(); |
| } |
| |
| ExprResult Initializer; |
| |
| if (Tok.is(tok::l_paren)) { |
| SourceLocation ConstructorLParen, ConstructorRParen; |
| ExprVector ConstructorArgs; |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| T.consumeOpen(); |
| ConstructorLParen = T.getOpenLocation(); |
| if (Tok.isNot(tok::r_paren)) { |
| CommaLocsTy CommaLocs; |
| if (ParseExpressionList(ConstructorArgs, CommaLocs)) { |
| SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); |
| return ExprError(); |
| } |
| } |
| T.consumeClose(); |
| ConstructorRParen = T.getCloseLocation(); |
| if (ConstructorRParen.isInvalid()) { |
| SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); |
| return ExprError(); |
| } |
| Initializer = Actions.ActOnParenListExpr(ConstructorLParen, |
| ConstructorRParen, |
| ConstructorArgs); |
| } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) { |
| Diag(Tok.getLocation(), |
| diag::warn_cxx98_compat_generalized_initializer_lists); |
| Initializer = ParseBraceInitializer(); |
| } |
| if (Initializer.isInvalid()) |
| return Initializer; |
| |
| return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen, |
| PlacementArgs, PlacementRParen, |
| TypeIdParens, DeclaratorInfo, Initializer.get()); |
| } |
| |
| /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be |
| /// passed to ParseDeclaratorInternal. |
| /// |
| /// direct-new-declarator: |
| /// '[' expression ']' |
| /// direct-new-declarator '[' constant-expression ']' |
| /// |
| void Parser::ParseDirectNewDeclarator(Declarator &D) { |
| // Parse the array dimensions. |
| bool first = true; |
| while (Tok.is(tok::l_square)) { |
| // An array-size expression can't start with a lambda. |
| if (CheckProhibitedCXX11Attribute()) |
| continue; |
| |
| BalancedDelimiterTracker T(*this, tok::l_square); |
| T.consumeOpen(); |
| |
| ExprResult Size(first ? ParseExpression() |
| : ParseConstantExpression()); |
| if (Size.isInvalid()) { |
| // Recover |
| SkipUntil(tok::r_square, StopAtSemi); |
| return; |
| } |
| first = false; |
| |
| T.consumeClose(); |
| |
| // Attributes here appertain to the array type. C++11 [expr.new]p5. |
| ParsedAttributes Attrs(AttrFactory); |
| MaybeParseCXX11Attributes(Attrs); |
| |
| D.AddTypeInfo(DeclaratorChunk::getArray(0, |
| /*static=*/false, /*star=*/false, |
| Size.get(), |
| T.getOpenLocation(), |
| T.getCloseLocation()), |
| Attrs, T.getCloseLocation()); |
| |
| if (T.getCloseLocation().isInvalid()) |
| return; |
| } |
| } |
| |
| /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id. |
| /// This ambiguity appears in the syntax of the C++ new operator. |
| /// |
| /// new-expression: |
| /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' |
| /// new-initializer[opt] |
| /// |
| /// new-placement: |
| /// '(' expression-list ')' |
| /// |
| bool Parser::ParseExpressionListOrTypeId( |
| SmallVectorImpl<Expr*> &PlacementArgs, |
| Declarator &D) { |
| // The '(' was already consumed. |
| if (isTypeIdInParens()) { |
| ParseSpecifierQualifierList(D.getMutableDeclSpec()); |
| D.SetSourceRange(D.getDeclSpec().getSourceRange()); |
| ParseDeclarator(D); |
| return D.isInvalidType(); |
| } |
| |
| // It's not a type, it has to be an expression list. |
| // Discard the comma locations - ActOnCXXNew has enough parameters. |
| CommaLocsTy CommaLocs; |
| return ParseExpressionList(PlacementArgs, CommaLocs); |
| } |
| |
| /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used |
| /// to free memory allocated by new. |
| /// |
| /// This method is called to parse the 'delete' expression after the optional |
| /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true |
| /// and "Start" is its location. Otherwise, "Start" is the location of the |
| /// 'delete' token. |
| /// |
| /// delete-expression: |
| /// '::'[opt] 'delete' cast-expression |
| /// '::'[opt] 'delete' '[' ']' cast-expression |
| ExprResult |
| Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) { |
| assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword"); |
| ConsumeToken(); // Consume 'delete' |
| |
| // Array delete? |
| bool ArrayDelete = false; |
