blob: 2ba5600c25fdfce977d26a778df9961b5582ee73 [file] [log] [blame]
// Copyright 2008 The open-vcdiff Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <config.h>
#include "google/vcencoder.h"
#include <stdlib.h> // free, posix_memalign
#include <string.h> // memcpy
#include <algorithm>
#include <string>
#include <vector>
#include "blockhash.h"
#include "checksum.h"
#include "testing.h"
#include "varint_bigendian.h"
#include "google/vcdecoder.h"
#include "google/jsonwriter.h"
#include "vcdiff_defs.h"
#ifdef HAVE_EXT_ROPE
#include <ext/rope>
#include "output_string_crope.h"
using __gnu_cxx::crope;
#endif // HAVE_EXT_ROPE
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif // HAVE_MALLOC_H
#ifdef HAVE_SYS_MMAN_H
#if !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
#undef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600 // posix_memalign
#endif
#include <sys/mman.h> // mprotect
#endif // HAVE_SYS_MMAN_H
#ifdef HAVE_UNISTD_H
#include <unistd.h> // getpagesize
#endif // HAVE_UNISTD_H
namespace open_vcdiff {
namespace {
static const size_t kFileHeaderSize = sizeof(DeltaFileHeader);
// This is to check the maximum possible encoding size
// if using a single ADD instruction, so assume that the
// dictionary size, the length of the ADD data, the size
// of the target window, and the length of the delta window
// are all two-byte Varints, that is, 128 <= length < 4096.
// This figure includes three extra bytes for a zero-sized
// ADD instruction with a two-byte Varint explicit size.
// Any additional COPY & ADD instructions must reduce
// the length of the encoding from this maximum.
static const size_t kWindowHeaderSize = 21;
class VerifyEncodedBytesTest : public testing::Test {
public:
typedef std::string string;
VerifyEncodedBytesTest() : delta_index_(0) { }
virtual ~VerifyEncodedBytesTest() { }
void ExpectByte(unsigned char b) {
EXPECT_EQ(b, static_cast<unsigned char>(delta_[delta_index_]));
++delta_index_;
}
void ExpectString(const char* s) {
const size_t size = strlen(s); // don't include terminating NULL char
EXPECT_EQ(s, string(delta_data() + delta_index_, size));
delta_index_ += size;
}
void ExpectNoMoreBytes() {
EXPECT_EQ(delta_index_, delta_size());
}
void ExpectSize(size_t size) {
const char* delta_size_pos = &delta_[delta_index_];
EXPECT_EQ(size,
static_cast<size_t>(
VarintBE<int32_t>::Parse(delta_data() + delta_size(),
&delta_size_pos)));
delta_index_ = delta_size_pos - delta_data();
}
void ExpectChecksum(VCDChecksum checksum) {
const char* delta_checksum_pos = &delta_[delta_index_];
EXPECT_EQ(checksum,
static_cast<VCDChecksum>(
VarintBE<int64_t>::Parse(delta_data() + delta_size(),
&delta_checksum_pos)));
delta_index_ = delta_checksum_pos - delta_data();
}
const string& delta_as_const() const { return delta_; }
string* delta() { return &delta_; }
const char* delta_data() const { return delta_as_const().data(); }
size_t delta_size() const { return delta_as_const().size(); }
private:
string delta_;
size_t delta_index_;
};
class VCDiffEncoderTest : public VerifyEncodedBytesTest {
protected:
static const char kDictionary[];
static const char kTarget[];
static const char kJSONDiff[];
static const uint8_t kNonAscii[];
VCDiffEncoderTest();
virtual ~VCDiffEncoderTest() { }
void TestWithFixedChunkSize(VCDiffStreamingEncoder *encoder,
VCDiffStreamingDecoder *decoder,
size_t chunk_size);
void TestWithEncodedChunkVector(size_t chunk_size);
HashedDictionary hashed_dictionary_;
VCDiffStreamingEncoder encoder_;
VCDiffStreamingDecoder decoder_;
VCDiffEncoder simple_encoder_;
VCDiffDecoder simple_decoder_;
VCDiffStreamingEncoder json_encoder_;
VCDiffStreamingEncoder external_encoder_;
VCDiffEncoder nonascii_simple_encoder_;
string result_target_;
};
const char VCDiffEncoderTest::kDictionary[] =
"\"Just the place for a Snark!\" the Bellman cried,\n"
"As he landed his crew with care;\n"
"Supporting each man on the top of the tide\n"
"By a finger entwined in his hair.\n";
const char VCDiffEncoderTest::kTarget[] =
"\"Just the place for a Snark! I have said it twice:\n"
"That alone should encourage the crew.\n"
"Just the place for a Snark! I have said it thrice:\n"
"What I tell you three times is true.\"\n";
const char VCDiffEncoderTest::kJSONDiff[] =
"[\"\\\"Just the place for a Snark! I have said it twice:\\n"
"That alone should encourage the crew.\\n\","
"161,44,"
"\"hrice:\\nWhat I tell you three times is true.\\\"\\n\"]";
// NonASCII string "foo\x128".
