blob: 489a64123205e950772d07698a14740464549428 [file] [log] [blame]
// Copyright 2008 The open-vcdiff Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <config.h>
#include "blockhash.h"
#include <limits.h> // INT_MIN
#include <string.h> // memcpy, memcmp, strlen
#include <iostream>
#include "google/encodetable.h"
#include "rolling_hash.h"
#include "testing.h"
#include "unique_ptr.h" // auto_ptr, unique_ptr
namespace open_vcdiff {
const int kBlockSize = BlockHash::kBlockSize;
class BlockHashTest : public testing::Test {
protected:
static const int kTimingTestSize = 1 << 21; // 2M
static const int kTimingTestIterations = 32;
BlockHashTest() {
dh_.reset(BlockHash::CreateDictionaryHash(sample_text,
strlen(sample_text)));
th_.reset(BlockHash::CreateTargetHash(sample_text, strlen(sample_text), 0));
EXPECT_TRUE(dh_.get() != NULL);
EXPECT_TRUE(th_.get() != NULL);
}
// BlockHashTest is a friend to BlockHash. Expose the protected functions
// that will be tested by the children of BlockHashTest.
static bool BlockContentsMatch(const char* block1, const char* block2) {
return BlockHash::BlockContentsMatch(block1, block2);
}
int FirstMatchingBlock(const BlockHash& block_hash,
uint32_t hash_value,
const char* block_ptr) const {
return block_hash.FirstMatchingBlock(hash_value, block_ptr);
}
int NextMatchingBlock(const BlockHash& block_hash,
int block_number,
const char* block_ptr) const {
return block_hash.NextMatchingBlock(block_number, block_ptr);
}
static int MatchingBytesToLeft(const char* source_match_start,
const char* target_match_start,
int max_bytes) {
return BlockHash::MatchingBytesToLeft(source_match_start,
target_match_start,
max_bytes);
}
static int MatchingBytesToRight(const char* source_match_end,
const char* target_match_end,
int max_bytes) {
return BlockHash::MatchingBytesToRight(source_match_end,
target_match_end,
max_bytes);
}
static int StringLengthAsInt(const char* s) {
return static_cast<int>(strlen(s));
}
void InitBlocksToDifferAtNthByte(int n) {
CHECK(n < kBlockSize);
memset(compare_buffer_1_, 0xBE, kTimingTestSize);
memset(compare_buffer_2_, 0xBE, kTimingTestSize);
for (int index = n; index < kTimingTestSize; index += kBlockSize) {
compare_buffer_1_[index] = 0x00;
compare_buffer_2_[index] = 0x01;
}
}
void TestAndPrintTimesForCompareFunctions(bool should_be_identical);
void TimingTestForBlocksThatDifferAtByte(int n) {
InitBlocksToDifferAtNthByte(n);
std::cout << "Comparing blocks that differ at byte " << n << std::endl;
TestAndPrintTimesForCompareFunctions(false);
}
// Copy sample_text_without_spaces and search_string_without_spaces
// into newly allocated sample_text and search_string buffers,
// but pad them with space characters so that every character
// in sample_text_without_spaces matches (kBlockSize - 1)
// space characters in sample_text, followed by that character.
// For example:
// Since sample_text_without_spaces begins "The only thing"...,
// if kBlockSize is 4, then 3 space characters will be inserted
// between each letter of sample_text, as follows:
// " T h e o n l y t h i n g"...
// This makes testing simpler, because finding a kBlockSize-byte match
// between the sample text and search string only depends on the
// trailing letter in each block.
