blob: b0e2ddd91362a3ef17f591e8d08d4be7738cb2be [file] [log] [blame]
//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These tablegen backends emit Clang attribute processing code
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
class FlattenedSpelling {
std::string V, N, NS;
bool K;
public:
FlattenedSpelling(const std::string &Variety, const std::string &Name,
const std::string &Namespace, bool KnownToGCC) :
V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
explicit FlattenedSpelling(const Record &Spelling) :
V(Spelling.getValueAsString("Variety")),
N(Spelling.getValueAsString("Name")) {
assert(V != "GCC" && V != "Clang" &&
"Given a GCC spelling, which means this hasn't been flattened!");
if (V == "CXX11" || V == "C2x" || V == "Pragma")
NS = Spelling.getValueAsString("Namespace");
bool Unset;
K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset);
}
const std::string &variety() const { return V; }
const std::string &name() const { return N; }
const std::string &nameSpace() const { return NS; }
bool knownToGCC() const { return K; }
};
} // end anonymous namespace
static std::vector<FlattenedSpelling>
GetFlattenedSpellings(const Record &Attr) {
std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
std::vector<FlattenedSpelling> Ret;
for (const auto &Spelling : Spellings) {
StringRef Variety = Spelling->getValueAsString("Variety");
StringRef Name = Spelling->getValueAsString("Name");
if (Variety == "GCC") {
// Gin up two new spelling objects to add into the list.
Ret.emplace_back("GNU", Name, "", true);
Ret.emplace_back("CXX11", Name, "gnu", true);
} else if (Variety == "Clang") {
Ret.emplace_back("GNU", Name, "", false);
Ret.emplace_back("CXX11", Name, "clang", false);
} else
Ret.push_back(FlattenedSpelling(*Spelling));
}
return Ret;
}
static std::string ReadPCHRecord(StringRef type) {
return StringSwitch<std::string>(type)
.EndsWith("Decl *", "Record.GetLocalDeclAs<"
+ std::string(type, 0, type.size()-1) + ">(Record.readInt())")
.Case("TypeSourceInfo *", "Record.getTypeSourceInfo()")
.Case("Expr *", "Record.readExpr()")
.Case("IdentifierInfo *", "Record.getIdentifierInfo()")
.Case("StringRef", "Record.readString()")
.Default("Record.readInt()");
}
// Get a type that is suitable for storing an object of the specified type.
static StringRef getStorageType(StringRef type) {
return StringSwitch<StringRef>(type)
.Case("StringRef", "std::string")
.Default(type);
}
// Assumes that the way to get the value is SA->getname()
static std::string WritePCHRecord(StringRef type, StringRef name) {
return "Record." + StringSwitch<std::string>(type)
.EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
.Case("TypeSourceInfo *", "AddTypeSourceInfo(" + std::string(name) + ");\n")
.Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
.Case("IdentifierInfo *", "AddIdentifierRef(" + std::string(name) + ");\n")
.Case("StringRef", "AddString(" + std::string(name) + ");\n")
.Default("push_back(" + std::string(name) + ");\n");
}
// Normalize attribute name by removing leading and trailing
// underscores. For example, __foo, foo__, __foo__ would
// become foo.
static StringRef NormalizeAttrName(StringRef AttrName) {
AttrName.consume_front("__");
AttrName.consume_back("__");
return AttrName;
}
// Normalize the name by removing any and all leading and trailing underscores.
// This is different from NormalizeAttrName in that it also handles names like
// _pascal and __pascal.
static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
return Name.trim("_");
}
// Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
// removing "__" if it appears at the beginning and end of the attribute's name.
static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
}
return AttrSpelling;
}
typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
ParsedAttrMap *Dupes = nullptr) {
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::set<std::string> Seen;
ParsedAttrMap R;
for (const auto *Attr : Attrs) {
if (Attr->getValueAsBit("SemaHandler")) {
std::string AN;
if (Attr->isSubClassOf("TargetSpecificAttr") &&
!Attr->isValueUnset("ParseKind")) {
AN = Attr->getValueAsString("ParseKind");
// If this attribute has already been handled, it does not need to be
// handled again.
if (Seen.find(AN) != Seen.end()) {
if (Dupes)
Dupes->push_back(std::make_pair(AN, Attr));
continue;
}
Seen.insert(AN);
} else
AN = NormalizeAttrName(Attr->getName()).str();
R.push_back(std::make_pair(AN, Attr));
}
}
return R;
}
namespace {
class Argument {
std::string lowerName, upperName;
StringRef attrName;
bool isOpt;
bool Fake;
public:
Argument(const Record &Arg, StringRef Attr)
: lowerName(Arg.getValueAsString("Name")), upperName(lowerName),
attrName(Attr), isOpt(false), Fake(false) {
if (!lowerName.empty()) {
lowerName[0] = std::tolower(lowerName[0]);
upperName[0] = std::toupper(upperName[0]);
}
// Work around MinGW's macro definition of 'interface' to 'struct'. We
// have an attribute argument called 'Interface', so only the lower case
// name conflicts with the macro definition.
if (lowerName == "interface")
lowerName = "interface_";
}
virtual ~Argument() = default;
StringRef getLowerName() const { return lowerName; }
StringRef getUpperName() const { return upperName; }
StringRef getAttrName() const { return attrName; }
bool isOptional() const { return isOpt; }
void setOptional(bool set) { isOpt = set; }
bool isFake() const { return Fake; }
void setFake(bool fake) { Fake = fake; }
// These functions print the argument contents formatted in different ways.
virtual void writeAccessors(raw_ostream &OS) const = 0;
virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
virtual void writeCloneArgs(raw_ostream &OS) const = 0;
virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
virtual void writeCtorBody(raw_ostream &OS) const {}
virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
virtual void writeCtorParameters(raw_ostream &OS) const = 0;
virtual void writeDeclarations(raw_ostream &OS) const = 0;
virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
virtual void writePCHWrite(raw_ostream &OS) const = 0;
virtual void writeValue(raw_ostream &OS) const = 0;
virtual void writeDump(raw_ostream &OS) const = 0;
virtual void writeDumpChildren(raw_ostream &OS) const {}
virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
virtual bool isEnumArg() const { return false; }
virtual bool isVariadicEnumArg() const { return false; }
virtual bool isVariadic() const { return false; }
virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
OS << getUpperName();
}
};
class SimpleArgument : public Argument {
std::string type;
public:
SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
: Argument(Arg, Attr), type(std::move(T)) {}
std::string getType() const { return type; }
void writeAccessors(raw_ostream &OS) const override {
OS << " " << type << " get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "()";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << type << " " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << type << " " << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
std::string read = ReadPCHRecord(type);
OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " " << WritePCHRecord(type, "SA->get" +
std::string(getUpperName()) + "()");
}
void writeValue(raw_ostream &OS) const override {
if (type == "FunctionDecl *") {
OS << "\" << get" << getUpperName()
<< "()->getNameInfo().getAsString() << \"";
} else if (type == "IdentifierInfo *") {
OS << "\";\n";
if (isOptional())
OS << " if (get" << getUpperName() << "()) ";
else
OS << " ";
OS << "OS << get" << getUpperName() << "()->getName();\n";
OS << " OS << \"";
} else if (type == "TypeSourceInfo *") {
OS << "\" << get" << getUpperName() << "().getAsString() << \"";
} else {
OS << "\" << get" << getUpperName() << "() << \"";
}
}
void writeDump(raw_ostream &OS) const override {
if (type == "FunctionDecl *" || type == "NamedDecl *") {
OS << " OS << \" \";\n";
OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
} else if (type == "IdentifierInfo *") {
if (isOptional())
OS << " if (SA->get" << getUpperName() << "())\n ";
OS << " OS << \" \" << SA->get" << getUpperName()
<< "()->getName();\n";
} else if (type == "TypeSourceInfo *") {
OS << " OS << \" \" << SA->get" << getUpperName()
<< "().getAsString();\n";
} else if (type == "bool") {
OS << " if (SA->get" << getUpperName() << "()) OS << \" "
<< getUpperName() << "\";\n";
} else if (type == "int" || type == "unsigned") {
OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
} else {
llvm_unreachable("Unknown SimpleArgument type!");
}
}
};
class DefaultSimpleArgument : public SimpleArgument {
int64_t Default;
public:
DefaultSimpleArgument(const Record &Arg, StringRef Attr,
std::string T, int64_t Default)
: SimpleArgument(Arg, Attr, T), Default(Default) {}
void writeAccessors(raw_ostream &OS) const override {
SimpleArgument::writeAccessors(OS);
OS << "\n\n static const " << getType() << " Default" << getUpperName()
<< " = ";
if (getType() == "bool")
OS << (Default != 0 ? "true" : "false");
else
OS << Default;
OS << ";";
}
};
class StringArgument : public Argument {
public:
StringArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
OS << " return llvm::StringRef(" << getLowerName() << ", "
<< getLowerName() << "Length);\n";
OS << " }\n";
OS << " unsigned get" << getUpperName() << "Length() const {\n";
OS << " return " << getLowerName() << "Length;\n";
OS << " }\n";
OS << " void set" << getUpperName()
<< "(ASTContext &C, llvm::StringRef S) {\n";
OS << " " << getLowerName() << "Length = S.size();\n";
OS << " this->" << getLowerName() << " = new (C, 1) char ["
<< getLowerName() << "Length];\n";
OS << " if (!S.empty())\n";
OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
<< getLowerName() << "Length);\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "get" << getUpperName() << "()";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " if (!" << getUpperName() << ".empty())\n";
OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
<< ".data(), " << getLowerName() << "Length);\n";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
<< getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
<< "Length])";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "llvm::StringRef " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "unsigned " << getLowerName() << "Length;\n";
OS << "char *" << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " std::string " << getLowerName()
<< "= Record.readString();\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
}
void writeValue(raw_ostream &OS) const override {
OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
}
void writeDump(raw_ostream &OS) const override {
OS << " OS << \" \\\"\" << SA->get" << getUpperName()
<< "() << \"\\\"\";\n";
}
};
class AlignedArgument : public Argument {
public:
AlignedArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " bool is" << getUpperName() << "Dependent() const;\n";
OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
OS << " bool is" << getUpperName() << "Expr() const {\n";
OS << " return is" << getLowerName() << "Expr;\n";
OS << " }\n";
OS << " Expr *get" << getUpperName() << "Expr() const {\n";
OS << " assert(is" << getLowerName() << "Expr);\n";
OS << " return " << getLowerName() << "Expr;\n";
OS << " }\n";
OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
OS << " assert(!is" << getLowerName() << "Expr);\n";
OS << " return " << getLowerName() << "Type;\n";
OS << " }";
}
void writeAccessorDefinitions(raw_ostream &OS) const override {
OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
<< "Dependent() const {\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " return " << getLowerName() << "Expr && (" << getLowerName()
<< "Expr->isValueDependent() || " << getLowerName()
<< "Expr->isTypeDependent());\n";
OS << " else\n";
OS << " return " << getLowerName()
<< "Type->getType()->isDependentType();\n";
OS << "}\n";
// FIXME: Do not do the calculation here
// FIXME: Handle types correctly
// A null pointer means maximum alignment
OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
<< "(ASTContext &Ctx) const {\n";
OS << " assert(!is" << getUpperName() << "Dependent());\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " return " << getLowerName() << "Expr ? " << getLowerName()
<< "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
<< " * Ctx.getCharWidth() : "
<< "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
OS << " else\n";
OS << " return 0; // FIXME\n";
OS << "}\n";
}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
StringRef Name = getUpperName();
OS << " if (A->is" << Name << "Expr()) {\n"
<< " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
<< " return false;\n"
<< " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
<< " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
<< " return false;\n"
<< " }\n";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr, is" << getLowerName()
<< "Expr ? static_cast<void*>(" << getLowerName()
<< "Expr) : " << getLowerName()
<< "Type";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
// FIXME: move the definition in Sema::InstantiateAttrs to here.
// In the meantime, aligned attributes are cloned.
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
<< getUpperName() << ");\n";
OS << " else\n";
OS << " " << getLowerName()
<< "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
<< ");\n";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr(false)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
}
void writeImplicitCtorArgs(raw_ostream &OS) const override {
OS << "Is" << getUpperName() << "Expr, " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "bool is" << getLowerName() << "Expr;\n";
OS << "union {\n";
OS << "Expr *" << getLowerName() << "Expr;\n";
OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
OS << "};";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
OS << " void *" << getLowerName() << "Ptr;\n";
OS << " if (is" << getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
OS << " else\n";
OS << " " << getLowerName()
<< "Ptr = Record.getTypeSourceInfo();\n";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
OS << " if (SA->is" << getUpperName() << "Expr())\n";
OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
OS << " else\n";
OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
<< "Type());\n";
}
void writeValue(raw_ostream &OS) const override {
OS << "\";\n";
// The aligned attribute argument expression is optional.