const uint8_t VCDiffEncoderTest::kNonAscii[] = {102, 111, 111, 128, 0};
VCDiffEncoderTest::VCDiffEncoderTest()
: hashed_dictionary_(kDictionary, sizeof(kDictionary)),
encoder_(&hashed_dictionary_,
VCD_FORMAT_INTERLEAVED | VCD_FORMAT_CHECKSUM,
/* look_for_target_matches = */ true),
simple_encoder_(kDictionary, sizeof(kDictionary)),
json_encoder_(&hashed_dictionary_, VCD_FORMAT_JSON,
/* look_for_target_matches = */ true),
external_encoder_(&hashed_dictionary_, 0,
/* look_for_target_matches = */ true,
new JSONCodeTableWriter()),
nonascii_simple_encoder_(reinterpret_cast<const char *>(kNonAscii),
sizeof(kNonAscii)) {
EXPECT_TRUE(hashed_dictionary_.Init());
}
TEST_F(VCDiffEncoderTest, EncodeBeforeStartEncoding) {
EXPECT_FALSE(encoder_.EncodeChunk(kTarget, strlen(kTarget), delta()));
}
TEST_F(VCDiffEncoderTest, FinishBeforeStartEncoding) {
EXPECT_FALSE(encoder_.FinishEncoding(delta()));
}
TEST_F(VCDiffEncoderTest, EncodeDecodeNothing) {
HashedDictionary nothing_dictionary("", 0);
EXPECT_TRUE(nothing_dictionary.Init());
VCDiffStreamingEncoder nothing_encoder(&nothing_dictionary,
VCD_STANDARD_FORMAT,
false);
EXPECT_TRUE(nothing_encoder.StartEncoding(delta()));
EXPECT_TRUE(nothing_encoder.FinishEncoding(delta()));
decoder_.StartDecoding("", 0);
EXPECT_TRUE(decoder_.DecodeChunk(delta_data(),
delta_size(),
&result_target_));
EXPECT_TRUE(decoder_.FinishDecoding());
EXPECT_TRUE(result_target_.empty());
}
TEST_F(VCDiffEncoderTest, EncodeNothingJSON) {
HashedDictionary nothing_dictionary("", 0);
EXPECT_TRUE(nothing_dictionary.Init());
VCDiffStreamingEncoder nothing_encoder(&nothing_dictionary,
VCD_FORMAT_JSON,
false);
EXPECT_TRUE(nothing_encoder.StartEncoding(delta()));
EXPECT_TRUE(nothing_encoder.FinishEncoding(delta()));
EXPECT_EQ("", delta_as_const());
}
// A NULL dictionary pointer is legal as long as the dictionary size is 0.
TEST_F(VCDiffEncoderTest, EncodeDecodeNullDictionaryPtr) {
HashedDictionary null_dictionary(NULL, 0);
EXPECT_TRUE(null_dictionary.Init());
VCDiffStreamingEncoder null_encoder(&null_dictionary,
VCD_STANDARD_FORMAT,
false);
EXPECT_TRUE(null_encoder.StartEncoding(delta()));
EXPECT_TRUE(null_encoder.EncodeChunk(kTarget, strlen(kTarget), delta()));
EXPECT_TRUE(null_encoder.FinishEncoding(delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
decoder_.StartDecoding(NULL, 0);
EXPECT_TRUE(decoder_.DecodeChunk(delta_data(),
delta_size(),
&result_target_));
EXPECT_TRUE(decoder_.FinishDecoding());
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, EncodeDecodeSimple) {
EXPECT_TRUE(simple_encoder_.Encode(kTarget, strlen(kTarget), delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, EncodeDecodeInterleaved) {
simple_encoder_.SetFormatFlags(VCD_FORMAT_INTERLEAVED);
EXPECT_TRUE(simple_encoder_.Encode(kTarget, strlen(kTarget), delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, EncodeDecodeInterleavedChecksum) {
simple_encoder_.SetFormatFlags(VCD_FORMAT_INTERLEAVED | VCD_FORMAT_CHECKSUM);
EXPECT_TRUE(simple_encoder_.Encode(kTarget,
strlen(kTarget),
delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, EncodeDecodeSingleChunk) {
EXPECT_TRUE(encoder_.StartEncoding(delta()));
EXPECT_TRUE(encoder_.EncodeChunk(kTarget, strlen(kTarget), delta()));
EXPECT_TRUE(encoder_.FinishEncoding(delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
decoder_.StartDecoding(kDictionary, sizeof(kDictionary));
EXPECT_TRUE(decoder_.DecodeChunk(delta_data(),
delta_size(),
&result_target_));
EXPECT_TRUE(decoder_.FinishDecoding());
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, EncodeSimpleJSON) {
EXPECT_TRUE(json_encoder_.StartEncoding(delta()));
EXPECT_TRUE(json_encoder_.EncodeChunk(kTarget, strlen(kTarget), delta()));
EXPECT_TRUE(json_encoder_.FinishEncoding(delta()));
EXPECT_EQ(kJSONDiff, delta_as_const());
}
TEST_F(VCDiffEncoderTest, EncodeSimpleExternalJSON) {
EXPECT_TRUE(external_encoder_.StartEncoding(delta()));
EXPECT_TRUE(external_encoder_.EncodeChunk(kTarget, strlen(kTarget), delta()));
EXPECT_TRUE(external_encoder_.FinishEncoding(delta()));
EXPECT_EQ(kJSONDiff, delta_as_const());
}
TEST_F(VCDiffEncoderTest, EncodeDecodeSeparate) {
string delta_start, delta_encode, delta_finish;
EXPECT_TRUE(encoder_.StartEncoding(&delta_start));
EXPECT_TRUE(encoder_.EncodeChunk(kTarget, strlen(kTarget), &delta_encode));
EXPECT_TRUE(encoder_.FinishEncoding(&delta_finish));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_start.size() + delta_encode.size() + delta_finish.size());
decoder_.StartDecoding(kDictionary, sizeof(kDictionary));
EXPECT_TRUE(decoder_.DecodeChunk(delta_start.data(),
delta_start.size(),
&result_target_));
EXPECT_TRUE(decoder_.DecodeChunk(delta_encode.data(),
delta_encode.size(),
&result_target_));
EXPECT_TRUE(decoder_.DecodeChunk(delta_finish.data(),
delta_finish.size(),
&result_target_));
EXPECT_TRUE(decoder_.FinishDecoding());
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, NonasciiDictionary) {
EXPECT_TRUE(nonascii_simple_encoder_.Encode(kTarget,
strlen(kTarget),
delta()));
}
TEST_F(VCDiffEncoderTest, NonasciiDictionaryWithJSON) {
nonascii_simple_encoder_.SetFormatFlags(VCD_FORMAT_JSON);
EXPECT_FALSE(nonascii_simple_encoder_.Encode(kTarget,
strlen(kTarget),
delta()));
}
TEST_F(VCDiffEncoderTest, NonasciiTarget) {
EXPECT_TRUE(simple_encoder_.Encode(reinterpret_cast<const char *>(kNonAscii),
sizeof(kNonAscii), delta()));
}
TEST_F(VCDiffEncoderTest, NonasciiTargetWithJSON) {
simple_encoder_.SetFormatFlags(VCD_FORMAT_JSON);
EXPECT_FALSE(simple_encoder_.Encode(reinterpret_cast<const char *>(kNonAscii),
sizeof(kNonAscii), delta()));
}
#ifdef HAVE_EXT_ROPE
// Test that the crope class can be used in place of a string for encoding
// and decoding.
