| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package draw |
| |
| import ( |
| "bytes" |
| "flag" |
| "fmt" |
| "image" |
| "image/color" |
| "image/png" |
| "math/rand" |
| "os" |
| "reflect" |
| "testing" |
| |
| "golang.org/x/image/math/f64" |
| |
| _ "image/jpeg" |
| ) |
| |
| var genGoldenFiles = flag.Bool("gen_golden_files", false, "whether to generate the TestXxx golden files.") |
| |
| var transformMatrix = func(scale, tx, ty float64) f64.Aff3 { |
| const cos30, sin30 = 0.866025404, 0.5 |
| return f64.Aff3{ |
| +scale * cos30, -scale * sin30, tx, |
| +scale * sin30, +scale * cos30, ty, |
| } |
| } |
| |
| func encode(filename string, m image.Image) error { |
| f, err := os.Create(filename) |
| if err != nil { |
| return fmt.Errorf("Create: %v", err) |
| } |
| defer f.Close() |
| if err := png.Encode(f, m); err != nil { |
| return fmt.Errorf("Encode: %v", err) |
| } |
| return nil |
| } |
| |
| // testInterp tests that interpolating the source image gives the exact |
| // destination image. This is to ensure that any refactoring or optimization of |
| // the interpolation code doesn't change the behavior. Changing the actual |
| // algorithm or kernel used by any particular quality setting will obviously |
| // change the resultant pixels. In such a case, use the gen_golden_files flag |
| // to regenerate the golden files. |
| func testInterp(t *testing.T, w int, h int, direction, prefix, suffix string) { |
| f, err := os.Open("../testdata/" + prefix + suffix) |
| if err != nil { |
| t.Fatalf("Open: %v", err) |
| } |
| defer f.Close() |
| src, _, err := image.Decode(f) |
| if err != nil { |
| t.Fatalf("Decode: %v", err) |
| } |
| |
| op, scale := Src, 3.75 |
| if prefix == "tux" { |
| op, scale = Over, 0.125 |
| } |
| green := image.NewUniform(color.RGBA{0x00, 0x22, 0x11, 0xff}) |
| |
| testCases := map[string]Interpolator{ |
| "nn": NearestNeighbor, |
| "ab": ApproxBiLinear, |
| "bl": BiLinear, |
| "cr": CatmullRom, |
| } |
| for name, q := range testCases { |
| goldenFilename := fmt.Sprintf("../testdata/%s-%s-%s.png", prefix, direction, name) |
| |
| got := image.NewRGBA(image.Rect(0, 0, w, h)) |
| Copy(got, image.Point{}, green, got.Bounds(), Src, nil) |
| if direction == "rotate" { |
| q.Transform(got, transformMatrix(scale, 40, 10), src, src.Bounds(), op, nil) |
| } else { |
| q.Scale(got, got.Bounds(), src, src.Bounds(), op, nil) |
| } |
| |
| if *genGoldenFiles { |
| if err := encode(goldenFilename, got); err != nil { |
| t.Error(err) |
| } |
| continue |
| } |
| |
| g, err := os.Open(goldenFilename) |
| if err != nil { |
| t.Errorf("Open: %v", err) |
| continue |
| } |
| defer g.Close() |
| wantRaw, err := png.Decode(g) |
| if err != nil { |
| t.Errorf("Decode: %v", err) |
| continue |
| } |
| // convert wantRaw to RGBA. |
| want, ok := wantRaw.(*image.RGBA) |
| if !ok { |
| b := wantRaw.Bounds() |
| want = image.NewRGBA(b) |
| Draw(want, b, wantRaw, b.Min, Src) |
| } |
| |
| if !reflect.DeepEqual(got, want) { |
| t.Errorf("%s: actual image differs from golden image", goldenFilename) |
| continue |
| } |
| } |
| } |
| |
| func TestScaleDown(t *testing.T) { testInterp(t, 100, 100, "down", "go-turns-two", "-280x360.jpeg") } |
| func TestScaleUp(t *testing.T) { testInterp(t, 75, 100, "up", "go-turns-two", "-14x18.png") } |
| func TestTformSrc(t *testing.T) { testInterp(t, 100, 100, "rotate", "go-turns-two", "-14x18.png") } |
| func TestTformOver(t *testing.T) { testInterp(t, 100, 100, "rotate", "tux", ".png") } |
