| // Copyright 2017 The Clspv Authors. All rights reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| |
| #include "spirv/unified1/spirv.hpp" |
| |
| #include "Constants.h" |
| #include "Passes.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ReplaceLLVMIntrinsics" |
| |
| namespace { |
| struct ReplaceLLVMIntrinsicsPass final : public ModulePass { |
| static char ID; |
| ReplaceLLVMIntrinsicsPass() : ModulePass(ID) {} |
| |
| bool runOnModule(Module &M) override; |
| // TODO: update module-based funtions to work like function-based ones. |
| // Except maybe lifetime intrinsics. |
| bool runOnFunction(Function &F); |
| bool replaceMemset(Module &M); |
| bool replaceMemcpy(Module &M); |
| bool removeLifetimeDeclarations(Module &M); |
| bool replaceFshl(Function &F); |
| bool replaceCountZeroes(Function &F, bool leading); |
| bool replaceCopysign(Function &F); |
| |
| bool replaceCallsWithValue(Function &F, |
| std::function<Value *(CallInst *)> Replacer); |
| |
| SmallVector<Function *, 16> DeadFunctions; |
| }; |
| } // namespace |
| |
| char ReplaceLLVMIntrinsicsPass::ID = 0; |
| INITIALIZE_PASS(ReplaceLLVMIntrinsicsPass, "ReplaceLLVMIntrinsics", |
| "Replace LLVM intrinsics Pass", false, false) |
| |
| namespace clspv { |
| ModulePass *createReplaceLLVMIntrinsicsPass() { |
| return new ReplaceLLVMIntrinsicsPass(); |
| } |
| } // namespace clspv |
| |
| bool ReplaceLLVMIntrinsicsPass::runOnModule(Module &M) { |
| bool Changed = false; |
| |
| // Remove lifetime annotations first. They could be using memset |
| // and memcpy calls. |
| Changed |= removeLifetimeDeclarations(M); |
| Changed |= replaceMemset(M); |
| Changed |= replaceMemcpy(M); |
| |
| for (auto &F : M) { |
| Changed |= runOnFunction(F); |
| } |
| |
| for (auto F : DeadFunctions) { |
| F->eraseFromParent(); |
| } |
| |
| return Changed; |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::runOnFunction(Function &F) { |
| switch (F.getIntrinsicID()) { |
| case Intrinsic::fshl: |
| return replaceFshl(F); |
| case Intrinsic::copysign: |
| return replaceCopysign(F); |
| case Intrinsic::ctlz: |
| return replaceCountZeroes(F, true); |
| case Intrinsic::cttz: |
| return replaceCountZeroes(F, false); |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::replaceCallsWithValue( |
| Function &F, std::function<Value *(CallInst *)> Replacer) { |
| SmallVector<Instruction *, 8> ToRemove; |
| for (auto &U : F.uses()) { |
| if (auto Call = dyn_cast<CallInst>(U.getUser())) { |
| auto replacement = Replacer(Call); |
| if (replacement != nullptr && replacement != Call) { |
| Call->replaceAllUsesWith(replacement); |
| ToRemove.push_back(Call); |
| } |
| } |
| } |
| |
| for (auto inst : ToRemove) { |
| inst->eraseFromParent(); |
| } |
| |
| DeadFunctions.push_back(&F); |
| |
| return !ToRemove.empty(); |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::replaceFshl(Function &F) { |
| return replaceCallsWithValue(F, [](CallInst *call) { |
| auto arg_hi = call->getArgOperand(0); |
| auto arg_lo = call->getArgOperand(1); |
| auto arg_shift = call->getArgOperand(2); |
| |
| // Validate argument types. |
| auto type = arg_hi->getType(); |
| if ((type->getScalarSizeInBits() != 8) && |
| (type->getScalarSizeInBits() != 16) && |
| (type->getScalarSizeInBits() != 32) && |
| (type->getScalarSizeInBits() != 64)) { |
| return static_cast<Value *>(nullptr); |
| } |
| |
| // We shift the bottom bits of the first argument up, the top bits of the |
| // second argument down, and then OR the two shifted values. |
| IRBuilder<> builder(call); |
| |
| // The shift amount is treated modulo the element size. |
| auto mod_mask = ConstantInt::get(type, type->getScalarSizeInBits() - 1); |
