blob: d5d870147d3b2c92ec690a97053c97d73f5e82f6 [file] [log] [blame] [edit]
// Copyright 2008 The open-vcdiff Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <config.h>
#include "varint_bigendian.h"
#include <stdlib.h> // rand, srand
#include <string.h> // strlen
#include <string>
#include <vector>
#include "testing.h"
namespace open_vcdiff {
namespace {
class VarintBETestCommon : public testing::Test {
protected:
typedef std::string string;
VarintBETestCommon()
: varint_buf_(VarintBE<int64_t>::kMaxBytes),
verify_encoded_byte_index_(0),
verify_expected_length_(0),
parse_data_ptr_(reinterpret_cast<const char*>(parse_data_all_FFs)) {
}
virtual ~VarintBETestCommon() { }
void ExpectEncodedByte(char expected_byte) {
EXPECT_EQ(expected_byte, varint_buf_[verify_encoded_byte_index_]);
EXPECT_EQ(expected_byte, s_[verify_encoded_byte_index_]);
++verify_encoded_byte_index_;
}
static const uint8_t parse_data_all_FFs[];
static const uint8_t parse_data_CADA1[];
std::vector<char> varint_buf_;
string s_;
int verify_encoded_byte_index_;
int verify_expected_length_;
const char* parse_data_ptr_;
};
template <typename SignedIntegerType>
class VarintBETestTemplate : public VarintBETestCommon {
protected:
VarintBETestTemplate() { }
virtual ~VarintBETestTemplate() { }
typedef SignedIntegerType SignedIntType;
typedef VarintBE<SignedIntegerType> VarintType;
void StartEncodingTest(SignedIntegerType v, int expected_length) {
verify_expected_length_ = expected_length;
EXPECT_EQ(expected_length, VarintType::Length(v));
EXPECT_EQ(expected_length, VarintType::Encode(v, &varint_buf_[0]));
VarintType::AppendToString(v, &s_);
EXPECT_EQ(static_cast<size_t>(expected_length), s_.length());
}
void TestEncodeInvalid(SignedIntegerType v) {
EXPECT_DEATH(VarintType::Length(v), "v >= 0");
EXPECT_DEATH(VarintType::Encode(v, &varint_buf_[0]), "v >= 0");
EXPECT_DEATH(VarintType::AppendToString(v, &s_), ">= 0");
}
// Need one function for each test type that will be applied to
// multiple classes
void TemplateTestDISABLED_EncodeNegative();
void TemplateTestEncodeZero();
void TemplateTestEncodeEightBits();
void TemplateTestEncodeCADAD1A();
void TemplateTestEncode32BitMaxInt();
void TemplateTestEncodeDoesNotOverwriteExistingString();
void TemplateTestParseNullPointer();
void TemplateTestEndPointerPrecedesBeginning();
void TemplateTestParseVarintTooLong();
void TemplateTestParseZero();
void TemplateTestParseCADA1();
void TemplateTestParseEmpty();
void TemplateTestParse123456789();
void TemplateTestDecode31Bits();
void TemplateTestEncodeDecodeRandom();
void TemplateTestContinuationBytesPastEndOfInput();
};
typedef VarintBETestTemplate<int32_t> VarintBEInt32Test;
typedef VarintBETestTemplate<int64_t> VarintBEInt64Test;
#ifdef GTEST_HAS_DEATH_TEST
// These synonyms are needed for the tests that use ASSERT_DEATH
typedef VarintBEInt32Test VarintBEInt32DeathTest;
typedef VarintBEInt64Test VarintBEInt64DeathTest;
#endif // GTEST_HAS_DEATH_TEST
const uint8_t VarintBETestCommon::parse_data_all_FFs[] =
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
const uint8_t VarintBETestCommon::parse_data_CADA1[] =
{ 0xCA, 0xDA, 0x01 };
// A macro to allow defining tests once and having them run against
// both VarintBE<int32_t> and VarintBE<int64_t>.