| |
| // TestSimpleTransforms tests Scale and Transform calls that simplify to Copy |
| // or Scale calls. |
| func TestSimpleTransforms(t *testing.T) { |
| f, err := os.Open("../testdata/testpattern.png") // A 100x100 image. |
| if err != nil { |
| t.Fatalf("Open: %v", err) |
| } |
| defer f.Close() |
| src, _, err := image.Decode(f) |
| if err != nil { |
| t.Fatalf("Decode: %v", err) |
| } |
| |
| dst0 := image.NewRGBA(image.Rect(0, 0, 120, 150)) |
| dst1 := image.NewRGBA(image.Rect(0, 0, 120, 150)) |
| for _, op := range []string{"scale/copy", "tform/copy", "tform/scale"} { |
| for _, epsilon := range []float64{0, 1e-50, 1e-1} { |
| Copy(dst0, image.Point{}, image.Transparent, dst0.Bounds(), Src, nil) |
| Copy(dst1, image.Point{}, image.Transparent, dst1.Bounds(), Src, nil) |
| |
| switch op { |
| case "scale/copy": |
| dr := image.Rect(10, 30, 10+100, 30+100) |
| if epsilon > 1e-10 { |
| dr.Max.X++ |
| } |
| Copy(dst0, image.Point{10, 30}, src, src.Bounds(), Src, nil) |
| ApproxBiLinear.Scale(dst1, dr, src, src.Bounds(), Src, nil) |
| case "tform/copy": |
| Copy(dst0, image.Point{10, 30}, src, src.Bounds(), Src, nil) |
| ApproxBiLinear.Transform(dst1, f64.Aff3{ |
| 1, 0 + epsilon, 10, |
| 0, 1, 30, |
| }, src, src.Bounds(), Src, nil) |
| case "tform/scale": |
| ApproxBiLinear.Scale(dst0, image.Rect(10, 50, 10+50, 50+50), src, src.Bounds(), Src, nil) |
| ApproxBiLinear.Transform(dst1, f64.Aff3{ |
| 0.5, 0.0 + epsilon, 10, |
| 0.0, 0.5, 50, |
| }, src, src.Bounds(), Src, nil) |
| } |
| |
| differ := !bytes.Equal(dst0.Pix, dst1.Pix) |
| if epsilon > 1e-10 { |
| if !differ { |
| t.Errorf("%s yielded same pixels, want different pixels: epsilon=%v", op, epsilon) |
| } |
| } else { |
| if differ { |
| t.Errorf("%s yielded different pixels, want same pixels: epsilon=%v", op, epsilon) |
| } |
| } |
| } |
| } |
| } |
| |
| func BenchmarkSimpleScaleCopy(b *testing.B) { |
| dst := image.NewRGBA(image.Rect(0, 0, 640, 480)) |
| src := image.NewRGBA(image.Rect(0, 0, 400, 300)) |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| ApproxBiLinear.Scale(dst, image.Rect(10, 20, 10+400, 20+300), src, src.Bounds(), Src, nil) |
| } |
| } |
| |
| func BenchmarkSimpleTransformCopy(b *testing.B) { |
| dst := image.NewRGBA(image.Rect(0, 0, 640, 480)) |
| src := image.NewRGBA(image.Rect(0, 0, 400, 300)) |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| ApproxBiLinear.Transform(dst, f64.Aff3{ |
| 1, 0, 10, |
| 0, 1, 20, |
| }, src, src.Bounds(), Src, nil) |
| } |
| } |
| |
| func BenchmarkSimpleTransformScale(b *testing.B) { |
| dst := image.NewRGBA(image.Rect(0, 0, 640, 480)) |
| src := image.NewRGBA(image.Rect(0, 0, 400, 300)) |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| ApproxBiLinear.Transform(dst, f64.Aff3{ |
| 0.5, 0.0, 10, |
| 0.0, 0.5, 20, |
| }, src, src.Bounds(), Src, nil) |
| } |
| } |
| |
| func TestOps(t *testing.T) { |
| blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff}) |
| testCases := map[Op]color.RGBA{ |
| Over: color.RGBA{0x7f, 0x00, 0x80, 0xff}, |
| Src: color.RGBA{0x7f, 0x00, 0x00, 0x7f}, |
| } |
| for op, want := range testCases { |
| dst := image.NewRGBA(image.Rect(0, 0, 2, 2)) |
| Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil) |
| |
| src := image.NewRGBA(image.Rect(0, 0, 1, 1)) |
| src.SetRGBA(0, 0, color.RGBA{0x7f, 0x00, 0x00, 0x7f}) |
| |
| NearestNeighbor.Scale(dst, dst.Bounds(), src, src.Bounds(), op, nil) |
| |
| if got := dst.RGBAAt(0, 0); got != want { |