| auto shift_amount = builder.CreateAnd(arg_shift, mod_mask); |
| |
| // Calculate the amount by which to shift the second argument down. |
| auto scalar_size = ConstantInt::get(type, type->getScalarSizeInBits()); |
| auto down_amount = builder.CreateSub(scalar_size, shift_amount); |
| |
| // Shift the two arguments and OR the results together. |
| auto hi_bits = builder.CreateShl(arg_hi, shift_amount); |
| auto lo_bits = builder.CreateLShr(arg_lo, down_amount); |
| return builder.CreateOr(lo_bits, hi_bits); |
| }); |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::replaceMemset(Module &M) { |
| bool Changed = false; |
| auto Layout = M.getDataLayout(); |
| |
| for (auto &F : M) { |
| if (F.getName().startswith("llvm.memset")) { |
| SmallVector<CallInst *, 8> CallsToReplace; |
| |
| for (auto U : F.users()) { |
| if (auto CI = dyn_cast<CallInst>(U)) { |
| auto Initializer = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| |
| // We only handle cases where the initializer is a constant int that |
| // is 0. |
| if (!Initializer || (0 != Initializer->getZExtValue())) { |
| Initializer->print(errs()); |
| llvm_unreachable("Unhandled llvm.memset.* instruction that had a " |
| "non-0 initializer!"); |
| } |
| |
| CallsToReplace.push_back(CI); |
| } |
| } |
| |
| for (auto CI : CallsToReplace) { |
| auto NewArg = CI->getArgOperand(0); |
| auto Bitcast = dyn_cast<BitCastInst>(NewArg); |
| if (Bitcast != nullptr) { |
| NewArg = Bitcast->getOperand(0); |
| } |
| |
| auto NumBytes = cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue(); |
| auto Ty = NewArg->getType(); |
| auto PointeeTy = Ty->getPointerElementType(); |
| auto Zero = Constant::getNullValue(PointeeTy); |
| |
| const auto num_stores = NumBytes / Layout.getTypeAllocSize(PointeeTy); |
| assert((NumBytes == num_stores * Layout.getTypeAllocSize(PointeeTy)) && |
| "Null memset can't be divided evenly across multiple stores."); |
| assert((num_stores & 0xFFFFFFFF) == num_stores); |
| |
| // Generate the first store. |
| new StoreInst(Zero, NewArg, CI); |
| |
| // Generate subsequent stores, but only if needed. |
| if (num_stores) { |
| auto I32Ty = Type::getInt32Ty(M.getContext()); |
| auto One = ConstantInt::get(I32Ty, 1); |
| auto Ptr = NewArg; |
| for (uint32_t i = 1; i < num_stores; i++) { |
| Ptr = GetElementPtrInst::Create(PointeeTy, Ptr, {One}, "", CI); |
| new StoreInst(Zero, Ptr, CI); |
| } |
| } |
| |
| CI->eraseFromParent(); |
| |
| if (Bitcast != nullptr) { |
| Bitcast->eraseFromParent(); |
| } |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::replaceMemcpy(Module &M) { |
| bool Changed = false; |
| auto Layout = M.getDataLayout(); |
| |
| // Unpack source and destination types until we find a matching |
| // element type. Count the number of levels we unpack for the |
| // source and destination types. So far this only works for |
| // array types, but could be generalized to other regular types |
| // like vectors. |
| auto match_types = [&Layout](CallInst &CI, uint64_t Size, Type **DstElemTy, |
| Type **SrcElemTy, unsigned *NumDstUnpackings, |
| unsigned *NumSrcUnpackings) { |
| auto descend_type = [](Type *InType) { |
| Type *OutType = InType; |
| if (OutType->isStructTy()) { |
| OutType = OutType->getStructElementType(0); |
| } else if (OutType->isArrayTy()) { |
| OutType = OutType->getArrayElementType(); |
| } else if (auto vec_type = dyn_cast<VectorType>(OutType)) { |
| OutType = vec_type->getElementType(); |
| } else { |
| assert(false && "Don't know how to descend into type"); |
| } |
| |
| return OutType; |
| }; |
| |
| while (*SrcElemTy != *DstElemTy) { |
| auto SrcElemSize = Layout.getTypeSizeInBits(*SrcElemTy); |
| auto DstElemSize = Layout.getTypeSizeInBits(*DstElemTy); |