static void MakeEachLetterABlock(const char* string_without_spaces,
const char** result) {
const size_t length_without_spaces = strlen(string_without_spaces);
char* padded_text = new char[(kBlockSize * length_without_spaces) + 1];
memset(padded_text, ' ', kBlockSize * length_without_spaces);
char* padded_text_ptr = padded_text + (kBlockSize - 1);
for (size_t i = 0; i < length_without_spaces; ++i) {
*padded_text_ptr = string_without_spaces[i];
padded_text_ptr += kBlockSize;
}
padded_text[kBlockSize * length_without_spaces] = '\0';
*result = padded_text;
}
static void SetUpTestCase() {
MakeEachLetterABlock(sample_text_without_spaces, &sample_text);
MakeEachLetterABlock(search_string_without_spaces, &search_string);
MakeEachLetterABlock(search_string_altered_without_spaces,
&search_string_altered);
MakeEachLetterABlock(search_to_end_without_spaces, &search_to_end_string);
MakeEachLetterABlock(search_to_beginning_without_spaces,
&search_to_beginning_string);
MakeEachLetterABlock(sample_text_many_matches_without_spaces,
&sample_text_many_matches);
MakeEachLetterABlock(search_string_many_matches_without_spaces,
&search_string_many_matches);
MakeEachLetterABlock("y", &test_string_y);
MakeEachLetterABlock("e", &test_string_e);
char* new_test_string_unaligned_e = new char[kBlockSize];
memset(new_test_string_unaligned_e, ' ', kBlockSize);
new_test_string_unaligned_e[kBlockSize - 2] = 'e';
test_string_unaligned_e = new_test_string_unaligned_e;
char* new_test_string_all_Qs = new char[kBlockSize];
memset(new_test_string_all_Qs, 'Q', kBlockSize);
test_string_all_Qs = new_test_string_all_Qs;
hashed_y = RollingHash<kBlockSize>::Hash(test_string_y);
hashed_e = RollingHash<kBlockSize>::Hash(test_string_e);
hashed_f =
RollingHash<kBlockSize>::Hash(&search_string[index_of_f_in_fearsome]);
hashed_unaligned_e = RollingHash<kBlockSize>::Hash(test_string_unaligned_e);
hashed_all_Qs = RollingHash<kBlockSize>::Hash(test_string_all_Qs);
}
static void TearDownTestCase() {
delete[] sample_text;
delete[] search_string;
delete[] search_string_altered;
delete[] search_to_end_string;
delete[] search_to_beginning_string;
delete[] sample_text_many_matches;
delete[] search_string_many_matches;
delete[] test_string_y;
delete[] test_string_e;
delete[] test_string_unaligned_e;
delete[] test_string_all_Qs;
}
// Each block in the sample text and search string is kBlockSize bytes long,
// and consists of (kBlockSize - 1) space characters
// followed by a single letter of text.
// Block numbers of certain characters within the sample text:
// All six occurrences of "e", in order.
static const int block_of_first_e = 2;
static const int block_of_second_e = 16;
static const int block_of_third_e = 21;
static const int block_of_fourth_e = 27;
static const int block_of_fifth_e = 35;
static const int block_of_sixth_e = 42;
static const int block_of_y_in_only = 7;
// The block number is multiplied by kBlockSize to arrive at the
// index, which points to the (kBlockSize - 1) space characters before
// the letter specified.
// Indices of certain characters within the sample text.
static const int index_of_first_e = block_of_first_e * kBlockSize;
static const int index_of_fourth_e = block_of_fourth_e * kBlockSize;
static const int index_of_sixth_e = block_of_sixth_e * kBlockSize;
static const int index_of_y_in_only = block_of_y_in_only * kBlockSize;
static const int index_of_space_before_fear_is_fear = 25 * kBlockSize;
static const int index_of_longest_match_ear_is_fear = 27 * kBlockSize;
static const int index_of_i_in_fear_is_fear = 31 * kBlockSize;
static const int index_of_space_before_fear_itself = 33 * kBlockSize;
static const int index_of_space_before_itself = 38 * kBlockSize;
static const int index_of_ababc = 4 * kBlockSize;
// Indices of certain characters within the search strings.
static const int index_of_second_w_in_what_we = 5 * kBlockSize;
static const int index_of_second_e_in_what_we_hear = 9 * kBlockSize;
static const int index_of_f_in_fearsome = 16 * kBlockSize;
static const int index_of_space_in_eat_itself = 12 * kBlockSize;
static const int index_of_i_in_itself = 13 * kBlockSize;
static const int index_of_t_in_use_the = 4 * kBlockSize;
static const int index_of_o_in_online = 8 * kBlockSize;
static const char sample_text_without_spaces[];
static const char search_string_without_spaces[];
static const char search_string_altered_without_spaces[];
static const char search_to_end_without_spaces[];
static const char search_to_beginning_without_spaces[];
static const char sample_text_many_matches_without_spaces[];
static const char search_string_many_matches_without_spaces[];
static const char* sample_text;
static const char* search_string;
static const char* search_string_altered;
static const char* search_to_end_string;
static const char* search_to_beginning_string;
static const char* sample_text_many_matches;
static const char* search_string_many_matches;
static const char* test_string_y;
static const char* test_string_e;
static const char* test_string_all_Qs;
static const char* test_string_unaligned_e;
static uint32_t hashed_y;
static uint32_t hashed_e;
static uint32_t hashed_f;
static uint32_t hashed_unaligned_e;
static uint32_t hashed_all_Qs;
UNIQUE_PTR<const BlockHash> dh_; // hash table is populated at startup
UNIQUE_PTR<BlockHash> th_; // hash table not populated;
// used to test incremental adds
BlockHash::Match best_match_;
char* compare_buffer_1_;
char* compare_buffer_2_;
int prime_result_;
};
#ifdef GTEST_HAS_DEATH_TEST
typedef BlockHashTest BlockHashDeathTest;
#endif // GTEST_HAS_DEATH_TEST
// The C++ standard requires a separate definition of these static const values,
// even though their initializers are given within the class definition.