| t.Errorf("op=%v: got %v, want %v", op, got, want) |
| } |
| } |
| } |
| |
| // TestNegativeWeights tests that scaling by a kernel that produces negative |
| // weights, such as the Catmull-Rom kernel, doesn't produce an invalid color |
| // according to Go's alpha-premultiplied model. |
| func TestNegativeWeights(t *testing.T) { |
| check := func(m *image.RGBA) error { |
| b := m.Bounds() |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| if c := m.RGBAAt(x, y); c.R > c.A || c.G > c.A || c.B > c.A { |
| return fmt.Errorf("invalid color.RGBA at (%d, %d): %v", x, y, c) |
| } |
| } |
| } |
| return nil |
| } |
| |
| src := image.NewRGBA(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| a := y * 0x11 |
| src.Set(x, y, color.RGBA{ |
| R: uint8(x * 0x11 * a / 0xff), |
| A: uint8(a), |
| }) |
| } |
| } |
| if err := check(src); err != nil { |
| t.Fatalf("src image: %v", err) |
| } |
| |
| dst := image.NewRGBA(image.Rect(0, 0, 32, 32)) |
| CatmullRom.Scale(dst, dst.Bounds(), src, src.Bounds(), Over, nil) |
| if err := check(dst); err != nil { |
| t.Fatalf("dst image: %v", err) |
| } |
| } |
| |
| func fillPix(r *rand.Rand, pixs ...[]byte) { |
| for _, pix := range pixs { |
| for i := range pix { |
| pix[i] = uint8(r.Intn(256)) |
| } |
| } |
| } |
| |
| func TestInterpClipCommute(t *testing.T) { |
| src := image.NewNRGBA(image.Rect(0, 0, 20, 20)) |
| fillPix(rand.New(rand.NewSource(0)), src.Pix) |
| |
| outer := image.Rect(1, 1, 8, 5) |
| inner := image.Rect(2, 3, 6, 5) |
| qs := []Interpolator{ |
| NearestNeighbor, |
| ApproxBiLinear, |
| CatmullRom, |
| } |
| for _, transform := range []bool{false, true} { |
| for _, q := range qs { |
| dst0 := image.NewRGBA(image.Rect(1, 1, 10, 10)) |
| dst1 := image.NewRGBA(image.Rect(1, 1, 10, 10)) |
| for i := range dst0.Pix { |
| dst0.Pix[i] = uint8(i / 4) |
| dst1.Pix[i] = uint8(i / 4) |
| } |
| |
| var interp func(dst *image.RGBA) |
| if transform { |
| interp = func(dst *image.RGBA) { |
| q.Transform(dst, transformMatrix(3.75, 2, 1), src, src.Bounds(), Over, nil) |
| } |
| } else { |
| interp = func(dst *image.RGBA) { |
| q.Scale(dst, outer, src, src.Bounds(), Over, nil) |
| } |
| } |
| |
| // Interpolate then clip. |
| interp(dst0) |
| dst0 = dst0.SubImage(inner).(*image.RGBA) |
| |
| // Clip then interpolate. |
| dst1 = dst1.SubImage(inner).(*image.RGBA) |
| interp(dst1) |
| |
| loop: |
| for y := inner.Min.Y; y < inner.Max.Y; y++ { |
| for x := inner.Min.X; x < inner.Max.X; x++ { |
| if c0, c1 := dst0.RGBAAt(x, y), dst1.RGBAAt(x, y); c0 != c1 { |
| t.Errorf("q=%T: at (%d, %d): c0=%v, c1=%v", q, x, y, c0, c1) |
| break loop |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // translatedImage is an image m translated by t. |
| type translatedImage struct { |
| m image.Image |
| t image.Point |
| } |
| |
| func (t *translatedImage) At(x, y int) color.Color { return t.m.At(x-t.t.X, y-t.t.Y) } |
| func (t *translatedImage) Bounds() image.Rectangle { return t.m.Bounds().Add(t.t) } |
| func (t *translatedImage) ColorModel() color.Model { return t.m.ColorModel() } |
| |
| // TestSrcTranslationInvariance tests that Scale and Transform are invariant |
| // under src translations. Specifically, when some source pixels are not in the |
| // bottom-right quadrant of src coordinate space, we consistently round down, |
| // not round towards zero. |
| func TestSrcTranslationInvariance(t *testing.T) { |
| f, err := os.Open("../testdata/testpattern.png") |
| if err != nil { |