OS << " if (is" << getLowerName() << "Expr && "
<< getLowerName() << "Expr)\n";
OS << " " << getLowerName() << "Expr->printPretty(OS, nullptr, Policy);\n";
OS << " OS << \"";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " if (SA->is" << getUpperName() << "Expr())\n";
OS << " dumpStmt(SA->get" << getUpperName() << "Expr());\n";
OS << " else\n";
OS << " dumpType(SA->get" << getUpperName()
<< "Type()->getType());\n";
}
void writeHasChildren(raw_ostream &OS) const override {
OS << "SA->is" << getUpperName() << "Expr()";
}
};
class VariadicArgument : public Argument {
std::string Type, ArgName, ArgSizeName, RangeName;
protected:
// Assumed to receive a parameter: raw_ostream OS.
virtual void writeValueImpl(raw_ostream &OS) const {
OS << " OS << Val;\n";
}
public:
VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
: Argument(Arg, Attr), Type(std::move(T)),
ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
RangeName(getLowerName()) {}
const std::string &getType() const { return Type; }
const std::string &getArgName() const { return ArgName; }
const std::string &getArgSizeName() const { return ArgSizeName; }
bool isVariadic() const override { return true; }
void writeAccessors(raw_ostream &OS) const override {
std::string IteratorType = getLowerName().str() + "_iterator";
std::string BeginFn = getLowerName().str() + "_begin()";
std::string EndFn = getLowerName().str() + "_end()";
OS << " typedef " << Type << "* " << IteratorType << ";\n";
OS << " " << IteratorType << " " << BeginFn << " const {"
<< " return " << ArgName << "; }\n";
OS << " " << IteratorType << " " << EndFn << " const {"
<< " return " << ArgName << " + " << ArgSizeName << "; }\n";
OS << " unsigned " << getLowerName() << "_size() const {"
<< " return " << ArgSizeName << "; }\n";
OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
<< "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
<< "); }\n";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << ArgName << ", " << ArgSizeName;
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
// This isn't elegant, but we have to go through public methods...
OS << "A->" << getLowerName() << "_begin(), "
<< "A->" << getLowerName() << "_size()";
}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
// FIXME: Traverse the elements.
}
void writeCtorBody(raw_ostream &OS) const override {
OS << " std::copy(" << getUpperName() << ", " << getUpperName()
<< " + " << ArgSizeName << ", " << ArgName << ");\n";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << ArgSizeName << "(" << getUpperName() << "Size), "
<< ArgName << "(new (Ctx, 16) " << getType() << "["
<< ArgSizeName << "])";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << getType() << " *" << getUpperName() << ", unsigned "
<< getUpperName() << "Size";
}
void writeImplicitCtorArgs(raw_ostream &OS) const override {
OS << getUpperName() << ", " << getUpperName() << "Size";
}
void writeDeclarations(raw_ostream &OS) const override {
OS << " unsigned " << ArgSizeName << ";\n";
OS << " " << getType() << " *" << ArgName << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
OS << " SmallVector<" << getType() << ", 4> "
<< getLowerName() << ";\n";
OS << " " << getLowerName() << ".reserve(" << getLowerName()
<< "Size);\n";
// If we can't store the values in the current type (if it's something
// like StringRef), store them in a different type and convert the
// container afterwards.
std::string StorageType = getStorageType(getType());
std::string StorageName = getLowerName();
if (StorageType != getType()) {
StorageName += "Storage";
OS << " SmallVector<" << StorageType << ", 4> "
<< StorageName << ";\n";
OS << " " << StorageName << ".reserve(" << getLowerName()
<< "Size);\n";
}
OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
std::string read = ReadPCHRecord(Type);
OS << " " << StorageName << ".push_back(" << read << ");\n";
if (StorageType != getType()) {
OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
OS << " " << getLowerName() << ".push_back("
<< StorageName << "[i]);\n";
}
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName() << ".data(), " << getLowerName() << "Size";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
OS << " for (auto &Val : SA->" << RangeName << "())\n";
OS << " " << WritePCHRecord(Type, "Val");
}
void writeValue(raw_ostream &OS) const override {
OS << "\";\n";
OS << " bool isFirst = true;\n"
<< " for (const auto &Val : " << RangeName << "()) {\n"
<< " if (isFirst) isFirst = false;\n"
<< " else OS << \", \";\n";
writeValueImpl(OS);
OS << " }\n";
OS << " OS << \"";
}
void writeDump(raw_ostream &OS) const override {
OS << " for (const auto &Val : SA->" << RangeName << "())\n";
OS << " OS << \" \" << Val;\n";
}
};
// Unique the enums, but maintain the original declaration ordering.
std::vector<StringRef>
uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
std::vector<StringRef> uniques;
SmallDenseSet<StringRef, 8> unique_set;
for (const auto &i : enums) {
if (unique_set.insert(i).second)
uniques.push_back(i);
}
return uniques;
}
class EnumArgument : public Argument {
std::string type;
std::vector<StringRef> values, enums, uniques;
public:
EnumArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr), type(Arg.getValueAsString("Type")),
values(Arg.getValueAsListOfStrings("Values")),
enums(Arg.getValueAsListOfStrings("Enums")),
uniques(uniqueEnumsInOrder(enums))
{
// FIXME: Emit a proper error
assert(!uniques.empty());
}
bool isEnumArg() const override { return true; }
void writeAccessors(raw_ostream &OS) const override {
OS << " " << type << " get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << type << "(0))";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << type << " " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
auto i = uniques.cbegin(), e = uniques.cend();
// The last one needs to not have a comma.
--e;
OS << "public:\n";
OS << " enum " << type << " {\n";
for (; i != e; ++i)
OS << " " << *i << ",\n";
OS << " " << *e << "\n";
OS << " };\n";
OS << "private:\n";
OS << " " << type << " " << getLowerName() << ";";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName()
<< "(static_cast<" << getAttrName() << "Attr::" << type
<< ">(Record.readInt()));\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
}
void writeValue(raw_ostream &OS) const override {
// FIXME: this isn't 100% correct -- some enum arguments require printing
// as a string literal, while others require printing as an identifier.
// Tablegen currently does not distinguish between the two forms.
OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
<< getUpperName() << "()) << \"\\\"";
}
void writeDump(raw_ostream &OS) const override {
OS << " switch(SA->get" << getUpperName() << "()) {\n";
for (const auto &I : uniques) {
OS << " case " << getAttrName() << "Attr::" << I << ":\n";
OS << " OS << \" " << I << "\";\n";
OS << " break;\n";
}
OS << " }\n";
}
void writeConversion(raw_ostream &OS) const {
OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
OS << type << " &Out) {\n";
OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
OS << type << ">>(Val)\n";
for (size_t I = 0; I < enums.size(); ++I) {
OS << " .Case(\"" << values[I] << "\", ";
OS << getAttrName() << "Attr::" << enums[I] << ")\n";
}
OS << " .Default(Optional<" << type << ">());\n";
OS << " if (R) {\n";
OS << " Out = *R;\n return true;\n }\n";
OS << " return false;\n";
OS << " }\n\n";
// Mapping from enumeration values back to enumeration strings isn't
// trivial because some enumeration values have multiple named
// enumerators, such as type_visibility(internal) and
// type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
OS << " static const char *Convert" << type << "ToStr("
<< type << " Val) {\n"
<< " switch(Val) {\n";
SmallDenseSet<StringRef, 8> Uniques;
for (size_t I = 0; I < enums.size(); ++I) {
if (Uniques.insert(enums[I]).second)
OS << " case " << getAttrName() << "Attr::" << enums[I]
<< ": return \"" << values[I] << "\";\n";
}
OS << " }\n"
<< " llvm_unreachable(\"No enumerator with that value\");\n"
<< " }\n";
}
};
class VariadicEnumArgument: public VariadicArgument {
std::string type, QualifiedTypeName;
std::vector<StringRef> values, enums, uniques;
protected:
void writeValueImpl(raw_ostream &OS) const override {
// FIXME: this isn't 100% correct -- some enum arguments require printing
// as a string literal, while others require printing as an identifier.
// Tablegen currently does not distinguish between the two forms.
OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
<< "ToStr(Val)" << "<< \"\\\"\";\n";
}
public:
VariadicEnumArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")),
type(Arg.getValueAsString("Type")),
values(Arg.getValueAsListOfStrings("Values")),
enums(Arg.getValueAsListOfStrings("Enums")),
uniques(uniqueEnumsInOrder(enums))
{
QualifiedTypeName = getAttrName().str() + "Attr::" + type;
// FIXME: Emit a proper error
assert(!uniques.empty());
}
bool isVariadicEnumArg() const override { return true; }
void writeDeclarations(raw_ostream &OS) const override {
auto i = uniques.cbegin(), e = uniques.cend();
// The last one needs to not have a comma.
--e;
OS << "public:\n";
OS << " enum " << type << " {\n";
for (; i != e; ++i)
OS << " " << *i << ",\n";
OS << " " << *e << "\n";
OS << " };\n";
OS << "private:\n";
VariadicArgument::writeDeclarations(OS);
}
void writeDump(raw_ostream &OS) const override {
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I) {\n";
OS << " switch(*I) {\n";
for (const auto &UI : uniques) {
OS << " case " << getAttrName() << "Attr::" << UI << ":\n";
OS << " OS << \" " << UI << "\";\n";
OS << " break;\n";
}
OS << " }\n";
OS << " }\n";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
<< ";\n";
OS << " " << getLowerName() << ".reserve(" << getLowerName()
<< "Size);\n";
OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
OS << " " << getLowerName() << ".push_back(" << "static_cast<"
<< QualifiedTypeName << ">(Record.readInt()));\n";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
<< getLowerName() << "_end(); i != e; ++i)\n";
OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)");
}
void writeConversion(raw_ostream &OS) const {
OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
OS << type << " &Out) {\n";
OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
OS << type << ">>(Val)\n";
for (size_t I = 0; I < enums.size(); ++I) {
OS << " .Case(\"" << values[I] << "\", ";
OS << getAttrName() << "Attr::" << enums[I] << ")\n";
}
OS << " .Default(Optional<" << type << ">());\n";
OS << " if (R) {\n";
OS << " Out = *R;\n return true;\n }\n";
OS << " return false;\n";
OS << " }\n\n";
OS << " static const char *Convert" << type << "ToStr("
<< type << " Val) {\n"
<< " switch(Val) {\n";
SmallDenseSet<StringRef, 8> Uniques;
for (size_t I = 0; I < enums.size(); ++I) {
if (Uniques.insert(enums[I]).second)
OS << " case " << getAttrName() << "Attr::" << enums[I]
<< ": return \"" << values[I] << "\";\n";
}
OS << " }\n"
<< " llvm_unreachable(\"No enumerator with that value\");\n"
<< " }\n";
}
};
class VersionArgument : public Argument {
public:
VersionArgument(const Record &Arg, StringRef Attr)
: Argument(Arg, Attr)
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " VersionTuple get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }\n";
OS << " void set" << getUpperName()
<< "(ASTContext &C, VersionTuple V) {\n";
OS << " " << getLowerName() << " = V;\n";
OS << " }";
}
void writeCloneArgs(raw_ostream &OS) const override {
OS << "get" << getUpperName() << "()";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "()";
}
void writeCtorInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "(" << getUpperName() << ")";
}
void writeCtorDefaultInitializers(raw_ostream &OS) const override {
OS << getLowerName() << "()";
}
void writeCtorParameters(raw_ostream &OS) const override {
OS << "VersionTuple " << getUpperName();
}
void writeDeclarations(raw_ostream &OS) const override {
OS << "VersionTuple " << getLowerName() << ";\n";
}
void writePCHReadDecls(raw_ostream &OS) const override {
OS << " VersionTuple " << getLowerName()
<< "= Record.readVersionTuple();\n";
}
void writePCHReadArgs(raw_ostream &OS) const override {
OS << getLowerName();
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
}
void writeValue(raw_ostream &OS) const override {
OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
}
void writeDump(raw_ostream &OS) const override {
OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
}
};
class ExprArgument : public SimpleArgument {
public:
ExprArgument(const Record &Arg, StringRef Attr)
: SimpleArgument(Arg, Attr, "Expr *")
{}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " if (!"