| if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) { |
| // C++11 [expr.delete]p1: |
| // Whenever the delete keyword is followed by empty square brackets, it |
| // shall be interpreted as [array delete]. |
| // [Footnote: A lambda expression with a lambda-introducer that consists |
| // of empty square brackets can follow the delete keyword if |
| // the lambda expression is enclosed in parentheses.] |
| // FIXME: Produce a better diagnostic if the '[]' is unambiguously a |
| // lambda-introducer. |
| ArrayDelete = true; |
| BalancedDelimiterTracker T(*this, tok::l_square); |
| |
| T.consumeOpen(); |
| T.consumeClose(); |
| if (T.getCloseLocation().isInvalid()) |
| return ExprError(); |
| } |
| |
| ExprResult Operand(ParseCastExpression(false)); |
| if (Operand.isInvalid()) |
| return Operand; |
| |
| return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get()); |
| } |
| |
| static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) { |
| switch (kind) { |
| default: llvm_unreachable("Not a known type trait"); |
| #define TYPE_TRAIT_1(Spelling, Name, Key) \ |
| case tok::kw_ ## Spelling: return UTT_ ## Name; |
| #define TYPE_TRAIT_2(Spelling, Name, Key) \ |
| case tok::kw_ ## Spelling: return BTT_ ## Name; |
| #include "clang/Basic/TokenKinds.def" |
| #define TYPE_TRAIT_N(Spelling, Name, Key) \ |
| case tok::kw_ ## Spelling: return TT_ ## Name; |
| #include "clang/Basic/TokenKinds.def" |
| } |
| } |
| |
| static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) { |
| switch(kind) { |
| default: llvm_unreachable("Not a known binary type trait"); |
| case tok::kw___array_rank: return ATT_ArrayRank; |
| case tok::kw___array_extent: return ATT_ArrayExtent; |
| } |
| } |
| |
| static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) { |
| switch(kind) { |
| default: llvm_unreachable("Not a known unary expression trait."); |
| case tok::kw___is_lvalue_expr: return ET_IsLValueExpr; |
| case tok::kw___is_rvalue_expr: return ET_IsRValueExpr; |
| } |
| } |
| |
| static unsigned TypeTraitArity(tok::TokenKind kind) { |
| switch (kind) { |
| default: llvm_unreachable("Not a known type trait"); |
| #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N; |
| #include "clang/Basic/TokenKinds.def" |
| } |
| } |
| |
| /// \brief Parse the built-in type-trait pseudo-functions that allow |
| /// implementation of the TR1/C++11 type traits templates. |
| /// |
| /// primary-expression: |
| /// unary-type-trait '(' type-id ')' |
| /// binary-type-trait '(' type-id ',' type-id ')' |
| /// type-trait '(' type-id-seq ')' |
| /// |
| /// type-id-seq: |
| /// type-id ...[opt] type-id-seq[opt] |
| /// |
| ExprResult Parser::ParseTypeTrait() { |
| tok::TokenKind Kind = Tok.getKind(); |
| unsigned Arity = TypeTraitArity(Kind); |
| |
| SourceLocation Loc = ConsumeToken(); |
| |
| BalancedDelimiterTracker Parens(*this, tok::l_paren); |
| if (Parens.expectAndConsume()) |
| return ExprError(); |
| |
| SmallVector<ParsedType, 2> Args; |
| do { |
| // Parse the next type. |
| TypeResult Ty = ParseTypeName(); |
| if (Ty.isInvalid()) { |
| Parens.skipToEnd(); |
| return ExprError(); |
| } |
| |
| // Parse the ellipsis, if present. |
| if (Tok.is(tok::ellipsis)) { |
| Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken()); |
| if (Ty.isInvalid()) { |
| Parens.skipToEnd(); |
| return ExprError(); |
| } |
| } |
| |
| // Add this type to the list of arguments. |
| Args.push_back(Ty.get()); |
| } while (TryConsumeToken(tok::comma)); |
| |
| if (Parens.consumeClose()) |
| return ExprError(); |
| |
| SourceLocation EndLoc = Parens.getCloseLocation(); |
| |
| if (Arity && Args.size() != Arity) { |
| Diag(EndLoc, diag::err_type_trait_arity) |
| << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc); |
| return ExprError(); |
| } |
| |
| if (!Arity && Args.empty()) { |
| Diag(EndLoc, diag::err_type_trait_arity) |
| << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc); |
| return ExprError(); |
| } |
| |
| return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc); |
| } |
| |
| /// ParseArrayTypeTrait - Parse the built-in array type-trait |