| t.Fatalf("Open: %v", err) |
| } |
| defer f.Close() |
| src, _, err := image.Decode(f) |
| if err != nil { |
| t.Fatalf("Decode: %v", err) |
| } |
| sr := image.Rect(2, 3, 16, 12) |
| if !sr.In(src.Bounds()) { |
| t.Fatalf("src bounds too small: got %v", src.Bounds()) |
| } |
| qs := []Interpolator{ |
| NearestNeighbor, |
| ApproxBiLinear, |
| CatmullRom, |
| } |
| deltas := []image.Point{ |
| {+0, +0}, |
| {+0, +5}, |
| {+0, -5}, |
| {+5, +0}, |
| {-5, +0}, |
| {+8, +8}, |
| {+8, -8}, |
| {-8, +8}, |
| {-8, -8}, |
| } |
| m00 := transformMatrix(3.75, 0, 0) |
| |
| for _, transform := range []bool{false, true} { |
| for _, q := range qs { |
| want := image.NewRGBA(image.Rect(0, 0, 20, 20)) |
| if transform { |
| q.Transform(want, m00, src, sr, Over, nil) |
| } else { |
| q.Scale(want, want.Bounds(), src, sr, Over, nil) |
| } |
| for _, delta := range deltas { |
| tsrc := &translatedImage{src, delta} |
| got := image.NewRGBA(image.Rect(0, 0, 20, 20)) |
| if transform { |
| m := matMul(&m00, &f64.Aff3{ |
| 1, 0, -float64(delta.X), |
| 0, 1, -float64(delta.Y), |
| }) |
| q.Transform(got, m, tsrc, sr.Add(delta), Over, nil) |
| } else { |
| q.Scale(got, got.Bounds(), tsrc, sr.Add(delta), Over, nil) |
| } |
| if !bytes.Equal(got.Pix, want.Pix) { |
| t.Errorf("pix differ for delta=%v, transform=%t, q=%T", delta, transform, q) |
| } |
| } |
| } |
| } |
| } |
| |
| func TestSrcMask(t *testing.T) { |
| srcMask := image.NewRGBA(image.Rect(0, 0, 23, 1)) |
| srcMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f}) |
| srcMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff}) |
| srcMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f}) |
| srcMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00}) |
| red := image.NewUniform(color.RGBA{0xff, 0x00, 0x00, 0xff}) |
| blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff}) |
| dst := image.NewRGBA(image.Rect(0, 0, 6, 1)) |
| Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil) |
| NearestNeighbor.Scale(dst, dst.Bounds(), red, image.Rect(0, 0, 3, 1), Over, &Options{ |
| SrcMask: srcMask, |
| SrcMaskP: image.Point{20, 0}, |
| }) |
| got := [6]color.RGBA{ |
| dst.RGBAAt(0, 0), |
| dst.RGBAAt(1, 0), |
| dst.RGBAAt(2, 0), |
| dst.RGBAAt(3, 0), |
| dst.RGBAAt(4, 0), |
| dst.RGBAAt(5, 0), |
| } |
| want := [6]color.RGBA{ |
| {0xff, 0x00, 0x00, 0xff}, |
| {0xff, 0x00, 0x00, 0xff}, |
| {0x3f, 0x00, 0xc0, 0xff}, |
| {0x3f, 0x00, 0xc0, 0xff}, |
| {0x00, 0x00, 0xff, 0xff}, |
| {0x00, 0x00, 0xff, 0xff}, |
| } |
| if got != want { |
| t.Errorf("\ngot %v\nwant %v", got, want) |
| } |
| } |
| |
| func TestDstMask(t *testing.T) { |
| dstMask := image.NewRGBA(image.Rect(0, 0, 23, 1)) |
| dstMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f}) |
| dstMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff}) |
| dstMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f}) |
| dstMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00}) |
| red := image.NewRGBA(image.Rect(0, 0, 1, 1)) |
| red.SetRGBA(0, 0, color.RGBA{0xff, 0x00, 0x00, 0xff}) |
| blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff}) |
| qs := []Interpolator{ |
| NearestNeighbor, |
| ApproxBiLinear, |
| CatmullRom, |
| } |
| for _, q := range qs { |
| dst := image.NewRGBA(image.Rect(0, 0, 3, 1)) |
| Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil) |
| q.Scale(dst, dst.Bounds(), red, red.Bounds(), Over, &Options{ |
| DstMask: dstMask, |
| DstMaskP: image.Point{20, 0}, |
| }) |
| got := [3]color.RGBA{ |