| if (SrcElemSize >= DstElemSize) { |
| *SrcElemTy = descend_type(*SrcElemTy); |
| (*NumSrcUnpackings)++; |
| } else if (DstElemSize >= SrcElemSize) { |
| *DstElemTy = descend_type(*DstElemTy); |
| (*NumDstUnpackings)++; |
| } else { |
| errs() << "Don't know how to unpack types for memcpy: " << CI |
| << "\ngot to: " << **DstElemTy << " vs " << **SrcElemTy << "\n"; |
| assert(false && "Don't know how to unpack these types"); |
| } |
| } |
| |
| auto DstElemSize = Layout.getTypeSizeInBits(*DstElemTy) / 8; |
| while (Size < DstElemSize) { |
| *DstElemTy = descend_type(*DstElemTy); |
| *SrcElemTy = descend_type(*SrcElemTy); |
| (*NumDstUnpackings)++; |
| (*NumSrcUnpackings)++; |
| DstElemSize = Layout.getTypeSizeInBits(*DstElemTy) / 8; |
| } |
| }; |
| |
| for (auto &F : M) { |
| if (F.getName().startswith("llvm.memcpy")) { |
| SmallPtrSet<Instruction *, 8> BitCastsToForget; |
| SmallVector<CallInst *, 8> CallsToReplaceWithSpirvCopyMemory; |
| |
| for (auto U : F.users()) { |
| if (auto CI = dyn_cast<CallInst>(U)) { |
| assert(isa<BitCastOperator>(CI->getArgOperand(0))); |
| auto Dst = |
| dyn_cast<BitCastOperator>(CI->getArgOperand(0))->getOperand(0); |
| |
| assert(isa<BitCastOperator>(CI->getArgOperand(1))); |
| auto Src = |
| dyn_cast<BitCastOperator>(CI->getArgOperand(1))->getOperand(0); |
| |
| // The original type of Dst we get from the argument to the bitcast |
| // instruction. |
| auto DstTy = Dst->getType(); |
| assert(DstTy->isPointerTy()); |
| |
| // The original type of Src we get from the argument to the bitcast |
| // instruction. |
| auto SrcTy = Src->getType(); |
| assert(SrcTy->isPointerTy()); |
| |
| // Check that the size is a constant integer. |
| assert(isa<ConstantInt>(CI->getArgOperand(2))); |
| auto Size = |
| dyn_cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue(); |
| |
| auto DstElemTy = DstTy->getPointerElementType(); |
| auto SrcElemTy = SrcTy->getPointerElementType(); |
| unsigned NumDstUnpackings = 0; |
| unsigned NumSrcUnpackings = 0; |
| match_types(*CI, Size, &DstElemTy, &SrcElemTy, &NumDstUnpackings, |
| &NumSrcUnpackings); |
| |
| // Check that the pointee types match. |
| assert(DstElemTy == SrcElemTy); |
| |
| auto DstElemSize = Layout.getTypeSizeInBits(DstElemTy) / 8; |
| (void)DstElemSize; |
| |
| // Check that the size is a multiple of the size of the pointee type. |
| assert(Size % DstElemSize == 0); |
| |
| auto Alignment = cast<MemIntrinsic>(CI)->getDestAlignment(); |
| auto TypeAlignment = Layout.getABITypeAlignment(DstElemTy); |
| (void)Alignment; |
| (void)TypeAlignment; |
| |
| // Check that the alignment is at least the alignment of the pointee |
| // type. |
| assert(Alignment >= TypeAlignment); |
| |
| // Check that the alignment is a multiple of the alignment of the |
| // pointee type. |
| assert(0 == (Alignment % TypeAlignment)); |
| |
| // Check that volatile is a constant. |
| assert(isa<ConstantInt>(CI->getArgOperand(3))); |
| |
| CallsToReplaceWithSpirvCopyMemory.push_back(CI); |
| } |
| } |
| |
| for (auto CI : CallsToReplaceWithSpirvCopyMemory) { |
| auto Arg0 = dyn_cast<BitCastOperator>(CI->getArgOperand(0)); |
| auto Arg1 = dyn_cast<BitCastOperator>(CI->getArgOperand(1)); |
| auto Arg3 = dyn_cast<ConstantInt>(CI->getArgOperand(3)); |
| |
| auto I32Ty = Type::getInt32Ty(M.getContext()); |
| auto Alignment = |
| ConstantInt::get(I32Ty, cast<MemIntrinsic>(CI)->getDestAlignment()); |
| auto Volatile = ConstantInt::get(I32Ty, Arg3->getZExtValue()); |
| |
| auto Dst = Arg0->getOperand(0); |
| auto Src = Arg1->getOperand(0); |
| |
| auto DstElemTy = Dst->getType()->getPointerElementType(); |
| auto SrcElemTy = Src->getType()->getPointerElementType(); |
