| //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMTargetTransformInfo.h" |
| #include "ARMSubtarget.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/CostTable.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineValueType.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/MC/SubtargetFeature.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "armtti" |
| |
| bool ARMTTIImpl::areInlineCompatible(const Function *Caller, |
| const Function *Callee) const { |
| const TargetMachine &TM = getTLI()->getTargetMachine(); |
| const FeatureBitset &CallerBits = |
| TM.getSubtargetImpl(*Caller)->getFeatureBits(); |
| const FeatureBitset &CalleeBits = |
| TM.getSubtargetImpl(*Callee)->getFeatureBits(); |
| |
| // To inline a callee, all features not in the whitelist must match exactly. |
| bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == |
| (CalleeBits & ~InlineFeatureWhitelist); |
| // For features in the whitelist, the callee's features must be a subset of |
| // the callers'. |
| bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == |
| (CalleeBits & InlineFeatureWhitelist); |
| return MatchExact && MatchSubset; |
| } |
| |
| int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned Bits = Ty->getPrimitiveSizeInBits(); |
| if (Bits == 0 || Imm.getActiveBits() >= 64) |
| return 4; |
| |
| int64_t SImmVal = Imm.getSExtValue(); |
| uint64_t ZImmVal = Imm.getZExtValue(); |
| if (!ST->isThumb()) { |
| if ((SImmVal >= 0 && SImmVal < 65536) || |
| (ARM_AM::getSOImmVal(ZImmVal) != -1) || |
| (ARM_AM::getSOImmVal(~ZImmVal) != -1)) |
| return 1; |
| return ST->hasV6T2Ops() ? 2 : 3; |
| } |
| if (ST->isThumb2()) { |
| if ((SImmVal >= 0 && SImmVal < 65536) || |
| (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || |
| (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) |
| return 1; |
| return ST->hasV6T2Ops() ? 2 : 3; |
| } |
| // Thumb1. |
| if (SImmVal >= 0 && SImmVal < 256) |
| return 1; |
| if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) |
| return 2; |
| // Load from constantpool. |
| return 3; |
| } |
| |
| // Constants smaller than 256 fit in the immediate field of |
| // Thumb1 instructions so we return a zero cost and 1 otherwise. |
| int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, |
| const APInt &Imm, Type *Ty) { |
| if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) |
| return 0; |
| |
| return 1; |
| } |
| |
| int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, |
| Type *Ty) { |
| // Division by a constant can be turned into multiplication, but only if we |
| // know it's constant. So it's not so much that the immediate is cheap (it's |
| // not), but that the alternative is worse. |
| // FIXME: this is probably unneeded with GlobalISel. |
| if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || |
| Opcode == Instruction::SRem || Opcode == Instruction::URem) && |
| Idx == 1) |
| return 0; |
| |
| if (Opcode == Instruction::And) |
| // Conversion to BIC is free, and means we can use ~Imm instead. |
| return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty)); |
| |
| if (Opcode == Instruction::Add) |
| // Conversion to SUB is free, and means we can use -Imm instead. |
| return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty)); |
| |
| if (Opcode == Instruction::ICmp && Imm.isNegative() && |
| Ty->getIntegerBitWidth() == 32) { |
| int64_t NegImm = -Imm.getSExtValue(); |
| if (ST->isThumb2() && NegImm < 1<<12) |
| // icmp X, #-C -> cmn X, #C |
| return 0; |
| if (ST->isThumb() && NegImm < 1<<8) |
| // icmp X, #-C -> adds X, #C |
| return 0; |
| } |
| |
| return getIntImmCost(Imm, Ty); |
| } |
| |
| int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| const Instruction *I) { |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| // Single to/from double precision conversions. |
| static const CostTblEntry NEONFltDblTbl[] = { |
| // Vector fptrunc/fpext conversions. |
| { ISD::FP_ROUND, MVT::v2f64, 2 }, |
| { ISD::FP_EXTEND, MVT::v2f32, 2 }, |
| { ISD::FP_EXTEND, MVT::v4f32, 4 } |
| }; |
| |
| if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || |
| ISD == ISD::FP_EXTEND)) { |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); |
| if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) |
| return LT.first * Entry->Cost; |
| } |
| |
| EVT SrcTy = TLI->getValueType(DL, Src); |
| EVT DstTy = TLI->getValueType(DL, Dst); |
| |
| if (!SrcTy.isSimple() || !DstTy.isSimple()) |
| return BaseT::getCastInstrCost(Opcode, Dst, Src); |
| |
| // Some arithmetic, load and store operations have specific instructions |
| // to cast up/down their types automatically at no extra cost. |
| // TODO: Get these tables to know at least what the related operations are. |
| static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { |
| { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, |
| { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, |
| { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, |
| { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, |
| { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, |
| { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, |
| |
| // The number of vmovl instructions for the extension. |
| { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, |
| { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, |
| { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, |
| { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, |
| { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, |
| { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, |
| { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, |
| { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, |
| { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, |
| { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, |
| |
| // Operations that we legalize using splitting. |
| { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, |
| { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, |
| |
| // Vector float <-> i32 conversions. |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, |
| |
| { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, |
| { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, |
| { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, |
| { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, |
| { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, |
| { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, |
| { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, |
| { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, |
| { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, |
| { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, |
| |
| { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, |
| { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, |
| { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, |
| { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, |
| { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, |
| |
| // Vector double <-> i32 conversions. |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| |
| { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, |
| { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, |
| { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, |
| { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } |
| }; |
| |
| if (SrcTy.isVector() && ST->hasNEON()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, |
| DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| // Scalar float to integer conversions. |
| static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { |
| { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, |
| { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, |
| { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, |
| { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } |
| }; |
| if (SrcTy.isFloatingPoint() && ST->hasNEON()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, |
| DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| // Scalar integer to float conversions. |
| static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } |
| }; |
| |
| if (SrcTy.isInteger() && ST->hasNEON()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, |
| ISD, DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| // Scalar integer conversion costs. |
| static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { |
| // i16 -> i64 requires two dependent operations. |
| { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, |
| |
| // Truncates on i64 are assumed to be free. |
| { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, |
| { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, |
| { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, |
| { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } |
| }; |
| |
| if (SrcTy.isInteger()) { |
| if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, |
| DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| return BaseT::getCastInstrCost(Opcode, Dst, Src); |
| } |
| |
| int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, |
| unsigned Index) { |
| // Penalize inserting into an D-subregister. We end up with a three times |
| // lower estimated throughput on swift. |
| if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && |
| ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) |
| return 3; |
| |
| if ((Opcode == Instruction::InsertElement || |
| Opcode == Instruction::ExtractElement)) { |
| // Cross-class copies are expensive on many microarchitectures, |
| // so assume they are expensive by default. |
| if (ValTy->getVectorElementType()->isIntegerTy()) |
| return 3; |
| |
| // Even if it's not a cross class copy, this likely leads to mixing |
| // of NEON and VFP code and should be therefore penalized. |
| if (ValTy->isVectorTy() && |
| ValTy->getScalarSizeInBits() <= 32) |
| return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); |
| } |
| |
| return BaseT::getVectorInstrCost(Opcode, ValTy, Index); |
| } |
| |
| int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| const Instruction *I) { |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| // On NEON a a vector select gets lowered to vbsl. |
| if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { |
| // Lowering of some vector selects is currently far from perfect. |
| static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { |
| { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, |
| { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, |
| { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } |
| }; |
| |
| EVT SelCondTy = TLI->getValueType(DL, CondTy); |
| EVT SelValTy = TLI->getValueType(DL, ValTy); |
| if (SelCondTy.isSimple() && SelValTy.isSimple()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, |
| SelCondTy.getSimpleVT(), |
| SelValTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); |
| return LT.first; |
| } |
| |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); |
| } |
| |
| int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
| const SCEV *Ptr) { |
| // Address computations in vectorized code with non-consecutive addresses will |
| // likely result in more instructions compared to scalar code where the |
| // computation can more often be merged into the index mode. The resulting |
| // extra micro-ops can significantly decrease throughput. |
| unsigned NumVectorInstToHideOverhead = 10; |
| int MaxMergeDistance = 64; |
| |
| if (Ty->isVectorTy() && SE && |
| !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) |
| return NumVectorInstToHideOverhead; |
| |
| // In many cases the address computation is not merged into the instruction |
| // addressing mode. |
| return 1; |
| } |
| |
| int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) { |
| // We only handle costs of reverse and alternate shuffles for now. |
| if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate) |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| |
| if (Kind == TTI::SK_Reverse) { |
| static const CostTblEntry NEONShuffleTbl[] = { |
| // Reverse shuffle cost one instruction if we are shuffling within a |
| // double word (vrev) or two if we shuffle a quad word (vrev, vext). |
| {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; |
