| //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the Machinelegalizer class for ARM. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMLegalizerInfo.h" |
| #include "ARMCallLowering.h" |
| #include "ARMSubtarget.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" |
| #include "llvm/CodeGen/LowLevelType.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| |
| using namespace llvm; |
| |
| /// FIXME: The following static functions are SizeChangeStrategy functions |
| /// that are meant to temporarily mimic the behaviour of the old legalization |
| /// based on doubling/halving non-legal types as closely as possible. This is |
| /// not entirly possible as only legalizing the types that are exactly a power |
| /// of 2 times the size of the legal types would require specifying all those |
| /// sizes explicitly. |
| /// In practice, not specifying those isn't a problem, and the below functions |
| /// should disappear quickly as we add support for legalizing non-power-of-2 |
| /// sized types further. |
| static void |
| addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result, |
| const LegalizerInfo::SizeAndActionsVec &v) { |
| for (unsigned i = 0; i < v.size(); ++i) { |
| result.push_back(v[i]); |
| if (i + 1 < v[i].first && i + 1 < v.size() && |
| v[i + 1].first != v[i].first + 1) |
| result.push_back({v[i].first + 1, LegalizerInfo::Unsupported}); |
| } |
| } |
| |
| static LegalizerInfo::SizeAndActionsVec |
| widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) { |
| assert(v.size() >= 1); |
| assert(v[0].first > 17); |
| LegalizerInfo::SizeAndActionsVec result = { |
| {1, LegalizerInfo::Unsupported}, |
| {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}, |
| {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}}; |
| addAndInterleaveWithUnsupported(result, v); |
| auto Largest = result.back().first; |
| result.push_back({Largest + 1, LegalizerInfo::Unsupported}); |
| return result; |
| } |
| |
| static LegalizerInfo::SizeAndActionsVec |
| widen_1_8_16(const LegalizerInfo::SizeAndActionsVec &v) { |
| assert(v.size() >= 1); |
| assert(v[0].first > 17); |
| LegalizerInfo::SizeAndActionsVec result = { |
| {1, LegalizerInfo::WidenScalar}, {2, LegalizerInfo::Unsupported}, |
| {8, LegalizerInfo::WidenScalar}, {9, LegalizerInfo::Unsupported}, |
| {16, LegalizerInfo::WidenScalar}, {17, LegalizerInfo::Unsupported}}; |
| addAndInterleaveWithUnsupported(result, v); |
| auto Largest = result.back().first; |
| result.push_back({Largest + 1, LegalizerInfo::Unsupported}); |
| return result; |
| } |
| |
| static bool AEABI(const ARMSubtarget &ST) { |
| return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI(); |
| } |
| |
| ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) { |
| using namespace TargetOpcode; |
| |
| const LLT p0 = LLT::pointer(0, 32); |
| |
| const LLT s1 = LLT::scalar(1); |
| const LLT s8 = LLT::scalar(8); |
| const LLT s16 = LLT::scalar(16); |
| const LLT s32 = LLT::scalar(32); |
| const LLT s64 = LLT::scalar(64); |
| |
| setAction({G_GLOBAL_VALUE, p0}, Legal); |
| setAction({G_FRAME_INDEX, p0}, Legal); |
| |
| for (unsigned Op : {G_LOAD, G_STORE}) { |
| for (auto Ty : {s1, s8, s16, s32, p0}) |
| setAction({Op, Ty}, Legal); |
| setAction({Op, 1, p0}, Legal); |
| } |
| |
| for (unsigned Op : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) { |
| if (Op != G_ADD) |
| setLegalizeScalarToDifferentSizeStrategy( |
| Op, 0, widenToLargerTypesUnsupportedOtherwise); |
| setAction({Op, s32}, Legal); |
| } |
| |
| for (unsigned Op : {G_SDIV, G_UDIV}) { |
| setLegalizeScalarToDifferentSizeStrategy(Op, 0, |
| widenToLargerTypesUnsupportedOtherwise); |
| if (ST.hasDivideInARMMode()) |
| setAction({Op, s32}, Legal); |
| else |
| setAction({Op, s32}, Libcall); |
| } |
| |
| for (unsigned Op : {G_SREM, G_UREM}) { |
| setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16); |
| if (ST.hasDivideInARMMode()) |
| setAction({Op, s32}, Lower); |
| else if (AEABI(ST)) |
| setAction({Op, s32}, Custom); |
| else |
| setAction({Op, s32}, Libcall); |
| } |
| |
| for (unsigned Op : {G_SEXT, G_ZEXT, G_ANYEXT}) { |
| setAction({Op, s32}, Legal); |
| } |
| |
| setAction({G_INTTOPTR, p0}, Legal); |