| dst.RGBAAt(0, 0), |
| dst.RGBAAt(1, 0), |
| dst.RGBAAt(2, 0), |
| } |
| want := [3]color.RGBA{ |
| {0xff, 0x00, 0x00, 0xff}, |
| {0x3f, 0x00, 0xc0, 0xff}, |
| {0x00, 0x00, 0xff, 0xff}, |
| } |
| if got != want { |
| t.Errorf("q=%T:\ngot %v\nwant %v", q, got, want) |
| } |
| } |
| } |
| |
| func TestRectDstMask(t *testing.T) { |
| f, err := os.Open("../testdata/testpattern.png") |
| if err != nil { |
| t.Fatalf("Open: %v", err) |
| } |
| defer f.Close() |
| src, _, err := image.Decode(f) |
| if err != nil { |
| t.Fatalf("Decode: %v", err) |
| } |
| m00 := transformMatrix(1, 0, 0) |
| |
| bounds := image.Rect(0, 0, 50, 50) |
| dstOutside := image.NewRGBA(bounds) |
| for y := bounds.Min.Y; y < bounds.Max.Y; y++ { |
| for x := bounds.Min.X; x < bounds.Max.X; x++ { |
| dstOutside.SetRGBA(x, y, color.RGBA{uint8(5 * x), uint8(5 * y), 0x00, 0xff}) |
| } |
| } |
| |
| mk := func(q Transformer, dstMask image.Image, dstMaskP image.Point) *image.RGBA { |
| m := image.NewRGBA(bounds) |
| Copy(m, bounds.Min, dstOutside, bounds, Src, nil) |
| q.Transform(m, m00, src, src.Bounds(), Over, &Options{ |
| DstMask: dstMask, |
| DstMaskP: dstMaskP, |
| }) |
| return m |
| } |
| |
| qs := []Interpolator{ |
| NearestNeighbor, |
| ApproxBiLinear, |
| CatmullRom, |
| } |
| dstMaskPs := []image.Point{ |
| {0, 0}, |
| {5, 7}, |
| {-3, 0}, |
| } |
| rect := image.Rect(10, 10, 30, 40) |
| for _, q := range qs { |
| for _, dstMaskP := range dstMaskPs { |
| dstInside := mk(q, nil, image.Point{}) |
| for _, wrap := range []bool{false, true} { |
| dstMask := image.Image(rect) |
| if wrap { |
| dstMask = srcWrapper{dstMask} |
| } |
| dst := mk(q, dstMask, dstMaskP) |
| |
| nError := 0 |
| loop: |
| for y := bounds.Min.Y; y < bounds.Max.Y; y++ { |
| for x := bounds.Min.X; x < bounds.Max.X; x++ { |
| which := dstOutside |
| if (image.Point{x, y}).Add(dstMaskP).In(rect) { |
| which = dstInside |
| } |
| if got, want := dst.RGBAAt(x, y), which.RGBAAt(x, y); got != want { |
| if nError == 10 { |
| t.Errorf("q=%T dmp=%v wrap=%v: ...and more errors", q, dstMaskP, wrap) |
| break loop |
| } |
| nError++ |
| t.Errorf("q=%T dmp=%v wrap=%v: x=%3d y=%3d: got %v, want %v", |
| q, dstMaskP, wrap, x, y, got, want) |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| func TestDstMaskSameSizeCopy(t *testing.T) { |
| bounds := image.Rect(0, 0, 42, 42) |
| src := image.Opaque |
| dst := image.NewRGBA(bounds) |
| mask := image.NewRGBA(bounds) |
| |
| Copy(dst, image.Point{}, src, bounds, Src, &Options{ |
| DstMask: mask, |
| }) |
| } |
| |
| func TestScaleRGBA64ImageAllocations(t *testing.T) { |
| // The goal of RGBA64Image is to prevent heap allocation of the color |
| // argument by using a non-interface type. Assert that we meet that goal. |
| // This assumes there is no fast path for *image.RGBA64. |
| src := image.NewRGBA64(image.Rect(0, 0, 16, 32)) |
| dst := image.NewRGBA64(image.Rect(0, 0, 32, 16)) |
| fillPix(rand.New(rand.NewSource(1)), src.Pix, dst.Pix) |
| t.Run("Over", func(t *testing.T) { |
| allocs := testing.AllocsPerRun(10, func() { |
| CatmullRom.Scale(dst, dst.Bounds(), src, src.Bounds(), Over, nil) |
| }) |
| // Scale and Transform below allocate on their own, so allocations will |
| // never be zero. The expectation we want to check is that the number |
| // of allocations does not scale linearly with the number of pixels in |
| // the image. We could test that directly, but it's sufficient to test |
| // that we have much fewer allocations than the number of pixels, 512. |