TEST_F(VCDiffEncoderTest, EncodeDecodeCrope) {
crope delta_crope, result_crope;
EXPECT_TRUE(encoder_.StartEncoding(&delta_crope));
EXPECT_TRUE(encoder_.EncodeChunk(kTarget, strlen(kTarget), &delta_crope));
EXPECT_TRUE(encoder_.FinishEncoding(&delta_crope));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_crope.size());
decoder_.StartDecoding(kDictionary, sizeof(kDictionary));
// crope can't guarantee that its characters are contiguous, so the decoding
// has to be done byte-by-byte.
for (crope::const_iterator it = delta_crope.begin();
it != delta_crope.end(); it++) {
const char this_char = *it;
EXPECT_TRUE(decoder_.DecodeChunk(&this_char, 1, &result_crope));
}
EXPECT_TRUE(decoder_.FinishDecoding());
crope expected_target(kTarget);
EXPECT_EQ(expected_target, result_crope);
}
#endif // HAVE_EXT_ROPE
// Test the encoding and decoding with a fixed chunk size.
// If decoder is null, only test the encoding.
void VCDiffEncoderTest::TestWithFixedChunkSize(VCDiffStreamingEncoder *encoder,
VCDiffStreamingDecoder *decoder,
size_t chunk_size) {
delta()->clear();
EXPECT_TRUE(encoder->StartEncoding(delta()));
for (size_t chunk_start_index = 0;
chunk_start_index < strlen(kTarget);
chunk_start_index += chunk_size) {
size_t this_chunk_size = chunk_size;
const size_t bytes_available = strlen(kTarget) - chunk_start_index;
if (this_chunk_size > bytes_available) {
this_chunk_size = bytes_available;
}
EXPECT_TRUE(encoder->EncodeChunk(&kTarget[chunk_start_index],
this_chunk_size,
delta()));
}
EXPECT_TRUE(encoder->FinishEncoding(delta()));
const size_t num_windows = (strlen(kTarget) / chunk_size) + 1;
const size_t size_of_windows =
strlen(kTarget) + (kWindowHeaderSize * num_windows);
EXPECT_GE(kFileHeaderSize + size_of_windows, delta_size());
result_target_.clear();
if (!decoder) return;
decoder->StartDecoding(kDictionary, sizeof(kDictionary));
for (size_t chunk_start_index = 0;
chunk_start_index < delta_size();
chunk_start_index += chunk_size) {
size_t this_chunk_size = chunk_size;
const size_t bytes_available = delta_size() - chunk_start_index;
if (this_chunk_size > bytes_available) {
this_chunk_size = bytes_available;
}
EXPECT_TRUE(decoder->DecodeChunk(delta_data() + chunk_start_index,
this_chunk_size,
&result_target_));
}
EXPECT_TRUE(decoder->FinishDecoding());
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, EncodeDecodeFixedChunkSizes) {
// These specific chunk sizes have failed in the past
TestWithFixedChunkSize(&encoder_, &decoder_, 6);
TestWithFixedChunkSize(&encoder_, &decoder_, 45);
TestWithFixedChunkSize(&encoder_, &decoder_, 60);
// Now loop through all possible chunk sizes
for (size_t chunk_size = 1; chunk_size < strlen(kTarget); ++chunk_size) {
TestWithFixedChunkSize(&encoder_, &decoder_, chunk_size);
}
}
TEST_F(VCDiffEncoderTest, EncodeFixedChunkSizesJSON) {
// There is no JSON decoder; these diffs are created by hand.