const int BlockHashTest::block_of_first_e;
const int BlockHashTest::block_of_second_e;
const int BlockHashTest::block_of_third_e;
const int BlockHashTest::block_of_fourth_e;
const int BlockHashTest::block_of_fifth_e;
const int BlockHashTest::block_of_sixth_e;
const int BlockHashTest::block_of_y_in_only;
const int BlockHashTest::index_of_first_e;
const int BlockHashTest::index_of_fourth_e;
const int BlockHashTest::index_of_sixth_e;
const int BlockHashTest::index_of_y_in_only;
const int BlockHashTest::index_of_space_before_fear_is_fear;
const int BlockHashTest::index_of_longest_match_ear_is_fear;
const int BlockHashTest::index_of_i_in_fear_is_fear;
const int BlockHashTest::index_of_space_before_fear_itself;
const int BlockHashTest::index_of_space_before_itself;
const int BlockHashTest::index_of_ababc;
const int BlockHashTest::index_of_second_w_in_what_we;
const int BlockHashTest::index_of_second_e_in_what_we_hear;
const int BlockHashTest::index_of_f_in_fearsome;
const int BlockHashTest::index_of_space_in_eat_itself;
const int BlockHashTest::index_of_i_in_itself;
const int BlockHashTest::index_of_t_in_use_the;
const int BlockHashTest::index_of_o_in_online;
const char BlockHashTest::sample_text_without_spaces[] =
"The only thing we have to fear is fear itself";
const char BlockHashTest::search_string_without_spaces[] =
"What we hear is fearsome";
const char BlockHashTest::search_string_altered_without_spaces[] =
"Vhat ve hear is fearsomm";
const char BlockHashTest::search_to_end_without_spaces[] =
"Pop will eat itself, eventually";
const char BlockHashTest::search_to_beginning_without_spaces[] =
"Use The online dictionary";
const char BlockHashTest::sample_text_many_matches_without_spaces[] =
"ababababcab";
const char BlockHashTest::search_string_many_matches_without_spaces[] =
"ababc";
const char* BlockHashTest::sample_text = NULL;
const char* BlockHashTest::search_string = NULL;
const char* BlockHashTest::search_string_altered = NULL;
const char* BlockHashTest::search_to_end_string = NULL;
const char* BlockHashTest::search_to_beginning_string = NULL;
const char* BlockHashTest::sample_text_many_matches = NULL;
const char* BlockHashTest::search_string_many_matches = NULL;
const char* BlockHashTest::test_string_y = NULL;
const char* BlockHashTest::test_string_e = NULL;
const char* BlockHashTest::test_string_unaligned_e = NULL;
const char* BlockHashTest::test_string_all_Qs = NULL;
uint32_t BlockHashTest::hashed_y = 0;
uint32_t BlockHashTest::hashed_e = 0;
uint32_t BlockHashTest::hashed_f = 0;
uint32_t BlockHashTest::hashed_unaligned_e = 0;
uint32_t BlockHashTest::hashed_all_Qs = 0;
void BlockHashTest::TestAndPrintTimesForCompareFunctions(
bool should_be_identical) {
CHECK(compare_buffer_1_ != NULL);
CHECK(compare_buffer_2_ != NULL);
// Prime the memory cache.