| /// pseudo-functions. |
| /// |
| /// primary-expression: |
| /// [Embarcadero] '__array_rank' '(' type-id ')' |
| /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')' |
| /// |
| ExprResult Parser::ParseArrayTypeTrait() { |
| ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind()); |
| SourceLocation Loc = ConsumeToken(); |
| |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| if (T.expectAndConsume()) |
| return ExprError(); |
| |
| TypeResult Ty = ParseTypeName(); |
| if (Ty.isInvalid()) { |
| SkipUntil(tok::comma, StopAtSemi); |
| SkipUntil(tok::r_paren, StopAtSemi); |
| return ExprError(); |
| } |
| |
| switch (ATT) { |
| case ATT_ArrayRank: { |
| T.consumeClose(); |
| return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr, |
| T.getCloseLocation()); |
| } |
| case ATT_ArrayExtent: { |
| if (ExpectAndConsume(tok::comma)) { |
| SkipUntil(tok::r_paren, StopAtSemi); |
| return ExprError(); |
| } |
| |
| ExprResult DimExpr = ParseExpression(); |
| T.consumeClose(); |
| |
| return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(), |
| T.getCloseLocation()); |
| } |
| } |
| llvm_unreachable("Invalid ArrayTypeTrait!"); |
| } |
| |
| /// ParseExpressionTrait - Parse built-in expression-trait |
| /// pseudo-functions like __is_lvalue_expr( xxx ). |
| /// |
| /// primary-expression: |
| /// [Embarcadero] expression-trait '(' expression ')' |
| /// |
| ExprResult Parser::ParseExpressionTrait() { |
| ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind()); |
| SourceLocation Loc = ConsumeToken(); |
| |
| BalancedDelimiterTracker T(*this, tok::l_paren); |
| if (T.expectAndConsume()) |
| return ExprError(); |
| |
| ExprResult Expr = ParseExpression(); |
| |
| T.consumeClose(); |
| |
| return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(), |
| T.getCloseLocation()); |
| } |
| |
| |
| /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a |
| /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate |
| /// based on the context past the parens. |
| ExprResult |
| Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, |
| ParsedType &CastTy, |
| BalancedDelimiterTracker &Tracker, |
| ColonProtectionRAIIObject &ColonProt) { |
| assert(getLangOpts().CPlusPlus && "Should only be called for C++!"); |
| assert(ExprType == CastExpr && "Compound literals are not ambiguous!"); |
| assert(isTypeIdInParens() && "Not a type-id!"); |
| |
| ExprResult Result(true); |
| CastTy = ParsedType(); |
| |
| // We need to disambiguate a very ugly part of the C++ syntax: |
| // |
| // (T())x; - type-id |
| // (T())*x; - type-id |
| // (T())/x; - expression |
| // (T()); - expression |
| // |
| // The bad news is that we cannot use the specialized tentative parser, since |
| // it can only verify that the thing inside the parens can be parsed as |
| // type-id, it is not useful for determining the context past the parens. |
| // |
| // The good news is that the parser can disambiguate this part without |
| // making any unnecessary Action calls. |
| // |
| // It uses a scheme similar to parsing inline methods. The parenthesized |
| // tokens are cached, the context that follows is determined (possibly by |
| // parsing a cast-expression), and then we re-introduce the cached tokens |
| // into the token stream and parse them appropriately. |
| |
| ParenParseOption ParseAs; |
| CachedTokens Toks; |
| |
| // Store the tokens of the parentheses. We will parse them after we determine |
| // the context that follows them. |
| if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) { |
| // We didn't find the ')' we expected. |
| Tracker.consumeClose(); |
| return ExprError(); |
| } |
| |
| if (Tok.is(tok::l_brace)) { |
| ParseAs = CompoundLiteral; |
| } else { |
| bool NotCastExpr; |
| if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { |
| NotCastExpr = true; |
| } else { |
| // Try parsing the cast-expression that may follow. |
| // If it is not a cast-expression, NotCastExpr will be true and no token |
| // will be consumed. |
| ColonProt.restore(); |
| Result = ParseCastExpression(false/*isUnaryExpression*/, |
|