//
#define TEMPLATE_TEST_F(TEST_TYPE, TEST_NAME) \
TEST_F(VarintBEInt32##TEST_TYPE, TEST_NAME) { \
TemplateTest##TEST_NAME(); \
} \
TEST_F(VarintBEInt64##TEST_TYPE, TEST_NAME) { \
TemplateTest##TEST_NAME(); \
} \
template <class CacheType> \
void VarintBETestTemplate<CacheType>::TemplateTest##TEST_NAME()
// Encoding tests: Length(), Encode(), AppendToString(), AppendToBuffer()
#ifdef GTEST_HAS_DEATH_TEST
// This test hangs for non-debug build (DeathTest threading problem)
TEMPLATE_TEST_F(DeathTest, DISABLED_EncodeNegative) {
TestEncodeInvalid(-1);
}
#endif // GTEST_HAS_DEATH_TEST
TEMPLATE_TEST_F(Test, EncodeZero) {
StartEncodingTest(/* value */ 0x00, /* expected length */ 1);
ExpectEncodedByte(0x00);
EXPECT_EQ(verify_expected_length_, verify_encoded_byte_index_);
}
TEMPLATE_TEST_F(Test, EncodeEightBits) {
StartEncodingTest(/* value */ 0xFF, /* expected length */ 2);
ExpectEncodedByte(0x81);
ExpectEncodedByte(0x7F);
EXPECT_EQ(verify_expected_length_, verify_encoded_byte_index_);
}
TEMPLATE_TEST_F(Test, EncodeCADAD1A) {
StartEncodingTest(/* value */ 0x0CADAD1A, /* expected length */ 4);
ExpectEncodedByte(0xE5);
ExpectEncodedByte(0xB6);
ExpectEncodedByte(0xDA);
ExpectEncodedByte(0x1A);
EXPECT_EQ(verify_expected_length_, verify_encoded_byte_index_);
}
TEMPLATE_TEST_F(Test, Encode32BitMaxInt) {
StartEncodingTest(/* value */ 0x7FFFFFFF, /* expected length */ 5);
ExpectEncodedByte(0x87);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0x7F);
EXPECT_EQ(verify_expected_length_, verify_encoded_byte_index_);
}
#ifdef GTEST_HAS_DEATH_TEST
// This test hangs for non-debug build (DeathTest threading problem)
TEST_F(VarintBEInt32DeathTest, DISABLED_Encode32BitsTooBig) {
TestEncodeInvalid(0x80000000);
}
#endif // GTEST_HAS_DEATH_TEST
TEST_F(VarintBEInt64Test, Encode32Bits) {
StartEncodingTest(/* value */ 0x80000000, /* expected length */ 5);
ExpectEncodedByte(0x88);
ExpectEncodedByte(0x80);
ExpectEncodedByte(0x80);
ExpectEncodedByte(0x80);
ExpectEncodedByte(0x00);
EXPECT_EQ(verify_expected_length_, verify_encoded_byte_index_);
}
TEST_F(VarintBEInt64Test, Encode63Bits) {
StartEncodingTest(/* value */ 0x7FFFFFFFFFFFFFFFULL, /* expected length */ 9);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0xFF);
ExpectEncodedByte(0x7F);
EXPECT_EQ(verify_expected_length_, verify_encoded_byte_index_);
}
#ifdef GTEST_HAS_DEATH_TEST
// This test hangs for non-debug build (DeathTest threading problem)
TEST_F(VarintBEInt64DeathTest, DISABLED_Encode64BitsTooBig) {
TestEncodeInvalid(0x8000000000000000ULL);
}
#endif // GTEST_HAS_DEATH_TEST
TEMPLATE_TEST_F(Test, EncodeDoesNotOverwriteExistingString) {
s_.append("Test");
VarintType::AppendToString('1', &s_);
EXPECT_EQ(strlen("Test1"), s_.length());
EXPECT_EQ("Test1", s_);
}
// Decoding tests: Parse(), ParseFromBuffer()
TEMPLATE_TEST_F(Test, ParseVarintTooLong) {
EXPECT_EQ(RESULT_ERROR,
VarintType::Parse(parse_data_ptr_ + VarintType::kMaxBytes,
&parse_data_ptr_));
}
TEST_F(VarintBEInt32Test, ParseFourFFs) {
// For a 31-bit non-negative VarintBE, the sequence FF FF FF FF is invalid.
// Even though the largest allowable 31-bit value occupies 5 bytes as a
// Varint, it shouldn't have the highest bits set and so can't begin with FF.
EXPECT_EQ(RESULT_ERROR, VarintType::Parse(parse_data_ptr_ + 4,
&parse_data_ptr_));
}
TEST_F(VarintBEInt32Test, ParseThreeFFs) {
EXPECT_EQ(RESULT_END_OF_DATA, VarintType::Parse(parse_data_ptr_ + 3,
&parse_data_ptr_));
}
TEST_F(VarintBEInt64Test, ParseEightFFs) {
// For a 63-bit non-negative VarintBE, a series of eight FFs is valid, because
// the largest allowable 63-bit value is expressed as eight FF bytes followed
// by a 7F byte. This is in contrast to the 32-bit case (see ParseFourFFs,
// above.)