prime_result_ =
memcmp(compare_buffer_1_, compare_buffer_2_, kTimingTestSize);
const char* const block1_limit =
&compare_buffer_1_[kTimingTestSize - kBlockSize];
int block_compare_words_result = 0;
CycleTimer block_compare_words_timer;
block_compare_words_timer.Start();
for (int i = 0; i < kTimingTestIterations; ++i) {
const char* block1 = compare_buffer_1_;
const char* block2 = compare_buffer_2_;
while (block1 < block1_limit) {
if (!BlockHash::BlockCompareWords(block1, block2)) {
++block_compare_words_result;
}
block1 += kBlockSize;
block2 += kBlockSize;
}
}
block_compare_words_timer.Stop();
double time_for_block_compare_words =
static_cast<double>(block_compare_words_timer.GetInUsec())
/ ((kTimingTestSize / kBlockSize) * kTimingTestIterations);
int block_contents_match_result = 0;
CycleTimer block_contents_match_timer;
block_contents_match_timer.Start();
for (int i = 0; i < kTimingTestIterations; ++i) {
const char* block1 = compare_buffer_1_;
const char* block2 = compare_buffer_2_;
while (block1 < block1_limit) {
if (!BlockHash::BlockContentsMatch(block1, block2)) {
++block_contents_match_result;
}
block1 += kBlockSize;
block2 += kBlockSize;
}
}
block_contents_match_timer.Stop();
double time_for_block_contents_match =
static_cast<double>(block_contents_match_timer.GetInUsec())
/ ((kTimingTestSize / kBlockSize) * kTimingTestIterations);
EXPECT_EQ(block_contents_match_result, block_compare_words_result);
if (should_be_identical) {
CHECK_EQ(0, block_compare_words_result);
} else {
CHECK_GT(block_compare_words_result, 0);
}
std::cout << "BlockHash::BlockCompareWords: "
<< time_for_block_compare_words << " us per operation" << std::endl;
std::cout << "BlockHash::BlockContentsMatch: "
<< time_for_block_contents_match << " us per operation"
<< std::endl;
if (time_for_block_compare_words > 0) {
double percent_change =
(((time_for_block_contents_match - time_for_block_compare_words)
/ time_for_block_compare_words) * 100.0);
if (percent_change >= 0.0) {
std::cout << "BlockContentsMatch is " << percent_change << "%"
<< " SLOWER than BlockCompareWords" << std::endl;
} else {
std::cout << "BlockContentsMatch is " << (-percent_change) << "%"
<< " FASTER than BlockCompareWords" << std::endl;
}
}
#if defined(NDEBUG) && !defined(VCDIFF_USE_BLOCK_COMPARE_WORDS)
// Only check timings for optimized build. There's plenty of margin: this
// check will fail only if BlockContentsMatch is at least twice as slow as
// BlockCompareWords.
EXPECT_GT(time_for_block_compare_words * 2.0, time_for_block_contents_match);
#endif // NDEBUG && !VCDIFF_USE_BLOCK_COMPARE_WORDS
}
// The two strings passed to BlockHash::MatchingBytesToLeft do have matching
// characters -- in fact, they're the same string -- but since max_bytes is zero
// or negative, BlockHash::MatchingBytesToLeft should not read from the strings
// and should return 0.
TEST_F(BlockHashTest, MaxBytesZeroDoesNothing) {
EXPECT_EQ(0, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
0));
EXPECT_EQ(0, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
0));
}
TEST_F(BlockHashTest, MaxBytesNegativeDoesNothing) {
EXPECT_EQ(0, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
-1));
EXPECT_EQ(0, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
INT_MIN));
EXPECT_EQ(0, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
-1));
EXPECT_EQ(0, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
INT_MIN));
}
TEST_F(BlockHashTest, MaxBytesOneMatch) {
EXPECT_EQ(1, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
1));
EXPECT_EQ(1, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_f_in_fearsome],
1));
}
TEST_F(BlockHashTest, MaxBytesOneNoMatch) {
EXPECT_EQ(0, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_second_e_in_what_we_hear],
1));
EXPECT_EQ(0, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string[index_of_second_e_in_what_we_hear - 1],
1));
}
TEST_F(BlockHashTest, LeftLimitedByMaxBytes) {
// The number of bytes that match between the original "we hear is fearsome"
// and the altered "ve hear is fearsome".
const int expected_length = kBlockSize * StringLengthAsInt("e hear is ");
const int max_bytes = expected_length - 1;
EXPECT_EQ(max_bytes, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string_altered[index_of_f_in_fearsome],
max_bytes));
}
TEST_F(BlockHashTest, LeftNotLimited) {
// The number of bytes that match between the original "we hear is fearsome"
// and the altered "ve hear is fearsome".
const int expected_length = kBlockSize * StringLengthAsInt("e hear is ");
const int max_bytes = expected_length + 1;
EXPECT_EQ(expected_length, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string_altered[index_of_f_in_fearsome],
max_bytes));
EXPECT_EQ(expected_length, MatchingBytesToLeft(
&search_string[index_of_f_in_fearsome],
&search_string_altered[index_of_f_in_fearsome],
INT_MAX));
}
TEST_F(BlockHashTest, RightLimitedByMaxBytes) {
// The number of bytes that match between the original "fearsome"
// and the altered "fearsomm".
const int expected_length = (kBlockSize * StringLengthAsInt("fearsom"))
+ (kBlockSize - 1); // spacing between letters
const int max_bytes = expected_length - 1;
EXPECT_EQ(max_bytes, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string_altered[index_of_f_in_fearsome],
max_bytes));
}
TEST_F(BlockHashTest, RightNotLimited) {
// The number of bytes that match between the original "we hear is fearsome"
// and the altered "ve hear is fearsome".
const int expected_length = (kBlockSize * StringLengthAsInt("fearsom"))
+ (kBlockSize - 1); // spacing between letters
const int max_bytes = expected_length + 1;
EXPECT_EQ(expected_length, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string_altered[index_of_f_in_fearsome],
max_bytes));
EXPECT_EQ(expected_length, MatchingBytesToRight(
&search_string[index_of_f_in_fearsome],
&search_string_altered[index_of_f_in_fearsome],
INT_MAX));
}
// If this test fails in a non-x86 or non-gcc environment, consider adding
// -DVCDIFF_USE_BLOCK_COMPARE_WORDS to AM_CXXFLAGS in Makefile.am and
// Makefile.in, and reconstructing the Makefile. That will cause blockhash.cc
// to use a special implementation (BlockCompareWords) to compare blocks
// rather than using standard memcmp.