TestWithFixedChunkSize(&json_encoder_, NULL, 6);
EXPECT_EQ("[\"\\\"Just \",\"the pl\",\"ace fo\",\"r a Sn\",\"ark! I\","
"\" have \",\"said i\",\"t twic\",\"e:\\nTha\",\"t alon\","
"\"e shou\",\"ld enc\",\"ourage\",\" the c\",\"rew.\\nJ\","
"\"ust th\",\"e plac\",\"e for \",\"a Snar\",\"k! I h\","
"\"ave sa\",\"id it \",\"thrice\",\":\\nWhat\",\" I tel\","
"\"l you \",\"three \",\"times \",\"is tru\",\"e.\\\"\\n\"]",
delta_as_const());
TestWithFixedChunkSize(&json_encoder_, NULL, 45);
EXPECT_EQ("[\"\\\"Just the place for a Snark! I have said it t\","
"\"wice:\\nThat alone should encourage the crew.\\nJ\","
"\"ust the place for a Snark! I have said it thr\",\"ice:\\n"
"What I tell you three times is true.\\\"\\n\"]",
delta_as_const());
TestWithFixedChunkSize(&json_encoder_, NULL, 60);
EXPECT_EQ("[\"\\\"Just the place for a Snark! I have said it twice:\\n"
"That alon\",\"e should encourage the crew.\\n"
"Just the place for a Snark! I h\",\"ave said it thrice:\\n"
"What I tell you three times is true.\\\"\\n\"]",
delta_as_const());
}
// If --allow_vcd_target=false is specified, the decoder will throw away some of
// the internally-stored decoded target beyond the current window. Try
// different numbers of encoded window sizes to make sure that this behavior
// does not affect the results.
TEST_F(VCDiffEncoderTest, EncodeDecodeFixedChunkSizesNoVcdTarget) {
decoder_.SetAllowVcdTarget(false);
// Loop through all possible chunk sizes
for (size_t chunk_size = 1; chunk_size < strlen(kTarget); ++chunk_size) {
TestWithFixedChunkSize(&encoder_, &decoder_, chunk_size);
}
}
// Splits the text to be encoded into fixed-size chunks. Encodes each
// chunk and puts it into a vector of strings. Then decodes each string
// in the vector and appends the result into result_target_.
void VCDiffEncoderTest::TestWithEncodedChunkVector(size_t chunk_size) {
std::vector<string> encoded_chunks;
string this_encoded_chunk;
size_t total_chunk_size = 0;
EXPECT_TRUE(encoder_.StartEncoding(&this_encoded_chunk));
encoded_chunks.push_back(this_encoded_chunk);
total_chunk_size += this_encoded_chunk.size();
for (size_t chunk_start_index = 0;
chunk_start_index < strlen(kTarget);
chunk_start_index += chunk_size) {
size_t this_chunk_size = chunk_size;
const size_t bytes_available = strlen(kTarget) - chunk_start_index;
if (this_chunk_size > bytes_available) {
this_chunk_size = bytes_available;
}
this_encoded_chunk.clear();
EXPECT_TRUE(encoder_.EncodeChunk(&kTarget[chunk_start_index],
this_chunk_size,
&this_encoded_chunk));
encoded_chunks.push_back(this_encoded_chunk);
total_chunk_size += this_encoded_chunk.size();
}
this_encoded_chunk.clear();
EXPECT_TRUE(encoder_.FinishEncoding(&this_encoded_chunk));
encoded_chunks.push_back(this_encoded_chunk);
total_chunk_size += this_encoded_chunk.size();
const size_t num_windows = (strlen(kTarget) / chunk_size) + 1;
const size_t size_of_windows =
strlen(kTarget) + (kWindowHeaderSize * num_windows);
EXPECT_GE(kFileHeaderSize + size_of_windows, total_chunk_size);
result_target_.clear();
decoder_.StartDecoding(kDictionary, sizeof(kDictionary));
for (std::vector<string>::iterator it = encoded_chunks.begin();
it != encoded_chunks.end(); ++it) {
EXPECT_TRUE(decoder_.DecodeChunk(it->data(), it->size(), &result_target_));
}
EXPECT_TRUE(decoder_.FinishDecoding());
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffEncoderTest, EncodeDecodeStreamOfChunks) {
// Loop through all possible chunk sizes
for (size_t chunk_size = 1; chunk_size < strlen(kTarget); ++chunk_size) {
TestWithEncodedChunkVector(chunk_size);
}
}
// Verify that HashedDictionary stores a copy of the dictionary text,
// rather than just storing a pointer to it. If the dictionary buffer
// is overwritten after creating a HashedDictionary from it, it shouldn't
// affect an encoder that uses that HashedDictionary.
TEST_F(VCDiffEncoderTest, DictionaryBufferOverwritten) {
string dictionary_copy(kDictionary, sizeof(kDictionary));
HashedDictionary hd_copy(dictionary_copy.data(), dictionary_copy.size());
EXPECT_TRUE(hd_copy.Init());
VCDiffStreamingEncoder copy_encoder(&hd_copy,
VCD_FORMAT_INTERLEAVED
| VCD_FORMAT_CHECKSUM,
/* look_for_target_matches = */ true);
// Produce a reference version of the encoded text.
string delta_before;
EXPECT_TRUE(copy_encoder.StartEncoding(&delta_before));
EXPECT_TRUE(copy_encoder.EncodeChunk(kTarget,
strlen(kTarget),
&delta_before));
EXPECT_TRUE(copy_encoder.FinishEncoding(&delta_before));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_before.size());
// Overwrite the dictionary text with all 'Q' characters.
dictionary_copy.replace(0,
dictionary_copy.size(),
dictionary_copy.size(),
'Q');
// When the encoder is used on the same target text after overwriting
// the dictionary, it should produce the same encoded output.
string delta_after;
EXPECT_TRUE(copy_encoder.StartEncoding(&delta_after));
EXPECT_TRUE(copy_encoder.EncodeChunk(kTarget, strlen(kTarget), &delta_after));
EXPECT_TRUE(copy_encoder.FinishEncoding(&delta_after));
EXPECT_EQ(delta_before, delta_after);
}
// Binary data test part 1: The dictionary and target data should not
// be treated as NULL-terminated. An embedded NULL should be handled like
// any other byte of data.