<< "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
OS << " return false;\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "tempInst" << getUpperName();
}
void writeTemplateInstantiation(raw_ostream &OS) const override {
OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
OS << " {\n";
OS << " EnterExpressionEvaluationContext "
<< "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
OS << " ExprResult " << "Result = S.SubstExpr("
<< "A->get" << getUpperName() << "(), TemplateArgs);\n";
OS << " tempInst" << getUpperName() << " = "
<< "Result.getAs<Expr>();\n";
OS << " }\n";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " dumpStmt(SA->get" << getUpperName() << "());\n";
}
void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
};
class VariadicExprArgument : public VariadicArgument {
public:
VariadicExprArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "Expr *")
{}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " {\n";
OS << " " << getType() << " *I = A->" << getLowerName()
<< "_begin();\n";
OS << " " << getType() << " *E = A->" << getLowerName()
<< "_end();\n";
OS << " for (; I != E; ++I) {\n";
OS << " if (!getDerived().TraverseStmt(*I))\n";
OS << " return false;\n";
OS << " }\n";
OS << " }\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "tempInst" << getUpperName() << ", "
<< "A->" << getLowerName() << "_size()";
}
void writeTemplateInstantiation(raw_ostream &OS) const override {
OS << " auto *tempInst" << getUpperName()
<< " = new (C, 16) " << getType()
<< "[A->" << getLowerName() << "_size()];\n";
OS << " {\n";
OS << " EnterExpressionEvaluationContext "
<< "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
OS << " " << getType() << " *TI = tempInst" << getUpperName()
<< ";\n";
OS << " " << getType() << " *I = A->" << getLowerName()
<< "_begin();\n";
OS << " " << getType() << " *E = A->" << getLowerName()
<< "_end();\n";
OS << " for (; I != E; ++I, ++TI) {\n";
OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
OS << " *TI = Result.getAs<Expr>();\n";
OS << " }\n";
OS << " }\n";
}
void writeDump(raw_ostream &OS) const override {}
void writeDumpChildren(raw_ostream &OS) const override {
OS << " for (" << getAttrName() << "Attr::" << getLowerName()
<< "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
<< getLowerName() << "_end(); I != E; ++I)\n";
OS << " dumpStmt(*I);\n";
}
void writeHasChildren(raw_ostream &OS) const override {
OS << "SA->" << getLowerName() << "_begin() != "
<< "SA->" << getLowerName() << "_end()";
}
};
class VariadicStringArgument : public VariadicArgument {
public:
VariadicStringArgument(const Record &Arg, StringRef Attr)
: VariadicArgument(Arg, Attr, "StringRef")
{}
void writeCtorBody(raw_ostream &OS) const override {
OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
" ++I) {\n"
" StringRef Ref = " << getUpperName() << "[I];\n"
" if (!Ref.empty()) {\n"
" char *Mem = new (Ctx, 1) char[Ref.size()];\n"
" std::memcpy(Mem, Ref.data(), Ref.size());\n"
" " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
" }\n"
" }\n";
}
void writeValueImpl(raw_ostream &OS) const override {
OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
}
};
class TypeArgument : public SimpleArgument {
public:
TypeArgument(const Record &Arg, StringRef Attr)
: SimpleArgument(Arg, Attr, "TypeSourceInfo *")
{}
void writeAccessors(raw_ostream &OS) const override {
OS << " QualType get" << getUpperName() << "() const {\n";
OS << " return " << getLowerName() << "->getType();\n";
OS << " }";
OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
OS << " return " << getLowerName() << ";\n";
OS << " }";
}
void writeASTVisitorTraversal(raw_ostream &OS) const override {
OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
OS << " return false;\n";
}
void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
OS << "A->get" << getUpperName() << "Loc()";
}
void writePCHWrite(raw_ostream &OS) const override {
OS << " " << WritePCHRecord(
getType(), "SA->get" + std::string(getUpperName()) + "Loc()");
}
};
} // end anonymous namespace
static std::unique_ptr<Argument>
createArgument(const Record &Arg, StringRef Attr,
const Record *Search = nullptr) {
if (!Search)
Search = &Arg;
std::unique_ptr<Argument> Ptr;
llvm::StringRef ArgName = Search->getName();
if (ArgName == "AlignedArgument")
Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr);
else if (ArgName == "EnumArgument")
Ptr = llvm::make_unique<EnumArgument>(Arg, Attr);
else if (ArgName == "ExprArgument")
Ptr = llvm::make_unique<ExprArgument>(Arg, Attr);
else if (ArgName == "FunctionArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *");
else if (ArgName == "NamedArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "NamedDecl *");
else if (ArgName == "IdentifierArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
else if (ArgName == "DefaultBoolArgument")
Ptr = llvm::make_unique<DefaultSimpleArgument>(
Arg, Attr, "bool", Arg.getValueAsBit("Default"));
else if (ArgName == "BoolArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool");
else if (ArgName == "DefaultIntArgument")
Ptr = llvm::make_unique<DefaultSimpleArgument>(
Arg, Attr, "int", Arg.getValueAsInt("Default"));
else if (ArgName == "IntArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int");
else if (ArgName == "StringArgument")
Ptr = llvm::make_unique<StringArgument>(Arg, Attr);
else if (ArgName == "TypeArgument")
Ptr = llvm::make_unique<TypeArgument>(Arg, Attr);
else if (ArgName == "UnsignedArgument")
Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
else if (ArgName == "VariadicUnsignedArgument")
Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
else if (ArgName == "VariadicStringArgument")
Ptr = llvm::make_unique<VariadicStringArgument>(Arg, Attr);
else if (ArgName == "VariadicEnumArgument")
Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr);
else if (ArgName == "VariadicExprArgument")
Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr);
else if (ArgName == "VersionArgument")
Ptr = llvm::make_unique<VersionArgument>(Arg, Attr);
if (!Ptr) {
// Search in reverse order so that the most-derived type is handled first.
ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
for (const auto &Base : llvm::reverse(Bases)) {
if ((Ptr = createArgument(Arg, Attr, Base.first)))
break;
}
}
if (Ptr && Arg.getValueAsBit("Optional"))
Ptr->setOptional(true);
if (Ptr && Arg.getValueAsBit("Fake"))
Ptr->setFake(true);
return Ptr;
}
static void writeAvailabilityValue(raw_ostream &OS) {
OS << "\" << getPlatform()->getName();\n"
<< " if (getStrict()) OS << \", strict\";\n"
<< " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
<< " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
<< " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
<< " if (getUnavailable()) OS << \", unavailable\";\n"
<< " OS << \"";
}
static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
OS << "\\\"\" << getMessage() << \"\\\"\";\n";
// Only GNU deprecated has an optional fixit argument at the second position.
if (Variety == "GNU")
OS << " if (!getReplacement().empty()) OS << \", \\\"\""
" << getReplacement() << \"\\\"\";\n";
OS << " OS << \"";
}
static void writeGetSpellingFunction(Record &R, raw_ostream &OS) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
if (Spellings.empty()) {
OS << " return \"(No spelling)\";\n}\n\n";
return;
}
OS << " switch (SpellingListIndex) {\n"
" default:\n"
" llvm_unreachable(\"Unknown attribute spelling!\");\n"
" return \"(No spelling)\";\n";
for (unsigned I = 0; I < Spellings.size(); ++I)
OS << " case " << I << ":\n"
" return \"" << Spellings[I].name() << "\";\n";
// End of the switch statement.
OS << " }\n";
// End of the getSpelling function.
OS << "}\n\n";
}
static void
writePrettyPrintFunction(Record &R,
const std::vector<std::unique_ptr<Argument>> &Args,
raw_ostream &OS) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << "void " << R.getName() << "Attr::printPretty("
<< "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
if (Spellings.empty()) {
OS << "}\n\n";
return;
}
OS <<
" switch (SpellingListIndex) {\n"
" default:\n"
" llvm_unreachable(\"Unknown attribute spelling!\");\n"
" break;\n";
for (unsigned I = 0; I < Spellings.size(); ++ I) {
llvm::SmallString<16> Prefix;
llvm::SmallString<8> Suffix;
// The actual spelling of the name and namespace (if applicable)
// of an attribute without considering prefix and suffix.
llvm::SmallString<64> Spelling;
std::string Name = Spellings[I].name();
std::string Variety = Spellings[I].variety();
if (Variety == "GNU") {
Prefix = " __attribute__((";
Suffix = "))";
} else if (Variety == "CXX11" || Variety == "C2x") {
Prefix = " [[";
Suffix = "]]";
std::string Namespace = Spellings[I].nameSpace();
if (!Namespace.empty()) {
Spelling += Namespace;
Spelling += "::";
}
} else if (Variety == "Declspec") {
Prefix = " __declspec(";
Suffix = ")";
} else if (Variety == "Microsoft") {
Prefix = "[";
Suffix = "]";
} else if (Variety == "Keyword") {
Prefix = " ";
Suffix = "";
} else if (Variety == "Pragma") {
Prefix = "#pragma ";
Suffix = "\n";
std::string Namespace = Spellings[I].nameSpace();
if (!Namespace.empty()) {
Spelling += Namespace;
Spelling += " ";
}
} else {
llvm_unreachable("Unknown attribute syntax variety!");
}
Spelling += Name;
OS <<
" case " << I << " : {\n"
" OS << \"" << Prefix << Spelling;
if (Variety == "Pragma") {
OS << " \";\n";
OS << " printPrettyPragma(OS, Policy);\n";
OS << " OS << \"\\n\";";
OS << " break;\n";
OS << " }\n";
continue;
}
// Fake arguments aren't part of the parsed form and should not be
// pretty-printed.
bool hasNonFakeArgs = llvm::any_of(
Args, [](const std::unique_ptr<Argument> &A) { return !A->isFake(); });
// FIXME: always printing the parenthesis isn't the correct behavior for
// attributes which have optional arguments that were not provided. For
// instance: __attribute__((aligned)) will be pretty printed as
// __attribute__((aligned())). The logic should check whether there is only
// a single argument, and if it is optional, whether it has been provided.
if (hasNonFakeArgs)
OS << "(";
if (Spelling == "availability") {
writeAvailabilityValue(OS);
} else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
writeDeprecatedAttrValue(OS, Variety);
} else {
unsigned index = 0;
for (const auto &arg : Args) {
if (arg->isFake()) continue;
if (index++) OS << ", ";
arg->writeValue(OS);
}
}
if (hasNonFakeArgs)
OS << ")";
OS << Suffix + "\";\n";
OS <<
" break;\n"
" }\n";
}
// End of the switch statement.
OS << "}\n";
// End of the print function.
OS << "}\n\n";
}
/// \brief Return the index of a spelling in a spelling list.
static unsigned
getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
const FlattenedSpelling &Spelling) {
assert(!SpellingList.empty() && "Spelling list is empty!");
for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
const FlattenedSpelling &S = SpellingList[Index];
if (S.variety() != Spelling.variety())
continue;
if (S.nameSpace() != Spelling.nameSpace())
continue;
if (S.name() != Spelling.name())
continue;
return Index;
}
llvm_unreachable("Unknown spelling!");
}
static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
if (Accessors.empty())
return;
const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
assert(!SpellingList.empty() &&
"Attribute with empty spelling list can't have accessors!");
for (const auto *Accessor : Accessors) {
const StringRef Name = Accessor->getValueAsString("Name");
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
OS << " bool " << Name << "() const { return SpellingListIndex == ";
for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
OS << getSpellingListIndex(SpellingList, Spellings[Index]);
if (Index != Spellings.size() - 1)
OS << " ||\n SpellingListIndex == ";
else
OS << "; }\n";
}
}
}
static bool
SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
assert(!Spellings.empty() && "An empty list of spellings was provided");
std::string FirstName = NormalizeNameForSpellingComparison(
Spellings.front().name());
for (const auto &Spelling :
llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
std::string Name = NormalizeNameForSpellingComparison(Spelling.name());
if (Name != FirstName)
return false;
}
return true;
}
typedef std::map<unsigned, std::string> SemanticSpellingMap;
static std::string
CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
SemanticSpellingMap &Map) {
// The enumerants are automatically generated based on the variety,
// namespace (if present) and name for each attribute spelling. However,
// care is taken to avoid trampling on the reserved namespace due to
// underscores.
std::string Ret(" enum Spelling {\n");
std::set<std::string> Uniques;
unsigned Idx = 0;
for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
const FlattenedSpelling &S = *I;
const std::string &Variety = S.variety();
const std::string &Spelling = S.name();
const std::string &Namespace = S.nameSpace();
std::string EnumName;
EnumName += (Variety + "_");
if (!Namespace.empty())
EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
"_");
EnumName += NormalizeNameForSpellingComparison(Spelling);
// Even if the name is not unique, this spelling index corresponds to a
// particular enumerant name that we've calculated.
Map[Idx] = EnumName;
// Since we have been stripping underscores to avoid trampling on the
// reserved namespace, we may have inadvertently created duplicate
// enumerant names. These duplicates are not considered part of the
// semantic spelling, and can be elided.
if (Uniques.find(EnumName) != Uniques.end())
continue;
Uniques.insert(EnumName);
if (I != Spellings.begin())
Ret += ",\n";
// Duplicate spellings are not considered part of the semantic spelling
// enumeration, but the spelling index and semantic spelling values are
// meant to be equivalent, so we must specify a concrete value for each
// enumerator.