TEST_F(BlockHashTest, BlockContentsMatchIsAsFastAsBlockCompareWords) {
compare_buffer_1_ = new char[kTimingTestSize];
compare_buffer_2_ = new char[kTimingTestSize];
// The value 0xBE is arbitrarily chosen. First test with identical contents
// in the buffers, so that the comparison functions cannot short-circuit
// and will return true.
memset(compare_buffer_1_, 0xBE, kTimingTestSize);
memset(compare_buffer_2_, 0xBE, kTimingTestSize);
std::cout << "Comparing "
<< (kTimingTestSize / kBlockSize) << " identical values:"
<< std::endl;
TestAndPrintTimesForCompareFunctions(true);
// Now change one value in the middle of one buffer, so that the contents
// are no longer the same.
compare_buffer_1_[kTimingTestSize / 2] = 0x00;
std::cout << "Comparing "
<< ((kTimingTestSize / kBlockSize) - 1) << " identical values"
<< " and one mismatch:" << std::endl;
TestAndPrintTimesForCompareFunctions(false);
// Set one of the bytes of each block to differ so that
// none of the compare operations will return true, and run timing tests.
// In practice, BlockHash::BlockContentsMatch will only be called
// for two blocks whose hash values match, and the two most important
// cases are: (1) the blocks are identical, or (2) none of their bytes match.
TimingTestForBlocksThatDifferAtByte(0);
TimingTestForBlocksThatDifferAtByte(1);
TimingTestForBlocksThatDifferAtByte(kBlockSize / 2);
TimingTestForBlocksThatDifferAtByte(kBlockSize - 1);
delete[] compare_buffer_1_;
delete[] compare_buffer_2_;
}
TEST_F(BlockHashTest, FindFailsBeforeHashing) {
EXPECT_EQ(-1, FirstMatchingBlock(*th_, hashed_y, test_string_y));
}
TEST_F(BlockHashTest, HashOneFindOne) {
for (int i = 0; i <= index_of_y_in_only; ++i) {
th_->AddOneIndexHash(i, RollingHash<kBlockSize>::Hash(&sample_text[i]));
}
EXPECT_EQ(block_of_y_in_only, FirstMatchingBlock(*th_, hashed_y,
test_string_y));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_y_in_only, test_string_y));
}
TEST_F(BlockHashTest, HashAllFindOne) {
EXPECT_EQ(block_of_y_in_only, FirstMatchingBlock(*dh_, hashed_y,
test_string_y));
EXPECT_EQ(-1, NextMatchingBlock(*dh_, block_of_y_in_only, test_string_y));
}
TEST_F(BlockHashTest, NonMatchingTextNotFound) {
EXPECT_EQ(-1, FirstMatchingBlock(*dh_, hashed_all_Qs, test_string_all_Qs));
}
// Search for unaligned text. The test string is contained in the
// sample text (unlike the non-matching string in NonMatchingTextNotFound,
// above), but it is not aligned on a block boundary. FindMatchingBlock
// will only work if the test string is aligned on a block boundary.
//
// " T h e o n l y"
// ^^^^ Here is the test string
//
TEST_F(BlockHashTest, UnalignedTextNotFound) {
EXPECT_EQ(-1, FirstMatchingBlock(*dh_, hashed_unaligned_e,
test_string_unaligned_e));
}
TEST_F(BlockHashTest, FindSixMatches) {
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*dh_, hashed_e,
test_string_e));
EXPECT_EQ(block_of_second_e, NextMatchingBlock(*dh_, block_of_first_e,
test_string_e));
EXPECT_EQ(block_of_third_e, NextMatchingBlock(*dh_, block_of_second_e,
test_string_e));
EXPECT_EQ(block_of_fourth_e, NextMatchingBlock(*dh_, block_of_third_e,
test_string_e));
EXPECT_EQ(block_of_fifth_e, NextMatchingBlock(*dh_, block_of_fourth_e,
test_string_e));
EXPECT_EQ(block_of_sixth_e, NextMatchingBlock(*dh_, block_of_fifth_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*dh_, block_of_sixth_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*dh_, hashed_e,
test_string_e));
}
TEST_F(BlockHashTest, AddRangeFindThreeMatches) {
// Add hash values only for those characters before the fourth instance
// of "e" in the sample text. Tests that the ending index
// of AddAllBlocksThroughIndex() is not inclusive: only three matches
// for "e" should be found.
th_->AddAllBlocksThroughIndex(index_of_fourth_e);
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
EXPECT_EQ(block_of_second_e, NextMatchingBlock(*th_, block_of_first_e,
test_string_e));
EXPECT_EQ(block_of_third_e, NextMatchingBlock(*th_, block_of_second_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_third_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
}
// Try indices that are not even multiples of the block size.