| |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); |
| |
| if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, |
| LT.second)) |
| return LT.first * Entry->Cost; |
| |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| if (Kind == TTI::SK_Alternate) { |
| static const CostTblEntry NEONAltShuffleTbl[] = { |
| // Alt shuffle cost table for ARM. Cost is the number of instructions |
| // required to create the shuffled vector. |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; |
| |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); |
| if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl, |
| ISD::VECTOR_SHUFFLE, LT.second)) |
| return LT.first * Entry->Cost; |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| |
| int ARMTTIImpl::getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, |
| TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, |
| TTI::OperandValueProperties Opd2PropInfo, |
| ArrayRef<const Value *> Args) { |
| int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); |
| |
| const unsigned FunctionCallDivCost = 20; |
| const unsigned ReciprocalDivCost = 10; |
| static const CostTblEntry CostTbl[] = { |
| // Division. |
| // These costs are somewhat random. Choose a cost of 20 to indicate that |
| // vectorizing devision (added function call) is going to be very expensive. |
| // Double registers types. |
| { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, |
| { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, |
| { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, |
| { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, |
| { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, |
| // Quad register types. |
| { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, |
| // Multiplication. |
| }; |
| |
| if (ST->hasNEON()) |
| if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) |
| return LT.first * Entry->Cost; |
| |
| int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, |
| Opd1PropInfo, Opd2PropInfo); |
| |
| // This is somewhat of a hack. The problem that we are facing is that SROA |
| // creates a sequence of shift, and, or instructions to construct values. |
| // These sequences are recognized by the ISel and have zero-cost. Not so for |
| // the vectorized code. Because we have support for v2i64 but not i64 those |
| // sequences look particularly beneficial to vectorize. |
| // To work around this we increase the cost of v2i64 operations to make them |
| // seem less beneficial. |
| if (LT.second == MVT::v2i64 && |
| Op2Info == TargetTransformInfo::OK_UniformConstantValue) |
| Cost += 4; |
| |
| return Cost; |
| } |
| |
| int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace, const Instruction *I) { |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); |
| |
| if (Src->isVectorTy() && Alignment != 16 && |
| Src->getVectorElementType()->isDoubleTy()) { |
| // Unaligned loads/stores are extremely inefficient. |
| // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. |
| return LT.first * 4; |
| } |
| return LT.first; |
| } |
| |
| int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| unsigned Factor, |
| ArrayRef<unsigned> Indices, |
| unsigned Alignment, |
| unsigned AddressSpace) { |
| assert(Factor >= 2 && "Invalid interleave factor"); |
| assert(isa<VectorType>(VecTy) && "Expect a vector type"); |
| |
| // vldN/vstN doesn't support vector types of i64/f64 element. |
| bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; |
| |
| if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) { |
| unsigned NumElts = VecTy->getVectorNumElements(); |
| auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); |
| |
| // vldN/vstN only support legal vector types of size 64 or 128 in bits. |
| // Accesses having vector types that are a multiple of 128 bits can be |
| // matched to more than one vldN/vstN instruction. |
| if (NumElts % Factor == 0 && |
| TLI->isLegalInterleavedAccessType(SubVecTy, DL)) |
| return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); |
| } |
| |
| return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| Alignment, AddressSpace); |
| } |
| |
| void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::UnrollingPreferences &UP) { |
| // Only currently enable these preferences for M-Class cores. |
| if (!ST->isMClass()) |
| return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); |
| |
| // Disable loop unrolling for Oz and Os. |
| UP.OptSizeThreshold = 0; |
| UP.PartialOptSizeThreshold = 0; |
| if (L->getHeader()->getParent()->optForSize()) |
| return; |
| |
| // Only enable on Thumb-2 targets. |
| if (!ST->isThumb2()) |
| return; |
| |
| SmallVector<BasicBlock*, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| DEBUG(dbgs() << "Loop has:\n" |
| << "Blocks: " << L->getNumBlocks() << "\n" |
| << "Exit blocks: " << ExitingBlocks.size() << "\n"); |
| |
| // Only allow another exit other than the latch. This acts as an early exit |
| // as it mirrors the profitability calculation of the runtime unroller. |
| if (ExitingBlocks.size() > 2) |
| return; |
| |
| // Limit the CFG of the loop body for targets with a branch predictor. |
| // Allowing 4 blocks permits if-then-else diamonds in the body. |
| if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) |
| return; |
| |
| // Scan the loop: don't unroll loops with calls as this could prevent |
| // inlining. |
| unsigned Cost = 0; |
| for (auto *BB : L->getBlocks()) { |
| for (auto &I : *BB) { |
| if (isa<CallInst>(I) || isa<InvokeInst>(I)) { |
| ImmutableCallSite CS(&I); |
| if (const Function *F = CS.getCalledFunction()) { |
| if (!isLoweredToCall(F)) |
| continue; |
| } |
| return; |
| } |
| SmallVector<const Value*, 4> Operands(I.value_op_begin(), |
| I.value_op_end()); |
| Cost += getUserCost(&I, Operands); |
| } |
| } |
| |
| DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); |
| |
| UP.Partial = true; |
| UP.Runtime = true; |
| UP.UnrollRemainder = true; |
| UP.DefaultUnrollRuntimeCount = 4; |
| |
| // Force unrolling small loops can be very useful because of the branch |
| // taken cost of the backedge. |
| if (Cost < 12) |
| UP.Force = true; |
| } |