TEST_F(VCDiffEncoderTest, DictionaryHasEmbeddedNULLs) {
const uint8_t embedded_null_dictionary_text[] =
{ 0x00, 0xFF, 0xFE, 0xFD, 0x00, 0xFD, 0xFE, 0xFF, 0x00, 0x03 };
const uint8_t embedded_null_target[] =
{ 0xFD, 0x00, 0xFD, 0xFE, 0x03, 0x00, 0x01, 0x00 };
CHECK_EQ(10, sizeof(embedded_null_dictionary_text));
CHECK_EQ(8, sizeof(embedded_null_target));
HashedDictionary embedded_null_dictionary(
reinterpret_cast<const char *>(embedded_null_dictionary_text),
sizeof(embedded_null_dictionary_text));
EXPECT_TRUE(embedded_null_dictionary.Init());
VCDiffStreamingEncoder embedded_null_encoder(&embedded_null_dictionary,
VCD_FORMAT_INTERLEAVED | VCD_FORMAT_CHECKSUM,
/* look_for_target_matches = */ true);
EXPECT_TRUE(embedded_null_encoder.StartEncoding(delta()));
EXPECT_TRUE(embedded_null_encoder.EncodeChunk(
reinterpret_cast<const char *>(embedded_null_target),
sizeof(embedded_null_target), delta()));
EXPECT_TRUE(embedded_null_encoder.FinishEncoding(delta()));
decoder_.StartDecoding(
reinterpret_cast<const char *>(embedded_null_dictionary_text),
sizeof(embedded_null_dictionary_text));
EXPECT_TRUE(decoder_.DecodeChunk(delta_data(),
delta_size(),
&result_target_));
EXPECT_TRUE(decoder_.FinishDecoding());
EXPECT_EQ(sizeof(embedded_null_target), result_target_.size());
EXPECT_EQ(string(reinterpret_cast<const char*>(embedded_null_target),
sizeof(embedded_null_target)),
result_target_);
}
// Binary data test part 2: An embedded CR or LF should be handled like
// any other byte of data. No text-processing of the data should occur.
TEST_F(VCDiffEncoderTest, DictionaryHasEmbeddedNewlines) {
const uint8_t embedded_null_dictionary_text[] =
{ 0x0C, 0xFF, 0xFE, 0x0C, 0x00, 0x0A, 0xFE, 0xFF, 0x00, 0x0A };
const uint8_t embedded_null_target[] =
{ 0x0C, 0x00, 0x0A, 0xFE, 0x03, 0x00, 0x0A, 0x00 };
CHECK_EQ(10, sizeof(embedded_null_dictionary_text));
CHECK_EQ(8, sizeof(embedded_null_target));
HashedDictionary embedded_null_dictionary(
reinterpret_cast<const char *>(embedded_null_dictionary_text),
sizeof(embedded_null_dictionary_text));
EXPECT_TRUE(embedded_null_dictionary.Init());
VCDiffStreamingEncoder embedded_null_encoder(&embedded_null_dictionary,
VCD_FORMAT_INTERLEAVED | VCD_FORMAT_CHECKSUM,
/* look_for_target_matches = */ true);
EXPECT_TRUE(embedded_null_encoder.StartEncoding(delta()));
EXPECT_TRUE(embedded_null_encoder.EncodeChunk(
reinterpret_cast<const char *>(embedded_null_target),
sizeof(embedded_null_target), delta()));
EXPECT_TRUE(embedded_null_encoder.FinishEncoding(delta()));
decoder_.StartDecoding(
reinterpret_cast<const char *>(embedded_null_dictionary_text),
sizeof(embedded_null_dictionary_text));
EXPECT_TRUE(
decoder_.DecodeChunk(delta_data(), delta_size(), &result_target_));
EXPECT_TRUE(decoder_.FinishDecoding());
EXPECT_EQ(sizeof(embedded_null_target), result_target_.size());
EXPECT_EQ(string(reinterpret_cast<const char *>(embedded_null_target),
sizeof(embedded_null_target)),
result_target_);
}
TEST_F(VCDiffEncoderTest, UsingWideCharacters) {
const wchar_t wchar_dictionary_text[] =
L"\"Just the place for a Snark!\" the Bellman cried,\n"
L"As he landed his crew with care;\n"
L"Supporting each man on the top of the tide\n"
L"By a finger entwined in his hair.\n";
const wchar_t wchar_target[] =
L"\"Just the place for a Snark! I have said it twice:\n"
L"That alone should encourage the crew.\n"
L"Just the place for a Snark! I have said it thrice:\n"
L"What I tell you three times is true.\"\n";
HashedDictionary wchar_dictionary((const char*) wchar_dictionary_text,
sizeof(wchar_dictionary_text));
EXPECT_TRUE(wchar_dictionary.Init());
VCDiffStreamingEncoder wchar_encoder(&wchar_dictionary,
VCD_FORMAT_INTERLEAVED
| VCD_FORMAT_CHECKSUM,
/* look_for_target_matches = */ false);
EXPECT_TRUE(wchar_encoder.StartEncoding(delta()));
EXPECT_TRUE(wchar_encoder.EncodeChunk((const char*) wchar_target,
sizeof(wchar_target),
delta()));
EXPECT_TRUE(wchar_encoder.FinishEncoding(delta()));
decoder_.StartDecoding((const char*) wchar_dictionary_text,
sizeof(wchar_dictionary_text));
EXPECT_TRUE(decoder_.DecodeChunk(delta_data(),
delta_size(),
&result_target_));
EXPECT_TRUE(decoder_.FinishDecoding());
const wchar_t* result_as_wchar = (const wchar_t*) result_target_.data();
EXPECT_EQ(wcslen(wchar_target), wcslen(result_as_wchar));
EXPECT_EQ(0, wcscmp(wchar_target, result_as_wchar));
}
#if defined(HAVE_MPROTECT) && \
(defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN))
// Bug 1220602: Make sure the encoder doesn't read past the end of the input
// buffer.