// Add three ranges and verify the results after each
// call to AddAllBlocksThroughIndex().
TEST_F(BlockHashTest, AddRangeWithUnalignedIndices) {
th_->AddAllBlocksThroughIndex(index_of_first_e + 1);
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_first_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
// Add the second range to expand the result set
th_->AddAllBlocksThroughIndex(index_of_fourth_e - 3);
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
EXPECT_EQ(block_of_second_e, NextMatchingBlock(*th_, block_of_first_e,
test_string_e));
EXPECT_EQ(block_of_third_e, NextMatchingBlock(*th_, block_of_second_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_third_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
// Add the third range to expand the result set
th_->AddAllBlocksThroughIndex(index_of_fourth_e + 1);
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
EXPECT_EQ(block_of_second_e, NextMatchingBlock(*th_, block_of_first_e,
test_string_e));
EXPECT_EQ(block_of_third_e, NextMatchingBlock(*th_, block_of_second_e,
test_string_e));
EXPECT_EQ(block_of_fourth_e, NextMatchingBlock(*th_, block_of_third_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_fourth_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
}
#ifdef GTEST_HAS_DEATH_TEST
TEST_F(BlockHashDeathTest, AddingRangesInDescendingOrderNoEffect) {
th_->AddAllBlocksThroughIndex(index_of_fourth_e + 1);
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
EXPECT_EQ(block_of_second_e, NextMatchingBlock(*th_, block_of_first_e,
test_string_e));
EXPECT_EQ(block_of_third_e, NextMatchingBlock(*th_, block_of_second_e,
test_string_e));
EXPECT_EQ(block_of_fourth_e, NextMatchingBlock(*th_, block_of_third_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_fourth_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
// These calls will produce DFATAL error messages, and will do nothing,
// since the ranges have already been added.
EXPECT_DEBUG_DEATH(th_->AddAllBlocksThroughIndex(index_of_fourth_e - 3),
"<");
EXPECT_DEBUG_DEATH(th_->AddAllBlocksThroughIndex(index_of_first_e + 1),
"<");
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
EXPECT_EQ(block_of_second_e, NextMatchingBlock(*th_, block_of_first_e,
test_string_e));
EXPECT_EQ(block_of_third_e, NextMatchingBlock(*th_, block_of_second_e,
test_string_e));
EXPECT_EQ(block_of_fourth_e, NextMatchingBlock(*th_, block_of_third_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_fourth_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
}
#endif // GTEST_HAS_DEATH_TEST
TEST_F(BlockHashTest, AddEntireRangeFindSixMatches) {
th_->AddAllBlocksThroughIndex(StringLengthAsInt(sample_text));
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
EXPECT_EQ(block_of_second_e, NextMatchingBlock(*th_, block_of_first_e,
test_string_e));
EXPECT_EQ(block_of_third_e, NextMatchingBlock(*th_, block_of_second_e,
test_string_e));
EXPECT_EQ(block_of_fourth_e, NextMatchingBlock(*th_, block_of_third_e,
test_string_e));
EXPECT_EQ(block_of_fifth_e, NextMatchingBlock(*th_, block_of_fourth_e,
test_string_e));
EXPECT_EQ(block_of_sixth_e, NextMatchingBlock(*th_, block_of_fifth_e,
test_string_e));
EXPECT_EQ(-1, NextMatchingBlock(*th_, block_of_sixth_e, test_string_e));
// Starting over gives same result
EXPECT_EQ(block_of_first_e, FirstMatchingBlock(*th_, hashed_e,
test_string_e));
}
TEST_F(BlockHashTest, ZeroSizeSourceAccepted) {
BlockHash zero_sized_hash(sample_text, 0, 0);
EXPECT_EQ(true, zero_sized_hash.Init(true));
EXPECT_EQ(-1, FirstMatchingBlock(zero_sized_hash, hashed_y, test_string_y));
