commit | 415698f51d7dd3e93f4f119edd30cbc402a45cb2 | [log] [tgz] |
---|---|---|
author | Zhi An Ng <zhin@google.com> | Mon Jul 25 18:13:46 2022 |
committer | XNNPACK Team <xnnpack-github-robot@google.com> | Mon Jul 25 18:22:05 2022 |
tree | c1496e3195fecc3ce8f193db2467b6446e20cae6 | |
parent | 2247560904f5366d6d370bb080cfc2dbe9f57598 [diff] |
Add an option to create weights cache specifying the capacity of the underlying buffer By default, weights cache is 1MB. If the size of all weights used in a model exceeds 1MB, every operation that requires packing of weights will grow the weights cache by a small amount (size of the weights needed by the operator). This leads to unnecessary memory movements. We can increase the default size of the weights cache, but this penalizes models which don't use or have smaller weights. So, this new weights cache creation method takes a size, which is the initial capacity of the weights cache. The weights cache is guaranteed to not grow as long as the size of weights used in the weights cache is <= this initial size (though it can still grow once during soft finalization). PiperOrigin-RevId: 463131786
XNNPACK is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and x86 platforms. XNNPACK is not intended for direct use by deep learning practitioners and researchers; instead it provides low-level performance primitives for accelerating high-level machine learning frameworks, such as TensorFlow Lite, TensorFlow.js, PyTorch, and MediaPipe.
XNNPACK implements the following neural network operators:
All operators in XNNPACK support NHWC layout, but additionally allow custom stride along the Channel dimension. Thus, operators can consume a subset of channels in the input tensor, and produce a subset of channels in the output tensor, providing a zero-cost Channel Split and Channel Concatenation operations.
The table below presents single-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.
Model | Pixel, ms | Pixel 2, ms | Pixel 3a, ms |
---|---|---|---|
FP32 MobileNet v1 1.0X | 82 | 86 | 88 |
FP32 MobileNet v2 1.0X | 49 | 53 | 55 |
FP32 MobileNet v3 Large | 39 | 42 | 44 |
FP32 MobileNet v3 Small | 12 | 14 | 14 |
The following table presents multi-threaded (using as many threads as there are big cores) performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.
Model | Pixel, ms | Pixel 2, ms | Pixel 3a, ms |
---|---|---|---|
FP32 MobileNet v1 1.0X | 43 | 27 | 46 |
FP32 MobileNet v2 1.0X | 26 | 18 | 28 |
FP32 MobileNet v3 Large | 22 | 16 | 24 |
FP32 MobileNet v3 Small | 7 | 6 | 8 |
Benchmarked on March 27, 2020 with end2end_bench --benchmark_min_time=5
on an Android/ARM64 build with Android NDK r21 (bazel build -c opt --config android_arm64 :end2end_bench
) and neural network models with randomized weights and inputs.
The table below presents multi-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Raspberry Pi boards.
Model | RPi Zero W (BCM2835), ms | RPi 2 (BCM2836), ms | RPi 3+ (BCM2837B0), ms | RPi 4 (BCM2711), ms | RPi 4 (BCM2711, ARM64), ms |
---|---|---|---|---|---|
FP32 MobileNet v1 1.0X | 3919 | 302 | 114 | 72 | 77 |
FP32 MobileNet v2 1.0X | 1987 | 191 | 79 | 41 | 46 |
FP32 MobileNet v3 Large | 1658 | 161 | 67 | 38 | 40 |
FP32 MobileNet v3 Small | 474 | 50 | 22 | 13 | 15 |
INT8 MobileNet v1 1.0X | 2589 | 128 | 46 | 29 | 24 |
INT8 MobileNet v2 1.0X | 1495 | 82 | 30 | 20 | 17 |
Benchmarked on Feb 8, 2022 with end2end-bench --benchmark_min_time=5
on a Raspbian Buster build with CMake (./scripts/build-local.sh
) and neural network models with randomized weights and inputs. INT8 inference was evaluated on per-channel quantization schema.
XNNPACK is a based on QNNPACK library. Over time its codebase diverged a lot, and XNNPACK API is no longer compatible with QNNPACK.