TEST_F(VCDiffEncoderTest, ShouldNotReadPastEndOfBuffer) {
const size_t target_size = strlen(kTarget);
// Allocate two memory pages.
const int page_size = getpagesize();
void* two_pages = NULL;
#ifdef HAVE_POSIX_MEMALIGN
posix_memalign(&two_pages, page_size, 2 * page_size);
#else // !HAVE_POSIX_MEMALIGN
two_pages = memalign(page_size, 2 * page_size);
#endif // HAVE_POSIX_MEMALIGN
char* const first_page = reinterpret_cast<char*>(two_pages);
char* const second_page = first_page + page_size;
// Place the target string at the end of the first page.
char* const target_with_guard = second_page - target_size;
memcpy(target_with_guard, kTarget, target_size);
// Make the second page unreadable.
mprotect(second_page, page_size, PROT_NONE);
// Now perform the encode operation, which will cause a segmentation fault
// if it reads past the end of the buffer.
EXPECT_TRUE(encoder_.StartEncoding(delta()));
EXPECT_TRUE(encoder_.EncodeChunk(target_with_guard, target_size, delta()));
EXPECT_TRUE(encoder_.FinishEncoding(delta()));
// Undo the mprotect.
mprotect(second_page, page_size, PROT_READ|PROT_WRITE);
free(two_pages);
}
TEST_F(VCDiffEncoderTest, ShouldNotReadPastBeginningOfBuffer) {
const size_t target_size = strlen(kTarget);
// Allocate two memory pages.
const int page_size = getpagesize();
void* two_pages = NULL;
#ifdef HAVE_POSIX_MEMALIGN
posix_memalign(&two_pages, page_size, 2 * page_size);
#else // !HAVE_POSIX_MEMALIGN
two_pages = memalign(page_size, 2 * page_size);
#endif // HAVE_POSIX_MEMALIGN
char* const first_page = reinterpret_cast<char*>(two_pages);
char* const second_page = first_page + page_size;
// Make the first page unreadable.
mprotect(first_page, page_size, PROT_NONE);
// Place the target string at the beginning of the second page.
char* const target_with_guard = second_page;
memcpy(target_with_guard, kTarget, target_size);
// Now perform the encode operation, which will cause a segmentation fault
// if it reads past the beginning of the buffer.
EXPECT_TRUE(encoder_.StartEncoding(delta()));
EXPECT_TRUE(encoder_.EncodeChunk(target_with_guard, target_size, delta()));
EXPECT_TRUE(encoder_.FinishEncoding(delta()));
// Undo the mprotect.
mprotect(first_page, page_size, PROT_READ|PROT_WRITE);
free(two_pages);
}
#endif // HAVE_MPROTECT && (HAVE_MEMALIGN || HAVE_POSIX_MEMALIGN)
class VCDiffHTML1Test : public VerifyEncodedBytesTest {
protected:
static const char kDictionary[];
static const char kTarget[];
static const char kRedundantTarget[];
VCDiffHTML1Test();
virtual ~VCDiffHTML1Test() { }
void SimpleEncode();
void StreamingEncode();
HashedDictionary hashed_dictionary_;
VCDiffStreamingEncoder encoder_;
VCDiffStreamingDecoder decoder_;
VCDiffEncoder simple_encoder_;
VCDiffDecoder simple_decoder_;
string result_target_;
};
const char VCDiffHTML1Test::kDictionary[] =
"<html><font color=red>This part from the dict</font><br>";
const char VCDiffHTML1Test::kTarget[] =
"<html><font color=red>This part from the dict</font><br>\n"
"And this part is not...</html>";
const char VCDiffHTML1Test::kRedundantTarget[] =
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; // 256
VCDiffHTML1Test::VCDiffHTML1Test()
: hashed_dictionary_(kDictionary, sizeof(kDictionary)),
encoder_(&hashed_dictionary_,
VCD_FORMAT_INTERLEAVED | VCD_FORMAT_CHECKSUM,
/* look_for_target_matches = */ true),
simple_encoder_(kDictionary, sizeof(kDictionary)) {
EXPECT_TRUE(hashed_dictionary_.Init());
}
void VCDiffHTML1Test::SimpleEncode() {
EXPECT_TRUE(simple_encoder_.Encode(kTarget, strlen(kTarget), delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kTarget, result_target_);
}
void VCDiffHTML1Test::StreamingEncode() {
EXPECT_TRUE(encoder_.StartEncoding(delta()));
EXPECT_TRUE(encoder_.EncodeChunk(kTarget, strlen(kTarget), delta()));
EXPECT_TRUE(encoder_.FinishEncoding(delta()));
}
TEST_F(VCDiffHTML1Test, CheckOutputOfSimpleEncoder) {
SimpleEncode();
// These values do not depend on the block size used for encoding
ExpectByte(0xD6); // 'V' | 0x80
ExpectByte(0xC3); // 'C' | 0x80
ExpectByte(0xC4); // 'D' | 0x80
ExpectByte(0x00); // Simple encoder never uses interleaved format
ExpectByte(0x00); // Hdr_Indicator
ExpectByte(VCD_SOURCE); // Win_Indicator: VCD_SOURCE (dictionary)
ExpectByte(sizeof(kDictionary)); // Dictionary length
ExpectByte(0x00); // Source segment position: start of dictionary
if (BlockHash::kBlockSize < 16) {
// A medium block size will catch the "his part " match.