| setAction({G_INTTOPTR, 1, s32}, Legal); |
| |
| setAction({G_PTRTOINT, s32}, Legal); |
| setAction({G_PTRTOINT, 1, p0}, Legal); |
| |
| for (unsigned Op : {G_ASHR, G_LSHR, G_SHL}) |
| setAction({Op, s32}, Legal); |
| |
| setAction({G_GEP, p0}, Legal); |
| setAction({G_GEP, 1, s32}, Legal); |
| |
| setAction({G_SELECT, s32}, Legal); |
| setAction({G_SELECT, p0}, Legal); |
| setAction({G_SELECT, 1, s1}, Legal); |
| |
| setAction({G_BRCOND, s1}, Legal); |
| |
| setAction({G_CONSTANT, s32}, Legal); |
| setAction({G_CONSTANT, p0}, Legal); |
| setLegalizeScalarToDifferentSizeStrategy(G_CONSTANT, 0, widen_1_8_16); |
| |
| setAction({G_ICMP, s1}, Legal); |
| setLegalizeScalarToDifferentSizeStrategy(G_ICMP, 1, |
| widenToLargerTypesUnsupportedOtherwise); |
| for (auto Ty : {s32, p0}) |
| setAction({G_ICMP, 1, Ty}, Legal); |
| |
| if (!ST.useSoftFloat() && ST.hasVFP2()) { |
| for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV}) |
| for (auto Ty : {s32, s64}) |
| setAction({BinOp, Ty}, Legal); |
| |
| setAction({G_LOAD, s64}, Legal); |
| setAction({G_STORE, s64}, Legal); |
| |
| setAction({G_FCMP, s1}, Legal); |
| setAction({G_FCMP, 1, s32}, Legal); |
| setAction({G_FCMP, 1, s64}, Legal); |
| |
| setAction({G_MERGE_VALUES, s64}, Legal); |
| setAction({G_MERGE_VALUES, 1, s32}, Legal); |
| setAction({G_UNMERGE_VALUES, s32}, Legal); |
| setAction({G_UNMERGE_VALUES, 1, s64}, Legal); |
| } else { |
| for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV}) |
| for (auto Ty : {s32, s64}) |
| setAction({BinOp, Ty}, Libcall); |
| |
| setAction({G_FCMP, s1}, Legal); |
| setAction({G_FCMP, 1, s32}, Custom); |
| setAction({G_FCMP, 1, s64}, Custom); |
| |
| if (AEABI(ST)) |
| setFCmpLibcallsAEABI(); |
| else |
| setFCmpLibcallsGNU(); |
| } |
| |
| for (unsigned Op : {G_FREM, G_FPOW}) |
| for (auto Ty : {s32, s64}) |
| setAction({Op, Ty}, Libcall); |
| |
| computeTables(); |
| } |
| |
| void ARMLegalizerInfo::setFCmpLibcallsAEABI() { |
| // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be |
| // default-initialized. |
| FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp32Libcalls[CmpInst::FCMP_OEQ] = { |
| {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGE] = { |
| {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGT] = { |
| {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLE] = { |
| {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLT] = { |
| {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNO] = { |
| {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ONE] = { |
| {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_UEQ] = { |
| {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| |
| FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp64Libcalls[CmpInst::FCMP_OEQ] = { |
| {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGE] = { |
| {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGT] = { |
| {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLE] = { |
| {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLT] = { |
| {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNO] = { |
| {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ONE] = { |
| {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_UEQ] = { |
| {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| } |
| |
| void ARMLegalizerInfo::setFCmpLibcallsGNU() { |
| // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be |
| // default-initialized. |
| FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; |
| FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}, |
| {RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; |
| FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}, |
| {RTLIB::UO_F32, CmpInst::ICMP_NE}}; |
| |
| FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; |
| FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}, |
| {RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; |
| FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}, |
| {RTLIB::UO_F64, CmpInst::ICMP_NE}}; |
| } |
| |
| ARMLegalizerInfo::FCmpLibcallsList |
| ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate, |
| unsigned Size) const { |
| assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate"); |