| if allocs > 8 { |
| t.Errorf("too many allocations: %v", allocs) |
| } |
| }) |
| t.Run("Src", func(t *testing.T) { |
| allocs := testing.AllocsPerRun(10, func() { |
| CatmullRom.Scale(dst, dst.Bounds(), src, src.Bounds(), Src, nil) |
| }) |
| if allocs > 8 { |
| t.Errorf("too many allocations: %v", allocs) |
| } |
| }) |
| } |
| |
| func TestTransformRGBA64ImageAllocations(t *testing.T) { |
| // This assumes there is no fast path for *image.RGBA64. |
| src := image.NewRGBA64(image.Rect(0, 0, 16, 32)) |
| dst := image.NewRGBA64(image.Rect(0, 0, 32, 16)) |
| fillPix(rand.New(rand.NewSource(1)), src.Pix, dst.Pix) |
| mat := f64.Aff3{ |
| 2, 0, 0, |
| 0, 0.5, 0, |
| } |
| t.Run("Over", func(t *testing.T) { |
| allocs := testing.AllocsPerRun(10, func() { |
| CatmullRom.Transform(dst, mat, src, src.Bounds(), Over, nil) |
| }) |
| if allocs > 8 { |
| t.Errorf("too many allocations: %v", allocs) |
| } |
| }) |
| t.Run("Src", func(t *testing.T) { |
| allocs := testing.AllocsPerRun(10, func() { |
| CatmullRom.Transform(dst, mat, src, src.Bounds(), Src, nil) |
| }) |
| if allocs > 8 { |
| t.Errorf("too many allocations: %v", allocs) |
| } |
| }) |
| } |
| |
| // The fooWrapper types wrap the dst or src image to avoid triggering the |
| // type-specific fast path implementations. |
| type ( |
| dstWrapper struct{ Image } |
| srcWrapper struct{ image.Image } |
| ) |
| |
| func srcGray(boundsHint image.Rectangle) (image.Image, error) { |
| m := image.NewGray(boundsHint) |
| fillPix(rand.New(rand.NewSource(0)), m.Pix) |
| return m, nil |
| } |
| |
| func srcNRGBA(boundsHint image.Rectangle) (image.Image, error) { |
| m := image.NewNRGBA(boundsHint) |
| fillPix(rand.New(rand.NewSource(1)), m.Pix) |
| return m, nil |
| } |
| |
| func srcRGBA(boundsHint image.Rectangle) (image.Image, error) { |
| m := image.NewRGBA(boundsHint) |
| fillPix(rand.New(rand.NewSource(2)), m.Pix) |
| // RGBA is alpha-premultiplied, so the R, G and B values should |
| // be <= the A values. |
| for i := 0; i < len(m.Pix); i += 4 { |
| m.Pix[i+0] = uint8(uint32(m.Pix[i+0]) * uint32(m.Pix[i+3]) / 0xff) |
| m.Pix[i+1] = uint8(uint32(m.Pix[i+1]) * uint32(m.Pix[i+3]) / 0xff) |
| m.Pix[i+2] = uint8(uint32(m.Pix[i+2]) * uint32(m.Pix[i+3]) / 0xff) |
| } |
| return m, nil |
| } |
| |
| func srcUnif(boundsHint image.Rectangle) (image.Image, error) { |
| return image.NewUniform(color.RGBA64{0x1234, 0x5555, 0x9181, 0xbeef}), nil |
| } |
| |
| func srcYCbCr(boundsHint image.Rectangle) (image.Image, error) { |
| m := image.NewYCbCr(boundsHint, image.YCbCrSubsampleRatio420) |
| fillPix(rand.New(rand.NewSource(3)), m.Y, m.Cb, m.Cr) |
| return m, nil |
| } |
| |
| func srcRGBA64(boundsHint image.Rectangle) (image.Image, error) { |
| m := image.NewRGBA64(boundsHint) |
| fillPix(rand.New(rand.NewSource(4)), m.Pix) |
| return m, nil |
| } |
| |
| func srcLarge(boundsHint image.Rectangle) (image.Image, error) { |
| // 3072 x 2304 is over 7 million pixels at 4:3, comparable to a |
| // 2015 smart-phone camera's output. |
| return srcYCbCr(image.Rect(0, 0, 3072, 2304)) |
| } |
| |
| func srcTux(boundsHint image.Rectangle) (image.Image, error) { |
| // tux.png is a 386 x 395 image. |
| f, err := os.Open("../testdata/tux.png") |
| if err != nil { |
| return nil, fmt.Errorf("Open: %v", err) |
| } |
| defer f.Close() |
| src, err := png.Decode(f) |
| if err != nil { |
| return nil, fmt.Errorf("Decode: %v", err) |
| } |
| return src, nil |
| } |
| |