}
TEST_F(BlockHashTest, NullSource) {
BlockHash null_source_hash(NULL, 0, 0);
EXPECT_EQ(true, null_source_hash.Init(true));
EXPECT_EQ(-1, FirstMatchingBlock(null_source_hash, hashed_y, test_string_y));
}
#ifdef GTEST_HAS_DEATH_TEST
TEST_F(BlockHashDeathTest, BadNextMatchingBlockReturnsNoMatch) {
EXPECT_DEBUG_DEATH(EXPECT_EQ(-1, NextMatchingBlock(*dh_, 0xFFFFFFFE, " ")),
"invalid");
}
TEST_F(BlockHashDeathTest, CallingInitTwiceIsIllegal) {
BlockHash bh(sample_text, strlen(sample_text), 0);
EXPECT_TRUE(bh.Init(false));
EXPECT_DEBUG_DEATH(EXPECT_FALSE(bh.Init(false)), "twice");
}
TEST_F(BlockHashDeathTest, CallingAddBlockBeforeInitIsIllegal) {
BlockHash bh(sample_text, strlen(sample_text), 0);
EXPECT_DEBUG_DEATH(bh.AddAllBlocksThroughIndex(index_of_first_e),
"called before");
}
TEST_F(BlockHashDeathTest, AddAllBlocksThroughIndexOutOfRange) {
EXPECT_DEBUG_DEATH(
th_->AddAllBlocksThroughIndex(static_cast<int>(strlen(sample_text) + 1)),
"higher than end");
}
#endif // GTEST_HAS_DEATH_TEST
TEST_F(BlockHashTest, UnknownFingerprintReturnsNoMatch) {
EXPECT_EQ(-1, FirstMatchingBlock(*dh_, 0xFAFAFAFA, "FAFA"));
}
TEST_F(BlockHashTest, FindBestMatch) {
dh_->FindBestMatch(hashed_f,
&search_string[index_of_f_in_fearsome],
search_string,
strlen(search_string),
&best_match_);
EXPECT_EQ(index_of_longest_match_ear_is_fear, best_match_.source_offset());
EXPECT_EQ(index_of_second_e_in_what_we_hear, best_match_.target_offset());
// The match includes the spaces after the final character,
// which is why (kBlockSize - 1) is added to the expected best size.
EXPECT_EQ((strlen("ear is fear") * kBlockSize) + (kBlockSize - 1),
best_match_.size());
}
TEST_F(BlockHashTest, FindBestMatchWithStartingOffset) {
BlockHash th2(sample_text, strlen(sample_text), 0x10000);
th2.Init(true); // hash all blocks
th2.FindBestMatch(hashed_f,
&search_string[index_of_f_in_fearsome],
search_string,
strlen(search_string),
&best_match_);
// Offset should begin with dictionary_size
EXPECT_EQ(0x10000 + (index_of_longest_match_ear_is_fear),
best_match_.source_offset());
EXPECT_EQ(index_of_second_e_in_what_we_hear, best_match_.target_offset());
// The match includes the spaces after the final character,
// which is why (kBlockSize - 1) is added to the expected best size.
EXPECT_EQ((strlen("ear is fear") * kBlockSize) + (kBlockSize - 1),
best_match_.size());
}
TEST_F(BlockHashTest, BestMatchReachesEndOfDictionary) {
// Hash the "i" in "fear itself"
uint32_t hash_value = RollingHash<kBlockSize>::Hash(
&search_to_end_string[index_of_i_in_itself]);
dh_->FindBestMatch(hash_value,
&search_to_end_string[index_of_i_in_itself],
search_to_end_string,
strlen(search_to_end_string),
&best_match_);
EXPECT_EQ(index_of_space_before_itself, best_match_.source_offset());
EXPECT_EQ(index_of_space_in_eat_itself, best_match_.target_offset());
EXPECT_EQ(strlen(" itself") * kBlockSize, best_match_.size());
}
TEST_F(BlockHashTest, BestMatchReachesStartOfDictionary) {
// Hash the "i" in "fear itself"
uint32_t hash_value = RollingHash<kBlockSize>::Hash(
&search_to_beginning_string[index_of_o_in_online]);
dh_->FindBestMatch(hash_value,
&search_to_beginning_string[index_of_o_in_online],
search_to_beginning_string,
strlen(search_to_beginning_string),
&best_match_);
EXPECT_EQ(0, best_match_.source_offset()); // beginning of dictionary
EXPECT_EQ(index_of_t_in_use_the, best_match_.target_offset());
// The match includes the spaces after the final character,
// which is why (kBlockSize - 1) is added to the expected best size.