Ret += " " + EnumName + " = " + llvm::utostr(Idx);
}
Ret += "\n };\n\n";
return Ret;
}
void WriteSemanticSpellingSwitch(const std::string &VarName,
const SemanticSpellingMap &Map,
raw_ostream &OS) {
OS << " switch (" << VarName << ") {\n default: "
<< "llvm_unreachable(\"Unknown spelling list index\");\n";
for (const auto &I : Map)
OS << " case " << I.first << ": return " << I.second << ";\n";
OS << " }\n";
}
// Emits the LateParsed property for attributes.
static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
bool LateParsed = Attr->getValueAsBit("LateParsed");
if (LateParsed) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
// FIXME: Handle non-GNU attributes
for (const auto &I : Spellings) {
if (I.variety() != "GNU")
continue;
OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
}
}
}
OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
}
static bool hasGNUorCXX11Spelling(const Record &Attribute) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
for (const auto &I : Spellings) {
if (I.variety() == "GNU" || I.variety() == "CXX11")
return true;
}
return false;
}
namespace {
struct AttributeSubjectMatchRule {
const Record *MetaSubject;
const Record *Constraint;
AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
: MetaSubject(MetaSubject), Constraint(Constraint) {
assert(MetaSubject && "Missing subject");
}
bool isSubRule() const { return Constraint != nullptr; }
std::vector<Record *> getSubjects() const {
return (Constraint ? Constraint : MetaSubject)
->getValueAsListOfDefs("Subjects");
}
std::vector<Record *> getLangOpts() const {
if (Constraint) {
// Lookup the options in the sub-rule first, in case the sub-rule
// overrides the rules options.
std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
if (!Opts.empty())
return Opts;
}
return MetaSubject->getValueAsListOfDefs("LangOpts");
}
// Abstract rules are used only for sub-rules
bool isAbstractRule() const { return getSubjects().empty(); }
StringRef getName() const {
return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
}
bool isNegatedSubRule() const {
assert(isSubRule() && "Not a sub-rule");
return Constraint->getValueAsBit("Negated");
}
std::string getSpelling() const {
std::string Result = MetaSubject->getValueAsString("Name");
if (isSubRule()) {
Result += '(';
if (isNegatedSubRule())
Result += "unless(";
Result += getName();
if (isNegatedSubRule())
Result += ')';
Result += ')';
}
return Result;
}
std::string getEnumValueName() const {
SmallString<128> Result;
Result += "SubjectMatchRule_";
Result += MetaSubject->getValueAsString("Name");
if (isSubRule()) {
Result += "_";
if (isNegatedSubRule())
Result += "not_";
Result += Constraint->getValueAsString("Name");
}
if (isAbstractRule())
Result += "_abstract";
return Result.str();
}
std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
static const char *EnumName;
};
const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
struct PragmaClangAttributeSupport {
std::vector<AttributeSubjectMatchRule> Rules;
class RuleOrAggregateRuleSet {
std::vector<AttributeSubjectMatchRule> Rules;
bool IsRule;
RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
bool IsRule)
: Rules(Rules), IsRule(IsRule) {}
public:
bool isRule() const { return IsRule; }
const AttributeSubjectMatchRule &getRule() const {
assert(IsRule && "not a rule!");
return Rules[0];
}
ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
return Rules;
}
static RuleOrAggregateRuleSet
getRule(const AttributeSubjectMatchRule &Rule) {
return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
}
static RuleOrAggregateRuleSet
getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
}
};
llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
PragmaClangAttributeSupport(RecordKeeper &Records);
bool isAttributedSupported(const Record &Attribute);
void emitMatchRuleList(raw_ostream &OS);
std::string generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
void generateParsingHelpers(raw_ostream &OS);
};
} // end anonymous namespace
static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
const Record *CurrentBase = D->getValueAsDef("Base");
if (!CurrentBase)
return false;
if (CurrentBase == Base)
return true;
return doesDeclDeriveFrom(CurrentBase, Base);
}
PragmaClangAttributeSupport::PragmaClangAttributeSupport(
RecordKeeper &Records) {
std::vector<Record *> MetaSubjects =
Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
const Record *MetaSubject,
const Record *Constraint) {
Rules.emplace_back(MetaSubject, Constraint);
std::vector<Record *> ApplicableSubjects =
SubjectContainer->getValueAsListOfDefs("Subjects");
for (const auto *Subject : ApplicableSubjects) {
bool Inserted =
SubjectsToRules
.try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
AttributeSubjectMatchRule(MetaSubject,
Constraint)))
.second;
if (!Inserted) {
PrintFatalError("Attribute subject match rules should not represent"
"same attribute subjects.");
}
}
};
for (const auto *MetaSubject : MetaSubjects) {
MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
std::vector<Record *> Constraints =
MetaSubject->getValueAsListOfDefs("Constraints");
for (const auto *Constraint : Constraints)
MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
}
std::vector<Record *> Aggregates =
Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
std::vector<Record *> DeclNodes = Records.getAllDerivedDefinitions("DDecl");
for (const auto *Aggregate : Aggregates) {
Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
// Gather sub-classes of the aggregate subject that act as attribute
// subject rules.
std::vector<AttributeSubjectMatchRule> Rules;
for (const auto *D : DeclNodes) {
if (doesDeclDeriveFrom(D, SubjectDecl)) {
auto It = SubjectsToRules.find(D);
if (It == SubjectsToRules.end())
continue;
if (!It->second.isRule() || It->second.getRule().isSubRule())
continue; // Assume that the rule will be included as well.
Rules.push_back(It->second.getRule());
}
}
bool Inserted =
SubjectsToRules
.try_emplace(SubjectDecl,
RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
.second;
if (!Inserted) {
PrintFatalError("Attribute subject match rules should not represent"
"same attribute subjects.");
}
}
}
static PragmaClangAttributeSupport &
getPragmaAttributeSupport(RecordKeeper &Records) {
static PragmaClangAttributeSupport Instance(Records);
return Instance;
}
void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
"IsNegated) "
<< "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
OS << "#endif\n";
for (const auto &Rule : Rules) {
OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
<< Rule.isAbstractRule();
if (Rule.isSubRule())
OS << ", "
<< AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
<< ", " << Rule.isNegatedSubRule();
OS << ")\n";
}
OS << "#undef ATTR_MATCH_SUB_RULE\n";
}
bool PragmaClangAttributeSupport::isAttributedSupported(
const Record &Attribute) {
if (Attribute.getValueAsBit("ForcePragmaAttributeSupport"))
return true;
// Opt-out rules:
// FIXME: The documentation check should be moved before
// the ForcePragmaAttributeSupport check after annotate is documented.
// No documentation present.
if (Attribute.isValueUnset("Documentation"))
return false;
std::vector<Record *> Docs = Attribute.getValueAsListOfDefs("Documentation");
if (Docs.empty())
return false;
if (Docs.size() == 1 && Docs[0]->getName() == "Undocumented")
return false;
// An attribute requires delayed parsing (LateParsed is on)
if (Attribute.getValueAsBit("LateParsed"))
return false;
// An attribute has no GNU/CXX11 spelling
if (!hasGNUorCXX11Spelling(Attribute))
return false;
// An attribute subject list has a subject that isn't covered by one of the
// subject match rules or has no subjects at all.
if (Attribute.isValueUnset("Subjects"))
return false;
const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
if (Subjects.empty())
return false;
for (const auto *Subject : Subjects) {
if (SubjectsToRules.find(Subject) == SubjectsToRules.end())
return false;
}
return true;
}
std::string
PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
raw_ostream &OS) {
if (!isAttributedSupported(Attr))
return "nullptr";
// Generate a function that constructs a set of matching rules that describe
// to which declarations the attribute should apply to.
std::string FnName = "matchRulesFor" + Attr.getName().str();
OS << "static void " << FnName << "(llvm::SmallVectorImpl<std::pair<"
<< AttributeSubjectMatchRule::EnumName
<< ", bool>> &MatchRules, const LangOptions &LangOpts) {\n";
if (Attr.isValueUnset("Subjects")) {
OS << "}\n\n";
return FnName;
}
const Record *SubjectObj = Attr.getValueAsDef("Subjects");
std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
for (const auto *Subject : Subjects) {
auto It = SubjectsToRules.find(Subject);
assert(It != SubjectsToRules.end() &&
"This attribute is unsupported by #pragma clang attribute");
for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
// The rule might be language specific, so only subtract it from the given
// rules if the specific language options are specified.
std::vector<Record *> LangOpts = Rule.getLangOpts();
OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
<< ", /*IsSupported=*/";
if (!LangOpts.empty()) {
for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) {
const StringRef Part = (*I)->getValueAsString("Name");
if ((*I)->getValueAsBit("Negated"))
OS << "!";
OS << "LangOpts." << Part;
if (I + 1 != E)
OS << " || ";
}
} else
OS << "true";
OS << "));\n";
}
}
OS << "}\n\n";
return FnName;
}
void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
// Generate routines that check the names of sub-rules.
OS << "Optional<attr::SubjectMatchRule> "
"defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
OS << " return None;\n";
OS << "}\n\n";
std::map<const Record *, std::vector<AttributeSubjectMatchRule>>
SubMatchRules;
for (const auto &Rule : Rules) {
if (!Rule.isSubRule())
continue;
SubMatchRules[Rule.MetaSubject].push_back(Rule);
}
for (const auto &SubMatchRule : SubMatchRules) {
OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_"
<< SubMatchRule.first->getValueAsString("Name")
<< "(StringRef Name, bool IsUnless) {\n";
OS << " if (IsUnless)\n";
OS << " return "
"llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
for (const auto &Rule : SubMatchRule.second) {
if (Rule.isNegatedSubRule())
OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
<< ").\n";
}
OS << " Default(None);\n";
OS << " return "
"llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
for (const auto &Rule : SubMatchRule.second) {
if (!Rule.isNegatedSubRule())
OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
<< ").\n";
}
OS << " Default(None);\n";
OS << "}\n\n";
}
// Generate the function that checks for the top-level rules.
OS << "std::pair<Optional<attr::SubjectMatchRule>, "
"Optional<attr::SubjectMatchRule> (*)(StringRef, "
"bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
OS << " return "
"llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, "
"Optional<attr::SubjectMatchRule> (*) (StringRef, "
"bool)>>(Name).\n";
for (const auto &Rule : Rules) {
if (Rule.isSubRule())
continue;
std::string SubRuleFunction;
if (SubMatchRules.count(Rule.MetaSubject))
SubRuleFunction =
("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
else
SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
<< Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
}
OS << " Default(std::make_pair(None, "
"defaultIsAttributeSubjectMatchSubRuleFor));\n";
OS << "}\n\n";
// Generate the function that checks for the submatch rules.
OS << "const char *validAttributeSubjectMatchSubRules("
<< AttributeSubjectMatchRule::EnumName << " Rule) {\n";
OS << " switch (Rule) {\n";
for (const auto &SubMatchRule : SubMatchRules) {
OS << " case "
<< AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
<< ":\n";
OS << " return \"'";
bool IsFirst = true;
for (const auto &Rule : SubMatchRule.second) {
if (!IsFirst)
OS << ", '";
IsFirst = false;
if (Rule.isNegatedSubRule())
OS << "unless(";
OS << Rule.getName();
if (Rule.isNegatedSubRule())
OS << ')';
OS << "'";
}
OS << "\";\n";
}
OS << " default: return nullptr;\n";
OS << " }\n";
OS << "}\n\n";
}
template <typename Fn>
static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
SmallDenseSet<StringRef, 8> Seen;
for (const FlattenedSpelling &S : Spellings) {
if (Seen.insert(S.name()).second)
F(S);
}
}
/// \brief Emits the first-argument-is-type property for attributes.
static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
// Determine whether the first argument is a type.
std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
if (Args.empty())
continue;
if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument")
continue;
// All these spellings take a single type argument.
forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
});
}
OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
}
/// \brief Emits the parse-arguments-in-unevaluated-context property for
/// attributes.
static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &Attr = *I.second;
if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
continue;
// All these spellings take are parsed unevaluated.
forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
});
}
OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
}
static bool isIdentifierArgument(Record *Arg) {
return !Arg->getSuperClasses().empty() &&
llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
.Case("IdentifierArgument", true)
.Case("EnumArgument", true)
.Case("VariadicEnumArgument", true)
.Default(false);
}
// Emits the first-argument-is-identifier property for attributes.
static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
// Determine whether the first argument is an identifier.
std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
if (Args.empty() || !isIdentifierArgument(Args[0]))
continue;
// All these spellings take an identifier argument.
forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
});
}
OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
}
namespace clang {
// Emits the class definitions for attributes.
void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute classes' definitions", OS);
OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
// FIXME: Currently, documentation is generated as-needed due to the fact
// that there is no way to allow a generated project "reach into" the docs
// directory (for instance, it may be an out-of-tree build). However, we want
// to ensure that every attribute has a Documentation field, and produce an
// error if it has been neglected. Otherwise, the on-demand generation which
// happens server-side will fail. This code is ensuring that functionality,
// even though this Emitter doesn't technically need the documentation.