| func benchScale(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) { |
| dst := image.NewRGBA(image.Rect(0, 0, w, h)) |
| src, err := srcf(image.Rect(0, 0, 1024, 768)) |
| if err != nil { |
| b.Fatal(err) |
| } |
| dr, sr := dst.Bounds(), src.Bounds() |
| scaler := Scaler(q) |
| if n, ok := q.(interface { |
| NewScaler(int, int, int, int) Scaler |
| }); ok { |
| scaler = n.NewScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy()) |
| } |
| |
| b.ReportAllocs() |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| scaler.Scale(dst, dr, src, sr, op, nil) |
| } |
| } |
| |
| func benchTform(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) { |
| dst := image.NewRGBA(image.Rect(0, 0, w, h)) |
| src, err := srcf(image.Rect(0, 0, 1024, 768)) |
| if err != nil { |
| b.Fatal(err) |
| } |
| sr := src.Bounds() |
| m := transformMatrix(3.75, 40, 10) |
| |
| b.ReportAllocs() |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| q.Transform(dst, m, src, sr, op, nil) |
| } |
| } |
| |
| func BenchmarkScaleNNLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, NearestNeighbor) } |
| func BenchmarkScaleABLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, ApproxBiLinear) } |
| func BenchmarkScaleBLLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, BiLinear) } |
| func BenchmarkScaleCRLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, CatmullRom) } |
| |
| func BenchmarkScaleNNDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, NearestNeighbor) } |
| func BenchmarkScaleABDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, ApproxBiLinear) } |
| func BenchmarkScaleBLDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, BiLinear) } |
| func BenchmarkScaleCRDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, CatmullRom) } |
| |
| func BenchmarkScaleNNUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, NearestNeighbor) } |
| func BenchmarkScaleABUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, ApproxBiLinear) } |
| func BenchmarkScaleBLUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, BiLinear) } |
| func BenchmarkScaleCRUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, CatmullRom) } |
| |
| func BenchmarkScaleNNSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, NearestNeighbor) } |
| func BenchmarkScaleNNSrcUnif(b *testing.B) { benchScale(b, 200, 150, Src, srcUnif, NearestNeighbor) } |
| |
| func BenchmarkScaleNNOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, NearestNeighbor) } |
| func BenchmarkScaleNNOverUnif(b *testing.B) { benchScale(b, 200, 150, Over, srcUnif, NearestNeighbor) } |
| |
| func BenchmarkTformNNSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, NearestNeighbor) } |
| func BenchmarkTformNNSrcUnif(b *testing.B) { benchTform(b, 200, 150, Src, srcUnif, NearestNeighbor) } |
| |
| func BenchmarkTformNNOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, NearestNeighbor) } |
| func BenchmarkTformNNOverUnif(b *testing.B) { benchTform(b, 200, 150, Over, srcUnif, NearestNeighbor) } |
| |
| func BenchmarkScaleABSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, ApproxBiLinear) } |
| func BenchmarkScaleABSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) } |
| func BenchmarkScaleABSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, ApproxBiLinear) } |
| func BenchmarkScaleABSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) } |
| func BenchmarkScaleABSrcRGBA64(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA64, ApproxBiLinear) } |