ExpectByte(0x22); // Length of the delta encoding
ExpectSize(strlen(kTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectByte(0x16); // Length of the data section
ExpectByte(0x05); // Length of the instructions section
ExpectByte(0x02); // Length of the address section
// Data section
ExpectString("\nAnd t"); // Data for 1st ADD
ExpectString("is not...</html>"); // Data for 2nd ADD
// Instructions section
ExpectByte(0x73); // COPY size 0 mode VCD_SAME(0)
ExpectByte(0x38); // COPY size (56)
ExpectByte(0x07); // ADD size 6
ExpectByte(0x19); // COPY size 9 mode VCD_SELF
ExpectByte(0x11); // ADD size 16
// Address section
ExpectByte(0x00); // COPY address (0) mode VCD_SAME(0)
ExpectByte(0x17); // COPY address (23) mode VCD_SELF
} else if (BlockHash::kBlockSize <= 56) {
// Any block size up to 56 will catch the matching prefix string.
ExpectByte(0x29); // Length of the delta encoding
ExpectSize(strlen(kTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectByte(0x1F); // Length of the data section
ExpectByte(0x04); // Length of the instructions section
ExpectByte(0x01); // Length of the address section
ExpectString("\nAnd this part is not...</html>"); // Data for ADD
// Instructions section
ExpectByte(0x73); // COPY size 0 mode VCD_SAME(0)
ExpectByte(0x38); // COPY size (56)
ExpectByte(0x01); // ADD size 0
ExpectByte(0x1F); // Size of ADD (31)
// Address section
ExpectByte(0x00); // COPY address (0) mode VCD_SAME(0)
} else {
// The matching string is 56 characters long, and the block size is
// 64 or greater, so no match should be found.
ExpectSize(strlen(kTarget) + 7); // Delta encoding len
ExpectSize(strlen(kTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectSize(strlen(kTarget)); // Length of the data section
ExpectByte(0x02); // Length of the instructions section
ExpectByte(0x00); // Length of the address section
// Data section
ExpectString(kTarget);
ExpectByte(0x01); // ADD size 0
ExpectSize(strlen(kTarget));
}
ExpectNoMoreBytes();
}
TEST_F(VCDiffHTML1Test, SimpleEncoderPerformsTargetMatching) {
EXPECT_TRUE(simple_encoder_.Encode(kRedundantTarget,
strlen(kRedundantTarget),
delta()));
EXPECT_GE(strlen(kRedundantTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kRedundantTarget, result_target_);
// These values do not depend on the block size used for encoding
ExpectByte(0xD6); // 'V' | 0x80
ExpectByte(0xC3); // 'C' | 0x80
ExpectByte(0xC4); // 'D' | 0x80
ExpectByte(0x00); // Simple encoder never uses interleaved format
ExpectByte(0x00); // Hdr_Indicator
ExpectByte(VCD_SOURCE); // Win_Indicator: VCD_SOURCE (dictionary)
ExpectByte(sizeof(kDictionary)); // Dictionary length
ExpectByte(0x00); // Source segment position: start of dictionary
ExpectByte(0x0C); // Length of the delta encoding
ExpectSize(strlen(kRedundantTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectByte(0x01); // Length of the data section
ExpectByte(0x04); // Length of the instructions section
ExpectByte(0x01); // Length of the address section
// Data section
ExpectString("A"); // Data for ADD
// Instructions section
ExpectByte(0x02); // ADD size 1
ExpectByte(0x23); // COPY size 0 mode VCD_HERE
ExpectSize(strlen(kRedundantTarget) - 1); // COPY size 255
// Address section
ExpectByte(0x01); // COPY address (1) mode VCD_HERE
ExpectNoMoreBytes();
}
TEST_F(VCDiffHTML1Test, SimpleEncoderWithoutTargetMatching) {
simple_encoder_.SetTargetMatching(false);
EXPECT_TRUE(simple_encoder_.Encode(kRedundantTarget,
strlen(kRedundantTarget),
delta()));
EXPECT_GE(strlen(kRedundantTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kRedundantTarget, result_target_);
// These values do not depend on the block size used for encoding
ExpectByte(0xD6); // 'V' | 0x80
ExpectByte(0xC3); // 'C' | 0x80
ExpectByte(0xC4); // 'D' | 0x80
ExpectByte(0x00); // Simple encoder never uses interleaved format
ExpectByte(0x00); // Hdr_Indicator
ExpectByte(VCD_SOURCE); // Win_Indicator: VCD_SOURCE (dictionary)
ExpectByte(sizeof(kDictionary)); // Dictionary length
ExpectByte(0x00); // Source segment position: start of dictionary
ExpectSize(strlen(kRedundantTarget) + 0x0A); // Length of the delta encoding
ExpectSize(strlen(kRedundantTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectSize(strlen(kRedundantTarget)); // Length of the data section
ExpectByte(0x03); // Length of the instructions section
ExpectByte(0x00); // Length of the address section
// Data section
ExpectString(kRedundantTarget); // Data for ADD
// Instructions section
ExpectByte(0x01); // ADD size 0
ExpectSize(strlen(kRedundantTarget)); // ADD size
// Address section empty
ExpectNoMoreBytes();
}