// When attribute documentation can be generated as part of the build
// itself, this code can be removed.
(void)R.getValueAsListOfDefs("Documentation");
if (!R.getValueAsBit("ASTNode"))
continue;
ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
std::string SuperName;
for (const auto &Super : llvm::reverse(Supers)) {
const Record *R = Super.first;
if (R->getName() != "TargetSpecificAttr" && SuperName.empty())
SuperName = R->getName();
}
OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
Args.reserve(ArgRecords.size());
bool HasOptArg = false;
bool HasFakeArg = false;
for (const auto *ArgRecord : ArgRecords) {
Args.emplace_back(createArgument(*ArgRecord, R.getName()));
Args.back()->writeDeclarations(OS);
OS << "\n\n";
// For these purposes, fake takes priority over optional.
if (Args.back()->isFake()) {
HasFakeArg = true;
} else if (Args.back()->isOptional()) {
HasOptArg = true;
}
}
OS << "public:\n";
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
// If there are zero or one spellings, all spelling-related functionality
// can be elided. If all of the spellings share the same name, the spelling
// functionality can also be elided.
bool ElideSpelling = (Spellings.size() <= 1) ||
SpellingNamesAreCommon(Spellings);
// This maps spelling index values to semantic Spelling enumerants.
SemanticSpellingMap SemanticToSyntacticMap;
if (!ElideSpelling)
OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
// Emit CreateImplicit factory methods.
auto emitCreateImplicit = [&](bool emitFake) {
OS << " static " << R.getName() << "Attr *CreateImplicit(";
OS << "ASTContext &Ctx";
if (!ElideSpelling)
OS << ", Spelling S";
for (auto const &ai : Args) {
if (ai->isFake() && !emitFake) continue;
OS << ", ";
ai->writeCtorParameters(OS);
}
OS << ", SourceRange Loc = SourceRange()";
OS << ") {\n";
OS << " auto *A = new (Ctx) " << R.getName();
OS << "Attr(Loc, Ctx, ";
for (auto const &ai : Args) {
if (ai->isFake() && !emitFake) continue;
ai->writeImplicitCtorArgs(OS);
OS << ", ";
}
OS << (ElideSpelling ? "0" : "S") << ");\n";
OS << " A->setImplicit(true);\n";
OS << " return A;\n }\n\n";
};
// Emit a CreateImplicit that takes all the arguments.
emitCreateImplicit(true);
// Emit a CreateImplicit that takes all the non-fake arguments.
if (HasFakeArg) {
emitCreateImplicit(false);
}
// Emit constructors.
auto emitCtor = [&](bool emitOpt, bool emitFake) {
auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
if (arg->isFake()) return emitFake;
if (arg->isOptional()) return emitOpt;
return true;
};
OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n";
for (auto const &ai : Args) {
if (!shouldEmitArg(ai)) continue;
OS << " , ";
ai->writeCtorParameters(OS);
OS << "\n";
}
OS << " , ";
OS << "unsigned SI\n";
OS << " )\n";
OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI, "
<< ( R.getValueAsBit("LateParsed") ? "true" : "false" ) << ", "
<< ( R.getValueAsBit("DuplicatesAllowedWhileMerging") ? "true" : "false" ) << ")\n";
for (auto const &ai : Args) {
OS << " , ";
if (!shouldEmitArg(ai)) {
ai->writeCtorDefaultInitializers(OS);
} else {
ai->writeCtorInitializers(OS);
}
OS << "\n";
}
OS << " {\n";
for (auto const &ai : Args) {
if (!shouldEmitArg(ai)) continue;
ai->writeCtorBody(OS);
}
OS << " }\n\n";
};
// Emit a constructor that includes all the arguments.
// This is necessary for cloning.
emitCtor(true, true);
// Emit a constructor that takes all the non-fake arguments.
if (HasFakeArg) {
emitCtor(true, false);
}
// Emit a constructor that takes all the non-fake, non-optional arguments.
if (HasOptArg) {
emitCtor(false, false);
}
OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
OS << " void printPretty(raw_ostream &OS,\n"
<< " const PrintingPolicy &Policy) const;\n";
OS << " const char *getSpelling() const;\n";
if (!ElideSpelling) {
assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
OS << " Spelling getSemanticSpelling() const {\n";
WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap,
OS);
OS << " }\n";
}
writeAttrAccessorDefinition(R, OS);
for (auto const &ai : Args) {
ai->writeAccessors(OS);
OS << "\n\n";
// Don't write conversion routines for fake arguments.
if (ai->isFake()) continue;
if (ai->isEnumArg())
static_cast<const EnumArgument *>(ai.get())->writeConversion(OS);
else if (ai->isVariadicEnumArg())
static_cast<const VariadicEnumArgument *>(ai.get())
->writeConversion(OS);
}
OS << R.getValueAsString("AdditionalMembers");
OS << "\n\n";
OS << " static bool classof(const Attr *A) { return A->getKind() == "
<< "attr::" << R.getName() << "; }\n";
OS << "};\n\n";
}
OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
}
// Emits the class method definitions for attributes.
void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute classes' member function definitions", OS);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
for (auto *Attr : Attrs) {
Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
for (const auto *Arg : ArgRecords)
Args.emplace_back(createArgument(*Arg, R.getName()));
for (auto const &ai : Args)
ai->writeAccessorDefinitions(OS);
OS << R.getName() << "Attr *" << R.getName()
<< "Attr::clone(ASTContext &C) const {\n";
OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C";
for (auto const &ai : Args) {
OS << ", ";
ai->writeCloneArgs(OS);
}
OS << ", getSpellingListIndex());\n";
OS << " A->Inherited = Inherited;\n";
OS << " A->IsPackExpansion = IsPackExpansion;\n";
OS << " A->Implicit = Implicit;\n";
OS << " return A;\n}\n\n";
writePrettyPrintFunction(R, Args, OS);
writeGetSpellingFunction(R, OS);
}
// Instead of relying on virtual dispatch we just create a huge dispatch
// switch. This is both smaller and faster than virtual functions.
auto EmitFunc = [&](const char *Method) {
OS << " switch (getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ":\n";
OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
<< ";\n";
}
OS << " }\n";
OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
OS << "}\n\n";
};
OS << "const char *Attr::getSpelling() const {\n";
EmitFunc("getSpelling()");
OS << "Attr *Attr::clone(ASTContext &C) const {\n";
EmitFunc("clone(C)");
OS << "void Attr::printPretty(raw_ostream &OS, "
"const PrintingPolicy &Policy) const {\n";
EmitFunc("printPretty(OS, Policy)");
}
} // end namespace clang
static void emitAttrList(raw_ostream &OS, StringRef Class,
const std::vector<Record*> &AttrList) {
for (auto Cur : AttrList) {
OS << Class << "(" << Cur->getName() << ")\n";
}
}
// Determines if an attribute has a Pragma spelling.
static bool AttrHasPragmaSpelling(const Record *R) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
return llvm::find_if(Spellings, [](const FlattenedSpelling &S) {
return S.variety() == "Pragma";
}) != Spellings.end();
}
namespace {
struct AttrClassDescriptor {
const char * const MacroName;
const char * const TableGenName;
};
} // end anonymous namespace
static const AttrClassDescriptor AttrClassDescriptors[] = {
{ "ATTR", "Attr" },
{ "STMT_ATTR", "StmtAttr" },
{ "INHERITABLE_ATTR", "InheritableAttr" },
{ "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
{ "PARAMETER_ABI_ATTR", "ParameterABIAttr" }
};
static void emitDefaultDefine(raw_ostream &OS, StringRef name,
const char *superName) {
OS << "#ifndef " << name << "\n";
OS << "#define " << name << "(NAME) ";
if (superName) OS << superName << "(NAME)";
OS << "\n#endif\n\n";
}
namespace {
/// A class of attributes.
struct AttrClass {
const AttrClassDescriptor &Descriptor;
Record *TheRecord;
AttrClass *SuperClass = nullptr;
std::vector<AttrClass*> SubClasses;
std::vector<Record*> Attrs;
AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
: Descriptor(Descriptor), TheRecord(R) {}
void emitDefaultDefines(raw_ostream &OS) const {
// Default the macro unless this is a root class (i.e. Attr).
if (SuperClass) {
emitDefaultDefine(OS, Descriptor.MacroName,
SuperClass->Descriptor.MacroName);
}
}
void emitUndefs(raw_ostream &OS) const {
OS << "#undef " << Descriptor.MacroName << "\n";
}
void emitAttrList(raw_ostream &OS) const {
for (auto SubClass : SubClasses) {
SubClass->emitAttrList(OS);
}
::emitAttrList(OS, Descriptor.MacroName, Attrs);
}
void classifyAttrOnRoot(Record *Attr) {
bool result = classifyAttr(Attr);
assert(result && "failed to classify on root"); (void) result;
}
void emitAttrRange(raw_ostream &OS) const {
OS << "ATTR_RANGE(" << Descriptor.TableGenName
<< ", " << getFirstAttr()->getName()
<< ", " << getLastAttr()->getName() << ")\n";
}
private:
bool classifyAttr(Record *Attr) {
// Check all the subclasses.
for (auto SubClass : SubClasses) {
if (SubClass->classifyAttr(Attr))
return true;
}
// It's not more specific than this class, but it might still belong here.
if (Attr->isSubClassOf(TheRecord)) {
Attrs.push_back(Attr);
return true;
}
return false;
}
Record *getFirstAttr() const {
if (!SubClasses.empty())
return SubClasses.front()->getFirstAttr();
return Attrs.front();
}
Record *getLastAttr() const {
if (!Attrs.empty())
return Attrs.back();
return SubClasses.back()->getLastAttr();
}
};
/// The entire hierarchy of attribute classes.
class AttrClassHierarchy {
std::vector<std::unique_ptr<AttrClass>> Classes;
public:
AttrClassHierarchy(RecordKeeper &Records) {
// Find records for all the classes.
for (auto &Descriptor : AttrClassDescriptors) {
Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
Classes.emplace_back(Class);
}
// Link up the hierarchy.
for (auto &Class : Classes) {
if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
Class->SuperClass = SuperClass;
SuperClass->SubClasses.push_back(Class.get());
}
}
#ifndef NDEBUG
for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
"only the first class should be a root class!");
}
#endif
}
void emitDefaultDefines(raw_ostream &OS) const {
for (auto &Class : Classes) {
Class->emitDefaultDefines(OS);
}
}
void emitUndefs(raw_ostream &OS) const {
for (auto &Class : Classes) {
Class->emitUndefs(OS);
}
}
void emitAttrLists(raw_ostream &OS) const {
// Just start from the root class.
Classes[0]->emitAttrList(OS);
}
void emitAttrRanges(raw_ostream &OS) const {
for (auto &Class : Classes)
Class->emitAttrRange(OS);
}
void classifyAttr(Record *Attr) {
// Add the attribute to the root class.
Classes[0]->classifyAttrOnRoot(Attr);
}
private:
AttrClass *findClassByRecord(Record *R) const {
for (auto &Class : Classes) {
if (Class->TheRecord == R)
return Class.get();
}
return nullptr;
}
AttrClass *findSuperClass(Record *R) const {
// TableGen flattens the superclass list, so we just need to walk it
// in reverse.
auto SuperClasses = R->getSuperClasses();
for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
if (SuperClass) return SuperClass;
}
return nullptr;
}
};
} // end anonymous namespace
namespace clang {
// Emits the enumeration list for attributes.
void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
AttrClassHierarchy Hierarchy(Records);
// Add defaulting macro definitions.
Hierarchy.emitDefaultDefines(OS);
emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<Record *> PragmaAttrs;
for (auto *Attr : Attrs) {
if (!Attr->getValueAsBit("ASTNode"))
continue;
// Add the attribute to the ad-hoc groups.
if (AttrHasPragmaSpelling(Attr))
PragmaAttrs.push_back(Attr);
// Place it in the hierarchy.
Hierarchy.classifyAttr(Attr);
}
// Emit the main attribute list.
Hierarchy.emitAttrLists(OS);
// Emit the ad hoc groups.
emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
// Emit the attribute ranges.