| unsigned NumDstUnpackings = 0; |
| unsigned NumSrcUnpackings = 0; |
| auto Size = dyn_cast<ConstantInt>(CI->getArgOperand(2))->getZExtValue(); |
| match_types(*CI, Size, &DstElemTy, &SrcElemTy, &NumDstUnpackings, |
| &NumSrcUnpackings); |
| auto SPIRVIntrinsic = clspv::CopyMemoryFunction(); |
| |
| auto DstElemSize = Layout.getTypeSizeInBits(DstElemTy) / 8; |
| |
| IRBuilder<> Builder(CI); |
| |
| if (NumSrcUnpackings == 0 && NumDstUnpackings == 0) { |
| auto NewFType = FunctionType::get( |
| F.getReturnType(), {Dst->getType(), Src->getType(), I32Ty, I32Ty}, |
| false); |
| auto NewF = |
| Function::Create(NewFType, F.getLinkage(), SPIRVIntrinsic, &M); |
| Builder.CreateCall(NewF, {Dst, Src, Alignment, Volatile}, ""); |
| } else { |
| auto Zero = ConstantInt::get(I32Ty, 0); |
| SmallVector<Value *, 3> SrcIndices; |
| SmallVector<Value *, 3> DstIndices; |
| // Make unpacking indices. |
| for (unsigned unpacking = 0; unpacking < NumSrcUnpackings; |
| ++unpacking) { |
| SrcIndices.push_back(Zero); |
| } |
| for (unsigned unpacking = 0; unpacking < NumDstUnpackings; |
| ++unpacking) { |
| DstIndices.push_back(Zero); |
| } |
| // Add a placeholder for the final index. |
| SrcIndices.push_back(Zero); |
| DstIndices.push_back(Zero); |
| |
| // Build the function and function type only once. |
| FunctionType *NewFType = nullptr; |
| Function *NewF = nullptr; |
| |
| IRBuilder<> Builder(CI); |
| for (unsigned i = 0; i < Size / DstElemSize; ++i) { |
| auto Index = ConstantInt::get(I32Ty, i); |
| SrcIndices.back() = Index; |
| DstIndices.back() = Index; |
| |
| // Avoid the builder for Src in order to prevent the folder from |
| // creating constant expressions for constant memcpys. |
| auto SrcElemPtr = |
| GetElementPtrInst::CreateInBounds(Src, SrcIndices, "", CI); |
| auto DstElemPtr = Builder.CreateGEP(Dst, DstIndices); |
| NewFType = |
| NewFType != nullptr |
| ? NewFType |
| : FunctionType::get(F.getReturnType(), |
| {DstElemPtr->getType(), |
| SrcElemPtr->getType(), I32Ty, I32Ty}, |
| false); |
| NewF = NewF != nullptr ? NewF |
| : Function::Create(NewFType, F.getLinkage(), |
| SPIRVIntrinsic, &M); |
| Builder.CreateCall( |
| NewF, {DstElemPtr, SrcElemPtr, Alignment, Volatile}, ""); |
| } |
| } |
| |
| // Erase the call. |
| CI->eraseFromParent(); |
| |
| // Erase the bitcasts. A particular bitcast might be used |
| // in more than one memcpy, so defer actual deleting until later. |
| if (isa<BitCastInst>(Arg0)) |
| BitCastsToForget.insert(dyn_cast<BitCastInst>(Arg0)); |
| if (isa<BitCastInst>(Arg1)) |
| BitCastsToForget.insert(dyn_cast<BitCastInst>(Arg1)); |
| } |
| for (auto *Inst : BitCastsToForget) { |
| Inst->eraseFromParent(); |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::removeLifetimeDeclarations(Module &M) { |
| // SPIR-V OpLifetimeStart and OpLifetimeEnd require Kernel capability. |
| // Vulkan doesn't support that, so remove all lifteime bounds declarations. |
| |
| bool Changed = false; |
| |
| SmallVector<Function *, 2> WorkList; |
| for (auto &F : M) { |
| if (F.getName().startswith("llvm.lifetime.")) { |
| WorkList.push_back(&F); |
| } |
| } |
| |
| for (auto *F : WorkList) { |
| Changed = true; |
| // Copy users to avoid modifying the list in place. |
| SmallVector<User *, 8> users(F->users()); |
| for (auto U : users) { |
| if (auto *CI = dyn_cast<CallInst>(U)) { |
| CI->eraseFromParent(); |
| } |
| } |
| F->eraseFromParent(); |
| } |
| |
| return Changed; |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::replaceCountZeroes(Function &F, bool leading) { |
| if (!isa<IntegerType>(F.getReturnType()->getScalarType())) |
| return false; |
| |
| auto bitwidth = F.getReturnType()->getScalarSizeInBits(); |
| if (bitwidth == 32 || bitwidth > 64) |