class VCDiffHTML2Test : public VerifyEncodedBytesTest {
protected:
static const char kDictionary[];
static const char kTarget[];
VCDiffHTML2Test();
virtual ~VCDiffHTML2Test() { }
void SimpleEncode();
void StreamingEncode();
HashedDictionary hashed_dictionary_;
VCDiffStreamingEncoder encoder_;
VCDiffStreamingDecoder decoder_;
VCDiffEncoder simple_encoder_;
VCDiffDecoder simple_decoder_;
string result_target_;
};
const char VCDiffHTML2Test::kDictionary[] = "10\nThis is a test";
const char VCDiffHTML2Test::kTarget[] = "This is a test!!!\n";
VCDiffHTML2Test::VCDiffHTML2Test()
: hashed_dictionary_(kDictionary, sizeof(kDictionary)),
encoder_(&hashed_dictionary_,
VCD_FORMAT_INTERLEAVED | VCD_FORMAT_CHECKSUM,
/* look_for_target_matches = */ true),
simple_encoder_(kDictionary, sizeof(kDictionary)) {
EXPECT_TRUE(hashed_dictionary_.Init());
}
void VCDiffHTML2Test::SimpleEncode() {
EXPECT_TRUE(simple_encoder_.Encode(kTarget, strlen(kTarget), delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kTarget, result_target_);
}
void VCDiffHTML2Test::StreamingEncode() {
EXPECT_TRUE(encoder_.StartEncoding(delta()));
EXPECT_TRUE(encoder_.EncodeChunk(kTarget, strlen(kTarget), delta()));
EXPECT_GE(strlen(kTarget) + kFileHeaderSize + kWindowHeaderSize,
delta_size());
EXPECT_TRUE(simple_decoder_.Decode(kDictionary,
sizeof(kDictionary),
delta_as_const(),
&result_target_));
EXPECT_EQ(kTarget, result_target_);
}
TEST_F(VCDiffHTML2Test, VerifyOutputOfSimpleEncoder) {
SimpleEncode();
// These values do not depend on the block size used for encoding
ExpectByte(0xD6); // 'V' | 0x80
ExpectByte(0xC3); // 'C' | 0x80
ExpectByte(0xC4); // 'D' | 0x80
ExpectByte(0x00); // Simple encoder never uses interleaved format
ExpectByte(0x00); // Hdr_Indicator
ExpectByte(VCD_SOURCE); // Win_Indicator: VCD_SOURCE (dictionary)
ExpectByte(sizeof(kDictionary)); // Dictionary length
ExpectByte(0x00); // Source segment position: start of dictionary
if (BlockHash::kBlockSize <= 8) {
ExpectByte(12); // Length of the delta encoding
ExpectSize(strlen(kTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectByte(0x04); // Length of the data section
ExpectByte(0x02); // Length of the instructions section
ExpectByte(0x01); // Length of the address section
ExpectByte('!');
ExpectByte('!');
ExpectByte('!');
ExpectByte('\n');
ExpectByte(0x1E); // COPY size 14 mode VCD_SELF
ExpectByte(0x05); // ADD size 4
ExpectByte(0x03); // COPY address (3) mode VCD_SELF
} else {
// Larger block sizes will not catch any matches.
ExpectSize(strlen(kTarget) + 7); // Delta encoding len
ExpectSize(strlen(kTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectSize(strlen(kTarget)); // Length of the data section
ExpectByte(0x02); // Length of the instructions section
ExpectByte(0x00); // Length of the address section
// Data section
ExpectString(kTarget);
ExpectByte(0x01); // ADD size 0
ExpectSize(strlen(kTarget));
}
ExpectNoMoreBytes();
}
TEST_F(VCDiffHTML2Test, VerifyOutputWithChecksum) {
StreamingEncode();
const VCDChecksum html2_checksum = ComputeAdler32(kTarget, strlen(kTarget));
CHECK_EQ(5, VarintBE<int64_t>::Length(html2_checksum));
// These values do not depend on the block size used for encoding
ExpectByte(0xD6); // 'V' | 0x80
ExpectByte(0xC3); // 'C' | 0x80
ExpectByte(0xC4); // 'D' | 0x80
ExpectByte('S'); // Format extensions
ExpectByte(0x00); // Hdr_Indicator
ExpectByte(VCD_SOURCE | VCD_CHECKSUM); // Win_Indicator
ExpectByte(sizeof(kDictionary)); // Dictionary length
ExpectByte(0x00); // Source segment position: start of dictionary
if (BlockHash::kBlockSize <= 8) {
ExpectByte(17); // Length of the delta encoding
ExpectSize(strlen(kTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectByte(0x00); // Length of the data section
ExpectByte(0x07); // Length of the instructions section
ExpectByte(0x00); // Length of the address section
ExpectChecksum(html2_checksum);
ExpectByte(0x1E); // COPY size 14 mode VCD_SELF
ExpectByte(0x03); // COPY address (3) mode VCD_SELF
ExpectByte(0x05); // ADD size 4
ExpectByte('!');
ExpectByte('!');
ExpectByte('!');
ExpectByte('\n');
} else {
// Larger block sizes will not catch any matches.
ExpectSize(strlen(kTarget) + 12); // Delta encoding len
ExpectSize(strlen(kTarget)); // Size of the target window
ExpectByte(0x00); // Delta_indicator (no compression)
ExpectByte(0x00); // Length of the data section
ExpectSize(0x02 + strlen(kTarget)); // Interleaved
ExpectByte(0x00); // Length of the address section
ExpectChecksum(html2_checksum);
// Data section
ExpectByte(0x01); // ADD size 0
ExpectSize(strlen(kTarget));
ExpectString(kTarget);
}
ExpectNoMoreBytes();
}
} // anonymous namespace
} // namespace open_vcdiff