OS << "#ifdef ATTR_RANGE\n";
Hierarchy.emitAttrRanges(OS);
OS << "#undef ATTR_RANGE\n";
OS << "#endif\n";
Hierarchy.emitUndefs(OS);
OS << "#undef PRAGMA_SPELLING_ATTR\n";
}
// Emits the enumeration list for attributes.
void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader(
"List of all attribute subject matching rules that Clang recognizes", OS);
PragmaClangAttributeSupport &PragmaAttributeSupport =
getPragmaAttributeSupport(Records);
emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
PragmaAttributeSupport.emitMatchRuleList(OS);
OS << "#undef ATTR_MATCH_RULE\n";
}
// Emits the code to read an attribute from a precompiled header.
void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute deserialization code", OS);
Record *InhClass = Records.getClass("InheritableAttr");
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
ArgRecords;
std::vector<std::unique_ptr<Argument>> Args;
OS << " switch (Kind) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
if (R.isSubClassOf(InhClass))
OS << " bool isInherited = Record.readInt();\n";
OS << " bool isImplicit = Record.readInt();\n";
OS << " unsigned Spelling = Record.readInt();\n";
ArgRecords = R.getValueAsListOfDefs("Args");
Args.clear();
for (const auto *Arg : ArgRecords) {
Args.emplace_back(createArgument(*Arg, R.getName()));
Args.back()->writePCHReadDecls(OS);
}
OS << " New = new (Context) " << R.getName() << "Attr(Range, Context";
for (auto const &ri : Args) {
OS << ", ";
ri->writePCHReadArgs(OS);
}
OS << ", Spelling);\n";
if (R.isSubClassOf(InhClass))
OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
OS << " New->setImplicit(isImplicit);\n";
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
}
// Emits the code to write an attribute to a precompiled header.
void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute serialization code", OS);
Record *InhClass = Records.getClass("InheritableAttr");
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
OS << " switch (A->getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
Args = R.getValueAsListOfDefs("Args");
if (R.isSubClassOf(InhClass) || !Args.empty())
OS << " const auto *SA = cast<" << R.getName()
<< "Attr>(A);\n";
if (R.isSubClassOf(InhClass))
OS << " Record.push_back(SA->isInherited());\n";
OS << " Record.push_back(A->isImplicit());\n";
OS << " Record.push_back(A->getSpellingListIndex());\n";
for (const auto *Arg : Args)
createArgument(*Arg, R.getName())->writePCHWrite(OS);
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
}
// Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
// parameter with only a single check type, if applicable.
static void GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
std::string *FnName,
StringRef ListName,
StringRef CheckAgainst,
StringRef Scope) {
if (!R->isValueUnset(ListName)) {
Test += " && (";
std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
StringRef Part = *I;
Test += CheckAgainst;
Test += " == ";
Test += Scope;
Test += Part;
if (I + 1 != E)
Test += " || ";
if (FnName)
*FnName += Part;
}
Test += ")";
}
}
// Generate a conditional expression to check if the current target satisfies
// the conditions for a TargetSpecificAttr record, and append the code for
// those checks to the Test string. If the FnName string pointer is non-null,
// append a unique suffix to distinguish this set of target checks from other
// TargetSpecificAttr records.
static void GenerateTargetSpecificAttrChecks(const Record *R,
std::vector<StringRef> &Arches,
std::string &Test,
std::string *FnName) {
// It is assumed that there will be an llvm::Triple object
// named "T" and a TargetInfo object named "Target" within
// scope that can be used to determine whether the attribute exists in
// a given target.
Test += "true";
// If one or more architectures is specified, check those. Arches are handled
// differently because GenerateTargetRequirements needs to combine the list
// with ParseKind.
if (!Arches.empty()) {
Test += " && (";
for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
StringRef Part = *I;
Test += "T.getArch() == llvm::Triple::";
Test += Part;
if (I + 1 != E)
Test += " || ";
if (FnName)
*FnName += Part;
}
Test += ")";
}
// If the attribute is specific to particular OSes, check those.
GenerateTargetSpecificAttrCheck(R, Test, FnName, "OSes", "T.getOS()",
"llvm::Triple::");
// If one or more CXX ABIs are specified, check those as well.
GenerateTargetSpecificAttrCheck(R, Test, FnName, "CXXABIs",
"Target.getCXXABI().getKind()",
"TargetCXXABI::");
// If one or more object formats is specified, check those.
GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
"T.getObjectFormat()", "llvm::Triple::");
}
static void GenerateHasAttrSpellingStringSwitch(
const std::vector<Record *> &Attrs, raw_ostream &OS,
const std::string &Variety = "", const std::string &Scope = "") {
for (const auto *Attr : Attrs) {
// C++11-style attributes have specific version information associated with
// them. If the attribute has no scope, the version information must not
// have the default value (1), as that's incorrect. Instead, the unscoped
// attribute version information should be taken from the SD-6 standing
// document, which can be found at:
// https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
int Version = 1;
if (Variety == "CXX11") {
std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
for (const auto &Spelling : Spellings) {
if (Spelling->getValueAsString("Variety") == "CXX11") {
Version = static_cast<int>(Spelling->getValueAsInt("Version"));
if (Scope.empty() && Version == 1)
PrintError(Spelling->getLoc(), "C++ standard attributes must "
"have valid version information.");
break;
}
}
}
std::string Test;
if (Attr->isSubClassOf("TargetSpecificAttr")) {
const Record *R = Attr->getValueAsDef("Target");
std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
// If this is the C++11 variety, also add in the LangOpts test.
if (Variety == "CXX11")
Test += " && LangOpts.CPlusPlus11";
else if (Variety == "C2x")
Test += " && LangOpts.DoubleSquareBracketAttributes";
} else if (Variety == "CXX11")
// C++11 mode should be checked against LangOpts, which is presumed to be
// present in the caller.
Test = "LangOpts.CPlusPlus11";
else if (Variety == "C2x")
Test = "LangOpts.DoubleSquareBracketAttributes";
std::string TestStr =
!Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
for (const auto &S : Spellings)
if (Variety.empty() || (Variety == S.variety() &&
(Scope.empty() || Scope == S.nameSpace())))
OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n";
}
OS << " .Default(0);\n";
}
// Emits the list of spellings for attributes.
void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
// Separate all of the attributes out into four group: generic, C++11, GNU,
// and declspecs. Then generate a big switch statement for each of them.
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<Record *> Declspec, Microsoft, GNU, Pragma;
std::map<std::string, std::vector<Record *>> CXX, C2x;
// Walk over the list of all attributes, and split them out based on the
// spelling variety.
for (auto *R : Attrs) {
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
for (const auto &SI : Spellings) {
const std::string &Variety = SI.variety();
if (Variety == "GNU")
GNU.push_back(R);
else if (Variety == "Declspec")
Declspec.push_back(R);
else if (Variety == "Microsoft")
Microsoft.push_back(R);
else if (Variety == "CXX11")
CXX[SI.nameSpace()].push_back(R);
else if (Variety == "C2x")
C2x[SI.nameSpace()].push_back(R);
else if (Variety == "Pragma")
Pragma.push_back(R);
}
}
OS << "const llvm::Triple &T = Target.getTriple();\n";
OS << "switch (Syntax) {\n";
OS << "case AttrSyntax::GNU:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
OS << "case AttrSyntax::Declspec:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
OS << "case AttrSyntax::Microsoft:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
OS << "case AttrSyntax::Pragma:\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
auto fn = [&OS](const char *Spelling, const char *Variety,
const std::map<std::string, std::vector<Record *>> &List) {
OS << "case AttrSyntax::" << Variety << ": {\n";
// C++11-style attributes are further split out based on the Scope.
for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
if (I != List.cbegin())
OS << " else ";
if (I->first.empty())
OS << "if (!Scope || Scope->getName() == \"\") {\n";
else
OS << "if (Scope->getName() == \"" << I->first << "\") {\n";
OS << " return llvm::StringSwitch<int>(Name)\n";
GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
OS << "}";
}
OS << "\n} break;\n";
};
fn("CXX11", "CXX", CXX);
fn("C2x", "C", C2x);
OS << "}\n";
}
void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Code to translate different attribute spellings "
"into internal identifiers", OS);
OS << " switch (AttrKind) {\n";
ParsedAttrMap Attrs = getParsedAttrList(Records);
for (const auto &I : Attrs) {
const Record &R = *I.second;
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
OS << " case AT_" << I.first << ": {\n";
for (unsigned I = 0; I < Spellings.size(); ++ I) {
OS << " if (Name == \"" << Spellings[I].name() << "\" && "
<< "SyntaxUsed == "
<< StringSwitch<unsigned>(Spellings[I].variety())
.Case("GNU", 0)
.Case("CXX11", 1)
.Case("C2x", 2)
.Case("Declspec", 3)
.Case("Microsoft", 4)
.Case("Keyword", 5)
.Case("Pragma", 6)
.Default(0)
<< " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
<< " return " << I << ";\n";
}
OS << " break;\n";
OS << " }\n";
}
OS << " }\n";
OS << " return 0;\n";
}
// Emits code used by RecursiveASTVisitor to visit attributes
void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
// Write method declarations for Traverse* methods.
// We emit this here because we only generate methods for attributes that
// are declared as ASTNodes.
OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " bool Traverse"
<< R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
OS << " bool Visit"
<< R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
<< " return true; \n"
<< " }\n";
}
OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
// Write individual Traverse* methods for each attribute class.
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << "template <typename Derived>\n"
<< "bool VISITORCLASS<Derived>::Traverse"
<< R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
<< " if (!getDerived().VisitAttr(A))\n"
<< " return false;\n"
<< " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
<< " return false;\n";
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
for (const auto *Arg : ArgRecords)
createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
OS << " return true;\n";
OS << "}\n\n";
}
// Write generic Traverse routine
OS << "template <typename Derived>\n"
<< "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
<< " if (!A)\n"
<< " return true;\n"
<< "\n"
<< " switch (A->getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ":\n"
<< " return getDerived().Traverse" << R.getName() << "Attr("
<< "cast<" << R.getName() << "Attr>(A));\n";
}
OS << " }\n"; // end switch
OS << " llvm_unreachable(\"bad attribute kind\");\n";
OS << "}\n"; // end function
OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
}
void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
raw_ostream &OS,
bool AppliesToDecl) {
OS << " switch (At->getKind()) {\n";
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
bool ShouldClone = R.getValueAsBit("Clone") &&
(!AppliesToDecl ||
R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
if (!ShouldClone) {
OS << " return nullptr;\n";
OS << " }\n";
continue;
}
OS << " const auto *A = cast<"
<< R.getName() << "Attr>(At);\n";
bool TDependent = R.getValueAsBit("TemplateDependent");
if (!TDependent) {
OS << " return A->clone(C);\n";
OS << " }\n";
continue;
}
std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
std::vector<std::unique_ptr<Argument>> Args;
Args.reserve(ArgRecords.size());
for (const auto *ArgRecord : ArgRecords)
Args.emplace_back(createArgument(*ArgRecord, R.getName()));
for (auto const &ai : Args)
ai->writeTemplateInstantiation(OS);
OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C";
for (auto const &ai : Args) {
OS << ", ";
ai->writeTemplateInstantiationArgs(OS);
}
OS << ", A->getSpellingListIndex());\n }\n";
}
OS << " } // end switch\n"
<< " llvm_unreachable(\"Unknown attribute!\");\n"
<< " return nullptr;\n";
}
// Emits code to instantiate dependent attributes on templates.
void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Template instantiation code for attributes", OS);
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
OS << "namespace clang {\n"
<< "namespace sema {\n\n"
<< "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
<< "Sema &S,\n"
<< " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
OS << "}\n\n"
<< "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
<< " ASTContext &C, Sema &S,\n"
<< " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
OS << "}\n\n"
<< "} // end namespace sema\n"
<< "} // end namespace clang\n";
}
// Emits the list of parsed attributes.
void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
OS << "#ifndef PARSED_ATTR\n";
OS << "#define PARSED_ATTR(NAME) NAME\n";
OS << "#endif\n\n";
ParsedAttrMap Names = getParsedAttrList(Records);
for (const auto &I : Names) {
OS << "PARSED_ATTR(" << I.first << ")\n";
}
}
static bool isArgVariadic(const Record &R, StringRef AttrName) {
return createArgument(R, AttrName)->isVariadic();
}
static void emitArgInfo(const Record &R, raw_ostream &OS) {
// This function will count the number of arguments specified for the
// attribute and emit the number of required arguments followed by the
// number of optional arguments.
std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
unsigned ArgCount = 0, OptCount = 0;
bool HasVariadic = false;
for (const auto *Arg : Args) {
// If the arg is fake, it's the user's job to supply it: general parsing
// logic shouldn't need to know anything about it.
if (Arg->getValueAsBit("Fake"))
continue;
Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
HasVariadic = true;
}
// If there is a variadic argument, we will set the optional argument count
// to its largest value. Since it's currently a 4-bit number, we set it to 15.
OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount);
}
static void GenerateDefaultAppertainsTo(raw_ostream &OS) {
OS << "static bool defaultAppertainsTo(Sema &, const AttributeList &,";
OS << "const Decl *) {\n";
OS << " return true;\n";
OS << "}\n\n";
}
static std::string GetDiagnosticSpelling(const Record &R) {
std::string Ret = R.getValueAsString("DiagSpelling");
if (!Ret.empty())
return Ret;
// If we couldn't find the DiagSpelling in this object, we can check to see
// if the object is one that has a base, and if it is, loop up to the Base
// member recursively.
std::string Super = R.getSuperClasses().back().first->getName();
if (Super == "DDecl" || Super == "DStmt")
return GetDiagnosticSpelling(*R.getValueAsDef("Base"));
return "";
}
static std::string CalculateDiagnostic(const Record &S) {
// If the SubjectList object has a custom diagnostic associated with it,
// return that directly.
const StringRef CustomDiag = S.getValueAsString("CustomDiag");
if (!CustomDiag.empty())
return ("\"" + Twine(CustomDiag) + "\"").str();
std::vector<std::string> DiagList;
std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
for (const auto *Subject : Subjects) {
const Record &R = *Subject;
// Get the diagnostic text from the Decl or Stmt node given.
std::string V = GetDiagnosticSpelling(R);
if (V.empty()) {
PrintError(R.getLoc(),
"Could not determine diagnostic spelling for the node: " +
R.getName() + "; please add one to DeclNodes.td");
} else {
// The node may contain a list of elements itself, so split the elements
// by a comma, and trim any whitespace.
SmallVector<StringRef, 2> Frags;
llvm::SplitString(V, Frags, ",");
for (auto Str : Frags) {
DiagList.push_back(Str.trim());
}
}
}
if (DiagList.empty()) {
PrintFatalError(S.getLoc(),
"Could not deduce diagnostic argument for Attr subjects");
return "";
}
// FIXME: this is not particularly good for localization purposes and ideally
// should be part of the diagnostics engine itself with some sort of list
// specifier.
// A single member of the list can be returned directly.
if (DiagList.size() == 1)
return '"' + DiagList.front() + '"';
if (DiagList.size() == 2)
return '"' + DiagList[0] + " and " + DiagList[1] + '"';
// If there are more than two in the list, we serialize the first N - 1
// elements with a comma. This leaves the string in the state: foo, bar,
// baz (but misses quux). We can then add ", and " for the last element
// manually.
std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
}
static std::string GetSubjectWithSuffix(const Record *R) {
const std::string &B = R->getName();
if (B == "DeclBase")
return "Decl";
return B + "Decl";
}
static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
return "is" + Subject.getName().str();
}
static std::string GenerateCustomAppertainsTo(const Record &Subject,
raw_ostream &OS) {
std::string FnName = functionNameForCustomAppertainsTo(Subject);
// If this code has already been generated, simply return the previous
// instance of it.
static std::set<std::string> CustomSubjectSet;
auto I = CustomSubjectSet.find(FnName);
if (I != CustomSubjectSet.end())
return *I;
Record *Base = Subject.getValueAsDef("Base");
// Not currently support custom subjects within custom subjects.
if (Base->isSubClassOf("SubsetSubject")) {
PrintFatalError(Subject.getLoc(),
"SubsetSubjects within SubsetSubjects is not supported");
return "";
}
OS << "static bool " << FnName << "(const Decl *D) {\n";
OS << " if (const auto *S = dyn_cast<";
OS << GetSubjectWithSuffix(Base);
OS << ">(D))\n";
OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
OS << " return false;\n";
OS << "}\n\n";
CustomSubjectSet.insert(FnName);
return FnName;
}
static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
// If the attribute does not contain a Subjects definition, then use the
// default appertainsTo logic.
if (Attr.isValueUnset("Subjects"))
return "defaultAppertainsTo";
const Record *SubjectObj = Attr.getValueAsDef("Subjects");
std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
// If the list of subjects is empty, it is assumed that the attribute
// appertains to everything.
if (Subjects.empty())
return "defaultAppertainsTo";
bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
// Otherwise, generate an appertainsTo check specific to this attribute which
// checks all of the given subjects against the Decl passed in. Return the
// name of that check to the caller.
std::string FnName = "check" + Attr.getName().str() + "AppertainsTo";
std::stringstream SS;
SS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr, ";
SS << "const Decl *D) {\n";
SS << " if (";
for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
// If the subject has custom code associated with it, generate a function
// for it. The function cannot be inlined into this check (yet) because it
// requires the subject to be of a specific type, and were that information
// inlined here, it would not support an attribute with multiple custom
// subjects.
if ((*I)->isSubClassOf("SubsetSubject")) {
SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)";
} else {
SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
}
if (I + 1 != E)
SS << " && ";
}
SS << ") {\n";
SS << " S.Diag(Attr.getLoc(), diag::";
SS << (Warn ? "warn_attribute_wrong_decl_type_str" :
"err_attribute_wrong_decl_type_str");
SS << ")\n";
SS << " << Attr.getName() << ";
SS << CalculateDiagnostic(*SubjectObj) << ";\n";
SS << " return false;\n";
SS << " }\n";
SS << " return true;\n";
SS << "}\n\n";
OS << SS.str();
return FnName;
}
static void
emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
raw_ostream &OS) {
OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
<< AttributeSubjectMatchRule::EnumName << " rule) {\n";
OS << " switch (rule) {\n";
for (const auto &Rule : PragmaAttributeSupport.Rules) {
if (Rule.isAbstractRule()) {
OS << " case " << Rule.getEnumValue() << ":\n";
OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
OS << " return false;\n";
continue;
}
std::vector<Record *> Subjects = Rule.getSubjects();
assert(!Subjects.empty() && "Missing subjects");
OS << " case " << Rule.getEnumValue() << ":\n";
OS << " return ";
for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
// If the subject has custom code associated with it, use the function
// that was generated for GenerateAppertainsTo to check if the declaration
// is valid.
if ((*I)->isSubClassOf("SubsetSubject"))
OS << functionNameForCustomAppertainsTo(**I) << "(D)";
else
OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
if (I + 1 != E)
OS << " || ";
}
OS << ";\n";
}
OS << " }\n";
OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
OS << "}\n\n";
}
static void GenerateDefaultLangOptRequirements(raw_ostream &OS) {
OS << "static bool defaultDiagnoseLangOpts(Sema &, ";
OS << "const AttributeList &) {\n";
OS << " return true;\n";
OS << "}\n\n";
}
static std::string GenerateLangOptRequirements(const Record &R,
raw_ostream &OS) {
// If the attribute has an empty or unset list of language requirements,
// return the default handler.
std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
if (LangOpts.empty())
return "defaultDiagnoseLangOpts";
// Generate the test condition, as well as a unique function name for the
// diagnostic test. The list of options should usually be short (one or two
// options), and the uniqueness isn't strictly necessary (it is just for
// codegen efficiency).
std::string FnName = "check", Test;
for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) {
const StringRef Part = (*I)->getValueAsString("Name");
if ((*I)->getValueAsBit("Negated")) {
FnName += "Not";
Test += "!";
}
Test += "S.LangOpts.";
Test += Part;
if (I + 1 != E)
Test += " || ";
FnName += Part;
}
FnName += "LangOpts";
// If this code has already been generated, simply return the previous
// instance of it.
static std::set<std::string> CustomLangOptsSet;
auto I = CustomLangOptsSet.find(FnName);
if (I != CustomLangOptsSet.end())
return *I;
OS << "static bool " << FnName << "(Sema &S, const AttributeList &Attr) {\n";
OS << " if (" << Test << ")\n";
OS << " return true;\n\n";
OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) ";
OS << "<< Attr.getName();\n";
OS << " return false;\n";
OS << "}\n\n";
CustomLangOptsSet.insert(FnName);
return FnName;
}
static void GenerateDefaultTargetRequirements(raw_ostream &OS) {
OS << "static bool defaultTargetRequirements(const TargetInfo &) {\n";
OS << " return true;\n";
OS << "}\n\n";
}
static std::string GenerateTargetRequirements(const Record &Attr,
const ParsedAttrMap &Dupes,
raw_ostream &OS) {
// If the attribute is not a target specific attribute, return the default
// target handler.
if (!Attr.isSubClassOf("TargetSpecificAttr"))
return "defaultTargetRequirements";
// Get the list of architectures to be tested for.
const Record *R = Attr.getValueAsDef("Target");
std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
// If there are other attributes which share the same parsed attribute kind,
// such as target-specific attributes with a shared spelling, collapse the
// duplicate architectures. This is required because a shared target-specific
// attribute has only one AttributeList::Kind enumeration value, but it
// applies to multiple target architectures. In order for the attribute to be
// considered valid, all of its architectures need to be included.
if (!Attr.isValueUnset("ParseKind")) {
const StringRef APK = Attr.getValueAsString("ParseKind");
for (const auto &I : Dupes) {
if (I.first == APK) {
std::vector<StringRef> DA =
I.second->getValueAsDef("Target")->getValueAsListOfStrings(
"Arches");
Arches.insert(Arches.end(), DA.begin(), DA.end());
}
}
}
std::string FnName = "isTarget";
std::string Test;
GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
// If this code has already been generated, simply return the previous
// instance of it.
static std::set<std::string> CustomTargetSet;
auto I = CustomTargetSet.find(FnName);
if (I != CustomTargetSet.end())
return *I;
OS << "static bool " << FnName << "(const TargetInfo &Target) {\n";
OS << " const llvm::Triple &T = Target.getTriple();\n";
OS << " return " << Test << ";\n";
OS << "}\n\n";
CustomTargetSet.insert(FnName);
return FnName;
}
static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) {
OS << "static unsigned defaultSpellingIndexToSemanticSpelling("
<< "const AttributeList &Attr) {\n";
OS << " return UINT_MAX;\n";
OS << "}\n\n";
}
static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
raw_ostream &OS) {
// If the attribute does not have a semantic form, we can bail out early.
if (!Attr.getValueAsBit("ASTNode"))
return "defaultSpellingIndexToSemanticSpelling";
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
// If there are zero or one spellings, or all of the spellings share the same
// name, we can also bail out early.
if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
return "defaultSpellingIndexToSemanticSpelling";
// Generate the enumeration we will use for the mapping.
SemanticSpellingMap SemanticToSyntacticMap;
std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
std::string Name = Attr.getName().str() + "AttrSpellingMap";
OS << "static unsigned " << Name << "(const AttributeList &Attr) {\n";
OS << Enum;
OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
OS << "}\n\n";
return Name;
}
static bool IsKnownToGCC(const Record &Attr) {
// Look at the spellings for this subject; if there are any spellings which
// claim to be known to GCC, the attribute is known to GCC.
return llvm::any_of(
GetFlattenedSpellings(Attr),
[](const FlattenedSpelling &S) { return S.knownToGCC(); });
}
/// Emits the parsed attribute helpers
void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Parsed attribute helpers", OS);
PragmaClangAttributeSupport &PragmaAttributeSupport =
getPragmaAttributeSupport(Records);
// Get the list of parsed attributes, and accept the optional list of
// duplicates due to the ParseKind.
ParsedAttrMap Dupes;
ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
// Generate the default appertainsTo, target and language option diagnostic,
// and spelling list index mapping methods.
GenerateDefaultAppertainsTo(OS);
GenerateDefaultLangOptRequirements(OS);
GenerateDefaultTargetRequirements(OS);
GenerateDefaultSpellingIndexToSemanticSpelling(OS);
// Generate the appertainsTo diagnostic methods and write their names into
// another mapping. At the same time, generate the AttrInfoMap object
// contents. Due to the reliance on generated code, use separate streams so
// that code will not be interleaved.
std::string Buffer;
raw_string_ostream SS {Buffer};
for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
// TODO: If the attribute's kind appears in the list of duplicates, that is
// because it is a target-specific attribute that appears multiple times.
// It would be beneficial to test whether the duplicates are "similar
// enough" to each other to not cause problems. For instance, check that
// the spellings are identical, and custom parsing rules match, etc.
// We need to generate struct instances based off ParsedAttrInfo from
// AttributeList.cpp.