EXPECT_EQ(RESULT_END_OF_DATA, VarintType::Parse(parse_data_ptr_ + 8,
&parse_data_ptr_));
}
TEMPLATE_TEST_F(Test, ParseZero) {
const uint8_t zero_data[] = { 0x00 };
parse_data_ptr_ = reinterpret_cast<const char*>(zero_data);
EXPECT_EQ(0x00, VarintType::Parse(parse_data_ptr_ + 1, &parse_data_ptr_));
EXPECT_EQ(reinterpret_cast<const char*>(zero_data + 1), parse_data_ptr_);
}
TEMPLATE_TEST_F(Test, ParseCADA1) {
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_CADA1);
EXPECT_EQ(0x12AD01,
VarintType::Parse(parse_data_ptr_ + sizeof(parse_data_CADA1),
&parse_data_ptr_));
EXPECT_EQ(reinterpret_cast<const char*>(parse_data_CADA1 + 3), parse_data_ptr_);
}
TEMPLATE_TEST_F(Test, ParseNullPointer) {
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_CADA1);
EXPECT_EQ(RESULT_ERROR,
VarintType::Parse((const char*) NULL, &parse_data_ptr_));
}
TEMPLATE_TEST_F(Test, EndPointerPrecedesBeginning) {
// This is not an error.
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_CADA1);
EXPECT_EQ(RESULT_END_OF_DATA,
VarintType::Parse(parse_data_ptr_ - 1, &parse_data_ptr_));
}
TEMPLATE_TEST_F(Test, ParseEmpty) {
EXPECT_EQ(RESULT_END_OF_DATA,
VarintType::Parse(parse_data_ptr_, &parse_data_ptr_));
}
// This example is taken from the Varint description in RFC 3284, section 2.
TEMPLATE_TEST_F(Test, Parse123456789) {
const uint8_t parse_data_123456789[] = { 0x80 + 58, 0x80 + 111, 0x80 + 26, 21 };
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_123456789);
EXPECT_EQ(123456789, VarintType::Parse(parse_data_ptr_
+ sizeof(parse_data_123456789),
&parse_data_ptr_));
}
TEMPLATE_TEST_F(Test, Decode31Bits) {
const uint8_t parse_data_31_bits[] = { 0x87, 0xFF, 0xFF, 0xFF, 0x7F };
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_31_bits);
EXPECT_EQ(0x7FFFFFFF,
VarintType::Parse(parse_data_ptr_ + sizeof(parse_data_31_bits),
&parse_data_ptr_));
}
TEST_F(VarintBEInt32Test, Decode32Bits) {
const uint8_t parse_data_32_bits[] = { 0x88, 0x80, 0x80, 0x80, 0x00 };
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_32_bits);
EXPECT_EQ(RESULT_ERROR,
VarintType::Parse(parse_data_ptr_ + sizeof(parse_data_32_bits),
&parse_data_ptr_));
}
TEST_F(VarintBEInt64Test, Decode32Bits) {
const uint8_t parse_data_32_bits[] = { 0x88, 0x80, 0x80, 0x80, 0x00 };
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_32_bits);
EXPECT_EQ(0x80000000,
VarintType::Parse(parse_data_ptr_ + sizeof(parse_data_32_bits),
&parse_data_ptr_));
}
TEMPLATE_TEST_F(Test, EncodeDecodeRandom) {
const int test_size = 1024; // 1K random encode/decode operations
char encode_buffer[VarintType::kMaxBytes];
srand(1);
for (int i = 0; i < test_size; ++i) {
SignedIntType value = PortableRandomInRange(VarintType::kMaxVal);
int length = VarintType::Encode(value, encode_buffer);
EXPECT_EQ(length, VarintType::Length(value));
const char* parse_pointer = encode_buffer;
EXPECT_EQ(value, VarintType::Parse(encode_buffer + sizeof(encode_buffer),
&parse_pointer));
EXPECT_EQ(encode_buffer + length, parse_pointer);
}
for (int i = 0; i < test_size; ++i) {
s_.clear();
SignedIntType value = PortableRandomInRange(VarintType::kMaxVal);
VarintType::AppendToString(value, &s_);
const int varint_length = static_cast<int>(s_.length());
EXPECT_EQ(VarintType::Length(value), varint_length);
const char* parse_pointer = s_.c_str();
const char* const buffer_end_pointer = s_.c_str() + s_.length();
EXPECT_EQ(value, VarintType::Parse(buffer_end_pointer, &parse_pointer));
EXPECT_EQ(buffer_end_pointer, parse_pointer);
}
}
// If only 10 bytes of data are available, but there are 20 continuation
// bytes, Parse() should not read to the end of the continuation bytes. It is
// legal (according to the RFC3284 spec) to use any number of continuation
// bytes, but they should not cause us to read past the end of available input.
TEMPLATE_TEST_F(Test, ContinuationBytesPastEndOfInput) {
const uint8_t parse_data_20_continuations[] =
{ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x00 };
parse_data_ptr_ = reinterpret_cast<const char*>(parse_data_20_continuations);
EXPECT_EQ(RESULT_END_OF_DATA,
VarintType::Parse(parse_data_ptr_ + 10,
&parse_data_ptr_));
}
} // anonymous namespace
} // namespace open_vcdiff