EXPECT_EQ((strlen("The onl") * kBlockSize) + (kBlockSize - 1),
best_match_.size());
}
TEST_F(BlockHashTest, BestMatchWithManyMatches) {
BlockHash many_matches_hash(sample_text_many_matches,
strlen(sample_text_many_matches),
0);
EXPECT_TRUE(many_matches_hash.Init(true));
// Hash the " a" at the beginning of the search string "ababc"
uint32_t hash_value =
RollingHash<kBlockSize>::Hash(search_string_many_matches);
many_matches_hash.FindBestMatch(hash_value,
search_string_many_matches,
search_string_many_matches,
strlen(search_string_many_matches),
&best_match_);
EXPECT_EQ(index_of_ababc, best_match_.source_offset());
EXPECT_EQ(0, best_match_.target_offset());
EXPECT_EQ(strlen(search_string_many_matches), best_match_.size());
}
TEST_F(BlockHashTest, HashCollisionFindsNoMatch) {
char* collision_search_string = new char[strlen(search_string) + 1];
memcpy(collision_search_string, search_string, strlen(search_string) + 1);
char* fearsome_location = &collision_search_string[index_of_f_in_fearsome];
// Tweak the collision string so that it has the same hash value
// but different text. The last four characters of the search string
// should be " f", and the bytes given below have the same hash value
// as those characters.
CHECK_GE(kBlockSize, 4);
fearsome_location[kBlockSize - 4] = 0x84;
fearsome_location[kBlockSize - 3] = 0xF1;
fearsome_location[kBlockSize - 2] = 0x51;
fearsome_location[kBlockSize - 1] = 0x00;
EXPECT_EQ(hashed_f, RollingHash<kBlockSize>::Hash(fearsome_location));
EXPECT_NE(0, memcmp(&search_string[index_of_f_in_fearsome],
fearsome_location,
kBlockSize));
// No match should be found this time.
dh_->FindBestMatch(hashed_f,
fearsome_location,
collision_search_string,
strlen(search_string), // since collision_search_string has embedded \0
&best_match_);
EXPECT_EQ(-1, best_match_.source_offset());
EXPECT_EQ(-1, best_match_.target_offset());
EXPECT_EQ(0U, best_match_.size());
delete[] collision_search_string;
}
// If the footprint passed to FindBestMatch does not actually match
// the search string, it should not find any matches.
TEST_F(BlockHashTest, WrongFootprintFindsNoMatch) {
dh_->FindBestMatch(hashed_e, // Using hashed value of "e" instead of "f"!
&search_string[index_of_f_in_fearsome],
search_string,
strlen(search_string),
&best_match_);
EXPECT_EQ(-1, best_match_.source_offset());
EXPECT_EQ(-1, best_match_.target_offset());
EXPECT_EQ(0U, best_match_.size());
}
// Use a dictionary containing 1M copies of the letter 'Q',
// and target data that also contains 1M Qs. If FindBestMatch
// is not throttled to find a maximum number of matches, this
// will take a very long time -- several seconds at least.
// If this test appears to hang, it is because the throttling code
// (see BlockHash::kMaxMatchesToCheck for details) is not working.
TEST_F(BlockHashTest, SearchStringFindsTooManyMatches) {
const int kTestSize = 1 << 20; // 1M
char* huge_dictionary = new char[kTestSize];
memset(huge_dictionary, 'Q', kTestSize);
BlockHash huge_bh(huge_dictionary, kTestSize, 0);
EXPECT_TRUE(huge_bh.Init(/* populate_hash_table = */ true));
char* huge_target = new char[kTestSize];
memset(huge_target, 'Q', kTestSize);
CycleTimer timer;
timer.Start();
huge_bh.FindBestMatch(hashed_all_Qs,
huge_target + (kTestSize / 2), // middle of target
huge_target,
kTestSize,
&best_match_);
timer.Stop();
double elapsed_time_in_us = static_cast<double>(timer.GetInUsec());
std::cout << "Time to search for best match with 1M matches: "
<< elapsed_time_in_us << " us" << std::endl;
// All blocks match the candidate block. FindBestMatch should have checked
// a certain number of matches before giving up. The best match
// should include at least half the source and target, since the candidate
// block was in the middle of the target data.
EXPECT_GT((kTestSize / 2), best_match_.source_offset());
EXPECT_GT((kTestSize / 2), best_match_.target_offset());
EXPECT_LT(static_cast<size_t>(kTestSize / 2), best_match_.size());
EXPECT_GT(5000000, elapsed_time_in_us); // < 5 seconds
#ifdef NDEBUG
EXPECT_GT(1000000, elapsed_time_in_us); // < 1 second
#endif // NDEBUG
delete[] huge_target;
delete[] huge_dictionary;
}
#ifdef GTEST_HAS_DEATH_TEST
TEST_F(BlockHashDeathTest, AddTooManyBlocks) {
for (int i = 0; i < StringLengthAsInt(sample_text_without_spaces); ++i) {
th_->AddOneIndexHash(i * kBlockSize, hashed_e);
}
// Didn't expect another block to be added
EXPECT_DEBUG_DEATH(th_->AddOneIndexHash(StringLengthAsInt(sample_text),
hashed_e),
"AddBlock");
}
#endif // GTEST_HAS_DEATH_TEST
} // namespace open_vcdiff