SS << " { ";
emitArgInfo(*I->second, SS);
SS << ", " << I->second->getValueAsBit("HasCustomParsing");
SS << ", " << I->second->isSubClassOf("TargetSpecificAttr");
SS << ", " << I->second->isSubClassOf("TypeAttr");
SS << ", " << I->second->isSubClassOf("StmtAttr");
SS << ", " << IsKnownToGCC(*I->second);
SS << ", " << PragmaAttributeSupport.isAttributedSupported(*I->second);
SS << ", " << GenerateAppertainsTo(*I->second, OS);
SS << ", " << GenerateLangOptRequirements(*I->second, OS);
SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS);
SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS);
SS << ", "
<< PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
SS << " }";
if (I + 1 != E)
SS << ",";
SS << " // AT_" << I->first << "\n";
}
OS << "static const ParsedAttrInfo AttrInfoMap[AttributeList::UnknownAttribute + 1] = {\n";
OS << SS.str();
OS << "};\n\n";
// Generate the attribute match rules.
emitAttributeMatchRules(PragmaAttributeSupport, OS);
}
// Emits the kind list of parsed attributes
void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute name matcher", OS);
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
Keywords, Pragma, C2x;
std::set<std::string> Seen;
for (const auto *A : Attrs) {
const Record &Attr = *A;
bool SemaHandler = Attr.getValueAsBit("SemaHandler");
bool Ignored = Attr.getValueAsBit("Ignored");
if (SemaHandler || Ignored) {
// Attribute spellings can be shared between target-specific attributes,
// and can be shared between syntaxes for the same attribute. For
// instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
// specific attribute, or MSP430-specific attribute. Additionally, an
// attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
// for the same semantic attribute. Ultimately, we need to map each of
// these to a single AttributeList::Kind value, but the StringMatcher
// class cannot handle duplicate match strings. So we generate a list of
// string to match based on the syntax, and emit multiple string matchers
// depending on the syntax used.
std::string AttrName;
if (Attr.isSubClassOf("TargetSpecificAttr") &&
!Attr.isValueUnset("ParseKind")) {
AttrName = Attr.getValueAsString("ParseKind");
if (Seen.find(AttrName) != Seen.end())
continue;
Seen.insert(AttrName);
} else
AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
for (const auto &S : Spellings) {
const std::string &RawSpelling = S.name();
std::vector<StringMatcher::StringPair> *Matches = nullptr;
std::string Spelling;
const std::string &Variety = S.variety();
if (Variety == "CXX11") {
Matches = &CXX11;
Spelling += S.nameSpace();
Spelling += "::";
} else if (Variety == "C2x") {
Matches = &C2x;
Spelling += S.nameSpace();
Spelling += "::";
} else if (Variety == "GNU")
Matches = &GNU;
else if (Variety == "Declspec")
Matches = &Declspec;
else if (Variety == "Microsoft")
Matches = &Microsoft;
else if (Variety == "Keyword")
Matches = &Keywords;
else if (Variety == "Pragma")
Matches = &Pragma;
assert(Matches && "Unsupported spelling variety found");
if (Variety == "GNU")
Spelling += NormalizeGNUAttrSpelling(RawSpelling);
else
Spelling += RawSpelling;
if (SemaHandler)
Matches->push_back(StringMatcher::StringPair(Spelling,
"return AttributeList::AT_" + AttrName + ";"));
else
Matches->push_back(StringMatcher::StringPair(Spelling,
"return AttributeList::IgnoredAttribute;"));
}
}
}
OS << "static AttributeList::Kind getAttrKind(StringRef Name, ";
OS << "AttributeList::Syntax Syntax) {\n";
OS << " if (AttributeList::AS_GNU == Syntax) {\n";
StringMatcher("Name", GNU, OS).Emit();
OS << " } else if (AttributeList::AS_Declspec == Syntax) {\n";
StringMatcher("Name", Declspec, OS).Emit();
OS << " } else if (AttributeList::AS_Microsoft == Syntax) {\n";
StringMatcher("Name", Microsoft, OS).Emit();
OS << " } else if (AttributeList::AS_CXX11 == Syntax) {\n";
StringMatcher("Name", CXX11, OS).Emit();
OS << " } else if (AttributeList::AS_C2x == Syntax) {\n";
StringMatcher("Name", C2x, OS).Emit();
OS << " } else if (AttributeList::AS_Keyword == Syntax || ";
OS << "AttributeList::AS_ContextSensitiveKeyword == Syntax) {\n";
StringMatcher("Name", Keywords, OS).Emit();
OS << " } else if (AttributeList::AS_Pragma == Syntax) {\n";
StringMatcher("Name", Pragma, OS).Emit();
OS << " }\n";
OS << " return AttributeList::UnknownAttribute;\n"
<< "}\n";
}
// Emits the code to dump an attribute.
void EmitClangAttrDump(RecordKeeper &Records, raw_ostream &OS) {
emitSourceFileHeader("Attribute dumper", OS);
OS << " switch (A->getKind()) {\n";
std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
for (const auto *Attr : Attrs) {
const Record &R = *Attr;
if (!R.getValueAsBit("ASTNode"))
continue;
OS << " case attr::" << R.getName() << ": {\n";
// If the attribute has a semantically-meaningful name (which is determined
// by whether there is a Spelling enumeration for it), then write out the
// spelling used for the attribute.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
OS << " OS << \" \" << A->getSpelling();\n";
Args = R.getValueAsListOfDefs("Args");
if (!Args.empty()) {
OS << " const auto *SA = cast<" << R.getName()
<< "Attr>(A);\n";
for (const auto *Arg : Args)
createArgument(*Arg, R.getName())->writeDump(OS);
for (const auto *AI : Args)
createArgument(*AI, R.getName())->writeDumpChildren(OS);
}
OS <<
" break;\n"
" }\n";
}
OS << " }\n";
}
void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
raw_ostream &OS) {
emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
emitClangAttrArgContextList(Records, OS);
emitClangAttrIdentifierArgList(Records, OS);
emitClangAttrTypeArgList(Records, OS);
emitClangAttrLateParsedList(Records, OS);
}
void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
raw_ostream &OS) {
getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
}
class DocumentationData {
public:
const Record *Documentation;
const Record *Attribute;
std::string Heading;
unsigned SupportedSpellings;
DocumentationData(const Record &Documentation, const Record &Attribute,
const std::pair<std::string, unsigned> HeadingAndKinds)
: Documentation(&Documentation), Attribute(&Attribute),
Heading(std::move(HeadingAndKinds.first)),
SupportedSpellings(HeadingAndKinds.second) {}
};
static void WriteCategoryHeader(const Record *DocCategory,
raw_ostream &OS) {
const StringRef Name = DocCategory->getValueAsString("Name");
OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
// If there is content, print that as well.
const StringRef ContentStr = DocCategory->getValueAsString("Content");
// Trim leading and trailing newlines and spaces.
OS << ContentStr.trim();
OS << "\n\n";
}
enum SpellingKind {
GNU = 1 << 0,
CXX11 = 1 << 1,
C2x = 1 << 2,
Declspec = 1 << 3,
Microsoft = 1 << 4,
Keyword = 1 << 5,
Pragma = 1 << 6
};
static std::pair<std::string, unsigned>
GetAttributeHeadingAndSpellingKinds(const Record &Documentation,
const Record &Attribute) {
// FIXME: there is no way to have a per-spelling category for the attribute
// documentation. This may not be a limiting factor since the spellings
// should generally be consistently applied across the category.
std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
// Determine the heading to be used for this attribute.
std::string Heading = Documentation.getValueAsString("Heading");
bool CustomHeading = !Heading.empty();
if (Heading.empty()) {
// If there's only one spelling, we can simply use that.
if (Spellings.size() == 1)
Heading = Spellings.begin()->name();
else {
std::set<std::string> Uniques;
for (auto I = Spellings.begin(), E = Spellings.end();
I != E && Uniques.size() <= 1; ++I) {
std::string Spelling = NormalizeNameForSpellingComparison(I->name());
Uniques.insert(Spelling);
}
// If the semantic map has only one spelling, that is sufficient for our
// needs.
if (Uniques.size() == 1)
Heading = *Uniques.begin();
}
}
// If the heading is still empty, it is an error.
if (Heading.empty())
PrintFatalError(Attribute.getLoc(),
"This attribute requires a heading to be specified");
// Gather a list of unique spellings; this is not the same as the semantic
// spelling for the attribute. Variations in underscores and other non-
// semantic characters are still acceptable.
std::vector<std::string> Names;
unsigned SupportedSpellings = 0;
for (const auto &I : Spellings) {
SpellingKind Kind = StringSwitch<SpellingKind>(I.variety())
.Case("GNU", GNU)
.Case("CXX11", CXX11)
.Case("C2x", C2x)
.Case("Declspec", Declspec)
.Case("Microsoft", Microsoft)
.Case("Keyword", Keyword)
.Case("Pragma", Pragma);
// Mask in the supported spelling.
SupportedSpellings |= Kind;
std::string Name;
if ((Kind == CXX11 || Kind == C2x) && !I.nameSpace().empty())
Name = I.nameSpace() + "::";
Name += I.name();
// If this name is the same as the heading, do not add it.
if (Name != Heading)
Names.push_back(Name);
}
// Print out the heading for the attribute. If there are alternate spellings,
// then display those after the heading.
if (!CustomHeading && !Names.empty()) {
Heading += " (";
for (auto I = Names.begin(), E = Names.end(); I != E; ++I) {
if (I != Names.begin())
Heading += ", ";
Heading += *I;
}
Heading += ")";
}
if (!SupportedSpellings)
PrintFatalError(Attribute.getLoc(),
"Attribute has no supported spellings; cannot be "
"documented");
return std::make_pair(std::move(Heading), SupportedSpellings);
}
static void WriteDocumentation(RecordKeeper &Records,
const DocumentationData &Doc, raw_ostream &OS) {
OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
// List what spelling syntaxes the attribute supports.
OS << ".. csv-table:: Supported Syntaxes\n";
OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"__declspec\", \"Keyword\",";
OS << " \"Pragma\", \"Pragma clang attribute\"\n\n";
OS << " \"";
if (Doc.SupportedSpellings & GNU) OS << "X";
OS << "\",\"";
if (Doc.SupportedSpellings & CXX11) OS << "X";
OS << "\",\"";
if (Doc.SupportedSpellings & C2x) OS << "X";
OS << "\",\"";
if (Doc.SupportedSpellings & Declspec) OS << "X";
OS << "\",\"";
if (Doc.SupportedSpellings & Keyword) OS << "X";
OS << "\", \"";
if (Doc.SupportedSpellings & Pragma) OS << "X";
OS << "\", \"";
if (getPragmaAttributeSupport(Records).isAttributedSupported(*Doc.Attribute))
OS << "X";
OS << "\"\n\n";
// If the attribute is deprecated, print a message about it, and possibly
// provide a replacement attribute.
if (!Doc.Documentation->isValueUnset("Deprecated")) {
OS << "This attribute has been deprecated, and may be removed in a future "
<< "version of Clang.";
const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
const StringRef Replacement = Deprecated.getValueAsString("Replacement");
if (!Replacement.empty())
OS << " This attribute has been superseded by ``"
<< Replacement << "``.";
OS << "\n\n";
}
const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
// Trim leading and trailing newlines and spaces.
OS << ContentStr.trim();
OS << "\n\n\n";
}
void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
// Get the documentation introduction paragraph.
const Record *Documentation = Records.getDef("GlobalDocumentation");
if (!Documentation) {
PrintFatalError("The Documentation top-level definition is missing, "
"no documentation will be generated.");
return;
}
OS << Documentation->getValueAsString("Intro") << "\n";
// Gather the Documentation lists from each of the attributes, based on the
// category provided.
std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
std::map<const Record *, std::vector<DocumentationData>> SplitDocs;
for (const auto *A : Attrs) {
const Record &Attr = *A;
std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
for (const auto *D : Docs) {
const Record &Doc = *D;
const Record *Category = Doc.getValueAsDef("Category");
// If the category is "undocumented", then there cannot be any other
// documentation categories (otherwise, the attribute would become
// documented).
const StringRef Cat = Category->getValueAsString("Name");
bool Undocumented = Cat == "Undocumented";
if (Undocumented && Docs.size() > 1)
PrintFatalError(Doc.getLoc(),
"Attribute is \"Undocumented\", but has multiple "
"documentation categories");
if (!Undocumented)
SplitDocs[Category].push_back(DocumentationData(
Doc, Attr, GetAttributeHeadingAndSpellingKinds(Doc, Attr)));
}
}
// Having split the attributes out based on what documentation goes where,
// we can begin to generate sections of documentation.
for (auto &I : SplitDocs) {
WriteCategoryHeader(I.first, OS);
std::sort(I.second.begin(), I.second.end(),
[](const DocumentationData &D1, const DocumentationData &D2) {
return D1.Heading < D2.Heading;
});
// Walk over each of the attributes in the category and write out their
// documentation.
for (const auto &Doc : I.second)
WriteDocumentation(Records, Doc, OS);
}
}
void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
raw_ostream &OS) {
PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
ParsedAttrMap Attrs = getParsedAttrList(Records);
unsigned NumAttrs = 0;
for (const auto &I : Attrs) {
if (Support.isAttributedSupported(*I.second))
++NumAttrs;
}
OS << "#pragma clang attribute supports " << NumAttrs << " attributes:\n";
for (const auto &I : Attrs) {
if (!Support.isAttributedSupported(*I.second))
continue;
OS << I.first;
if (I.second->isValueUnset("Subjects")) {
OS << " ()\n";
continue;
}
const Record *SubjectObj = I.second->getValueAsDef("Subjects");
std::vector<Record *> Subjects =
SubjectObj->getValueAsListOfDefs("Subjects");
OS << " (";
for (const auto &Subject : llvm::enumerate(Subjects)) {
if (Subject.index())
OS << ", ";
PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
Support.SubjectsToRules.find(Subject.value())->getSecond();
if (RuleSet.isRule()) {
OS << RuleSet.getRule().getEnumValueName();
continue;
}
OS << "(";
for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
if (Rule.index())
OS << ", ";
OS << Rule.value().getEnumValueName();
}
OS << ")";
}
OS << ")\n";
}
}
} // end namespace clang