| return false; |
| |
| return replaceCallsWithValue(F, [&F, bitwidth, leading](CallInst *Call) { |
| auto c_false = ConstantInt::getFalse(Call->getContext()); |
| auto in = Call->getArgOperand(0); |
| IRBuilder<> builder(Call); |
| auto ty = Call->getType()->getWithNewBitWidth(32); |
| auto c32 = ConstantInt::get(ty, 32); |
| auto func_32bit = Intrinsic::getDeclaration( |
| F.getParent(), leading ? Intrinsic::ctlz : Intrinsic::cttz, ty); |
| if (bitwidth < 32) { |
| // Extend the input to 32-bits and perform a clz/ctz. |
| auto zext = builder.CreateZExt(in, ty); |
| Value *call_input = zext; |
| if (!leading) { |
| // Or the extended input value with a constant that caps the max to the |
| // right bitwidth (e.g. 256 for i8 and 65536 for i16). |
| auto mask = ConstantInt::get(ty, 1 << bitwidth); |
| call_input = builder.CreateOr(zext, mask); |
| } |
| auto call = builder.CreateCall(func_32bit->getFunctionType(), func_32bit, |
| {call_input, c_false}); |
| Value *tmp = call; |
| if (leading) { |
| // Clz is implemented as 31 - FindUMsb(|zext|), so adjust the result |
| // the right bitwidth. |
| auto sub_const = ConstantInt::get(ty, 32 - bitwidth); |
| tmp = builder.CreateSub(call, sub_const); |
| } |
| // Truncate the intermediate result to the right size. |
| return builder.CreateTrunc(tmp, Call->getType()); |
| } else { |
| // Perform a 32-bit version of clz/ctz on each half of the 64-bit input. |
| auto lshr = builder.CreateLShr(in, 32); |
| auto top_bits = builder.CreateTrunc(lshr, ty); |
| auto bot_bits = builder.CreateTrunc(in, ty); |
| auto top_func = builder.CreateCall(func_32bit->getFunctionType(), |
| func_32bit, {top_bits, c_false}); |
| auto bot_func = builder.CreateCall(func_32bit->getFunctionType(), |
| func_32bit, {bot_bits, c_false}); |
| Value *tmp = nullptr; |
| if (leading) { |
| // For clz, if clz(top) is 32, return 32 + clz(bot). |
| auto cmp = builder.CreateICmpEQ(top_func, c32); |
| auto adjust = builder.CreateAdd(bot_func, c32); |
| tmp = builder.CreateSelect(cmp, adjust, top_func); |
| } else { |
| // For ctz, if clz(bot) is 32, return 32 + ctz(top) |
| auto bot_cmp = builder.CreateICmpEQ(bot_func, c32); |
| auto adjust = builder.CreateAdd(top_func, c32); |
| tmp = builder.CreateSelect(bot_cmp, adjust, bot_func); |
| } |
| // Extend the intermediate result to the correct size. |
| return builder.CreateZExt(tmp, Call->getType()); |
| } |
| }); |
| } |
| |
| bool ReplaceLLVMIntrinsicsPass::replaceCopysign(Function &F) { |
| return replaceCallsWithValue(F, [&F](CallInst *CI) { |
| auto XValue = CI->getOperand(0); |
| auto YValue = CI->getOperand(1); |
| |
| auto Ty = XValue->getType(); |
| |
| Type *IntTy = Type::getIntNTy(F.getContext(), Ty->getScalarSizeInBits()); |
| if (auto vec_ty = dyn_cast<VectorType>(Ty)) { |
| IntTy = FixedVectorType::get( |
| IntTy, vec_ty->getElementCount().getKnownMinValue()); |
| } |
| |
| // Return X with the sign of Y |
| |
| // Sign bit masks |
| auto SignBit = IntTy->getScalarSizeInBits() - 1; |
| auto SignBitMask = 1 << SignBit; |
| auto SignBitMaskValue = ConstantInt::get(IntTy, SignBitMask); |
| auto NotSignBitMaskValue = ConstantInt::get(IntTy, ~SignBitMask); |
| |
| IRBuilder<> Builder(CI); |
| |
| // Extract sign of Y |
| auto YInt = Builder.CreateBitCast(YValue, IntTy); |
| auto YSign = Builder.CreateAnd(YInt, SignBitMaskValue); |
| |
| // Clear sign bit in X |
| auto XInt = Builder.CreateBitCast(XValue, IntTy); |
| XInt = Builder.CreateAnd(XInt, NotSignBitMaskValue); |
| |
| // Insert sign bit of Y into X |
| auto NewXInt = Builder.CreateOr(XInt, YSign); |
| |
| // And cast back to floating-point |
| return Builder.CreateBitCast(NewXInt, Ty); |
| }); |
| } |