| |
| func BenchmarkScaleABOverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, ApproxBiLinear) } |
| func BenchmarkScaleABOverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) } |
| func BenchmarkScaleABOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, ApproxBiLinear) } |
| func BenchmarkScaleABOverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) } |
| func BenchmarkScaleABOverRGBA64(b *testing.B) { |
| benchScale(b, 200, 150, Over, srcRGBA64, ApproxBiLinear) |
| } |
| |
| func BenchmarkTformABSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, ApproxBiLinear) } |
| func BenchmarkTformABSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) } |
| func BenchmarkTformABSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, ApproxBiLinear) } |
| func BenchmarkTformABSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) } |
| func BenchmarkTformABSrcRGBA64(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA64, ApproxBiLinear) } |
| |
| func BenchmarkTformABOverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, ApproxBiLinear) } |
| func BenchmarkTformABOverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) } |
| func BenchmarkTformABOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, ApproxBiLinear) } |
| func BenchmarkTformABOverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) } |
| func BenchmarkTformABOverRGBA64(b *testing.B) { |
| benchTform(b, 200, 150, Over, srcRGBA64, ApproxBiLinear) |
| } |
| |
| func BenchmarkScaleCRSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, CatmullRom) } |
| func BenchmarkScaleCRSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, CatmullRom) } |
| func BenchmarkScaleCRSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, CatmullRom) } |
| func BenchmarkScaleCRSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, CatmullRom) } |
| func BenchmarkScaleCRSrcRGBA64(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA64, CatmullRom) } |
| |
| func BenchmarkScaleCROverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, CatmullRom) } |
| func BenchmarkScaleCROverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, CatmullRom) } |
| func BenchmarkScaleCROverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, CatmullRom) } |
| func BenchmarkScaleCROverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, CatmullRom) } |
| func BenchmarkScaleCROverRGBA64(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA64, CatmullRom) } |
| |
| func BenchmarkTformCRSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, CatmullRom) } |
| func BenchmarkTformCRSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, CatmullRom) } |
| func BenchmarkTformCRSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, CatmullRom) } |
| func BenchmarkTformCRSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, CatmullRom) } |
| func BenchmarkTformCRSrcRGBA64(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA64, CatmullRom) } |
| |
| func BenchmarkTformCROverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, CatmullRom) } |
| func BenchmarkTformCROverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, CatmullRom) } |
| func BenchmarkTformCROverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, CatmullRom) } |
| func BenchmarkTformCROverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, CatmullRom) } |
| func BenchmarkTformCROverRGBA64(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA64, CatmullRom) } |