| if (Size == 32) |
| return FCmp32Libcalls[Predicate]; |
| if (Size == 64) |
| return FCmp64Libcalls[Predicate]; |
| llvm_unreachable("Unsupported size for FCmp predicate"); |
| } |
| |
| bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI, |
| MachineRegisterInfo &MRI, |
| MachineIRBuilder &MIRBuilder) const { |
| using namespace TargetOpcode; |
| |
| MIRBuilder.setInstr(MI); |
| |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case G_SREM: |
| case G_UREM: { |
| unsigned OriginalResult = MI.getOperand(0).getReg(); |
| auto Size = MRI.getType(OriginalResult).getSizeInBits(); |
| if (Size != 32) |
| return false; |
| |
| auto Libcall = |
| MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; |
| |
| // Our divmod libcalls return a struct containing the quotient and the |
| // remainder. We need to create a virtual register for it. |
| auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); |
| Type *ArgTy = Type::getInt32Ty(Ctx); |
| StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true); |
| auto RetVal = MRI.createGenericVirtualRegister( |
| getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout())); |
| |
| auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy}, |
| {{MI.getOperand(1).getReg(), ArgTy}, |
| {MI.getOperand(2).getReg(), ArgTy}}); |
| if (Status != LegalizerHelper::Legalized) |
| return false; |
| |
| // The remainder is the second result of divmod. Split the return value into |
| // a new, unused register for the quotient and the destination of the |
| // original instruction for the remainder. |
| MIRBuilder.buildUnmerge( |
| {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult}, |
| RetVal); |
| break; |
| } |
| case G_FCMP: { |
| assert(MRI.getType(MI.getOperand(2).getReg()) == |
| MRI.getType(MI.getOperand(3).getReg()) && |
| "Mismatched operands for G_FCMP"); |
| auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| |
| auto OriginalResult = MI.getOperand(0).getReg(); |
| auto Predicate = |
| static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); |
| auto Libcalls = getFCmpLibcalls(Predicate, OpSize); |
| |
| if (Libcalls.empty()) { |
| assert((Predicate == CmpInst::FCMP_TRUE || |
| Predicate == CmpInst::FCMP_FALSE) && |
| "Predicate needs libcalls, but none specified"); |
| MIRBuilder.buildConstant(OriginalResult, |
| Predicate == CmpInst::FCMP_TRUE ? 1 : 0); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); |
| assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size"); |
| auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx); |
| auto *RetTy = Type::getInt32Ty(Ctx); |
| |
| SmallVector<unsigned, 2> Results; |
| for (auto Libcall : Libcalls) { |
| auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32)); |
| auto Status = |
| createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy}, |
| {{MI.getOperand(2).getReg(), ArgTy}, |
| {MI.getOperand(3).getReg(), ArgTy}}); |
| |
| if (Status != LegalizerHelper::Legalized) |
| return false; |
| |
| auto ProcessedResult = |
| Libcalls.size() == 1 |
| ? OriginalResult |
| : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult)); |
| |
| // We have a result, but we need to transform it into a proper 1-bit 0 or |
| // 1, taking into account the different peculiarities of the values |
| // returned by the comparison functions. |
| CmpInst::Predicate ResultPred = Libcall.Predicate; |
| if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) { |
| // We have a nice 0 or 1, and we just need to truncate it back to 1 bit |
| // to keep the types consistent. |
| MIRBuilder.buildTrunc(ProcessedResult, LibcallResult); |
| } else { |
| // We need to compare against 0. |
| assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate"); |
| auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32)); |
| MIRBuilder.buildConstant(Zero, 0); |
| MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero); |
| } |
| Results.push_back(ProcessedResult); |
| } |
| |
| if (Results.size() != 1) { |
| assert(Results.size() == 2 && "Unexpected number of results"); |
| MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]); |
| } |
| break; |
| } |
| } |
| |
| MI.eraseFromParent(); |
| return true; |
| } |