| // Copyright 2005 Google Inc. All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "snappy-internal.h" |
| #include "snappy-sinksource.h" |
| #include "snappy.h" |
| #if !defined(SNAPPY_HAVE_BMI2) |
| // __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2 |
| // specifically, but it does define __AVX2__ when AVX2 support is available. |
| // Fortunately, AVX2 was introduced in Haswell, just like BMI2. |
| // |
| // BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So, |
| // GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which |
| // case issuing BMI2 instructions results in a compiler error. |
| #if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__)) |
| #define SNAPPY_HAVE_BMI2 1 |
| #else |
| #define SNAPPY_HAVE_BMI2 0 |
| #endif |
| #endif // !defined(SNAPPY_HAVE_BMI2) |
| |
| #if !defined(SNAPPY_HAVE_X86_CRC32) |
| #if defined(__SSE4_2__) |
| #define SNAPPY_HAVE_X86_CRC32 1 |
| #else |
| #define SNAPPY_HAVE_X86_CRC32 0 |
| #endif |
| #endif // !defined(SNAPPY_HAVE_X86_CRC32) |
| |
| #if !defined(SNAPPY_HAVE_NEON_CRC32) |
| #if SNAPPY_HAVE_NEON && defined(__ARM_FEATURE_CRC32) |
| #define SNAPPY_HAVE_NEON_CRC32 1 |
| #else |
| #define SNAPPY_HAVE_NEON_CRC32 0 |
| #endif |
| #endif // !defined(SNAPPY_HAVE_NEON_CRC32) |
| |
| #if SNAPPY_HAVE_BMI2 || SNAPPY_HAVE_X86_CRC32 |
| // Please do not replace with <x86intrin.h>. or with headers that assume more |
| // advanced SSE versions without checking with all the OWNERS. |
| #include <immintrin.h> |
| #elif SNAPPY_HAVE_NEON_CRC32 |
| #include <arm_acle.h> |
| #endif |
| |
| #include <algorithm> |
| #include <array> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdio> |
| #include <cstring> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| namespace snappy { |
| |
| namespace { |
| |
| // The amount of slop bytes writers are using for unconditional copies. |
| constexpr int kSlopBytes = 64; |
| |
| using internal::char_table; |
| using internal::COPY_1_BYTE_OFFSET; |
| using internal::COPY_2_BYTE_OFFSET; |
| using internal::COPY_4_BYTE_OFFSET; |
| using internal::kMaximumTagLength; |
| using internal::LITERAL; |
| #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| using internal::V128; |
| using internal::V128_Load; |
| using internal::V128_LoadU; |
| using internal::V128_Shuffle; |
| using internal::V128_StoreU; |
| using internal::V128_DupChar; |
| #endif |
| |
| // We translate the information encoded in a tag through a lookup table to a |
| // format that requires fewer instructions to decode. Effectively we store |
| // the length minus the tag part of the offset. The lowest significant byte |
| // thus stores the length. While total length - offset is given by |
| // entry - ExtractOffset(type). The nice thing is that the subtraction |
| // immediately sets the flags for the necessary check that offset >= length. |
| // This folds the cmp with sub. We engineer the long literals and copy-4 to |
| // always fail this check, so their presence doesn't affect the fast path. |
| // To prevent literals from triggering the guard against offset < length (offset |
| // does not apply to literals) the table is giving them a spurious offset of |
| // 256. |
| inline constexpr int16_t MakeEntry(int16_t len, int16_t offset) { |
| return len - (offset << 8); |
| } |
| |
| inline constexpr int16_t LengthMinusOffset(int data, int type) { |
| return type == 3 ? 0xFF // copy-4 (or type == 3) |
| : type == 2 ? MakeEntry(data + 1, 0) // copy-2 |
| : type == 1 ? MakeEntry((data & 7) + 4, data >> 3) // copy-1 |
| : data < 60 ? MakeEntry(data + 1, 1) // note spurious offset. |
| : 0xFF; // long literal |
| } |
| |
| inline constexpr int16_t LengthMinusOffset(uint8_t tag) { |
| return LengthMinusOffset(tag >> 2, tag & 3); |
| } |
| |
| template <size_t... Ints> |
| struct index_sequence {}; |
| |
| template <std::size_t N, size_t... Is> |
| struct make_index_sequence : make_index_sequence<N - 1, N - 1, Is...> {}; |
| |
| template <size_t... Is> |
| struct make_index_sequence<0, Is...> : index_sequence<Is...> {}; |
| |
| template <size_t... seq> |
| constexpr std::array<int16_t, 256> MakeTable(index_sequence<seq...>) { |
| return std::array<int16_t, 256>{LengthMinusOffset(seq)...}; |
| } |
| |
| alignas(64) const std::array<int16_t, 256> kLengthMinusOffset = |
| MakeTable(make_index_sequence<256>{}); |
| |
| // Given a table of uint16_t whose size is mask / 2 + 1, return a pointer to the |
| // relevant entry, if any, for the given bytes. Any hash function will do, |
| // but a good hash function reduces the number of collisions and thus yields |
| // better compression for compressible input. |
| // |
| // REQUIRES: mask is 2 * (table_size - 1), and table_size is a power of two. |
| inline uint16_t* TableEntry(uint16_t* table, uint32_t bytes, uint32_t mask) { |
| // Our choice is quicker-and-dirtier than the typical hash function; |
| // empirically, that seems beneficial. The upper bits of kMagic * bytes are a |
| // higher-quality hash than the lower bits, so when using kMagic * bytes we |
| // also shift right to get a higher-quality end result. There's no similar |
| // issue with a CRC because all of the output bits of a CRC are equally good |
| // "hashes." So, a CPU instruction for CRC, if available, tends to be a good |
| // choice. |
| #if SNAPPY_HAVE_NEON_CRC32 |
| // We use mask as the second arg to the CRC function, as it's about to |
| // be used anyway; it'd be equally correct to use 0 or some constant. |
| // Mathematically, _mm_crc32_u32 (or similar) is a function of the |
| // xor of its arguments. |
| const uint32_t hash = __crc32cw(bytes, mask); |
| #elif SNAPPY_HAVE_X86_CRC32 |
| const uint32_t hash = _mm_crc32_u32(bytes, mask); |
| #else |
| constexpr uint32_t kMagic = 0x1e35a7bd; |
| const uint32_t hash = (kMagic * bytes) >> (31 - kMaxHashTableBits); |
| #endif |
| return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(table) + |
| (hash & mask)); |
| } |
| |
| } // namespace |
| |
| size_t MaxCompressedLength(size_t source_bytes) { |
| // Compressed data can be defined as: |
| // compressed := item* literal* |
| // item := literal* copy |
| // |
| // The trailing literal sequence has a space blowup of at most 62/60 |
| // since a literal of length 60 needs one tag byte + one extra byte |
| // for length information. |
| // |
| // Item blowup is trickier to measure. Suppose the "copy" op copies |
| // 4 bytes of data. Because of a special check in the encoding code, |
| // we produce a 4-byte copy only if the offset is < 65536. Therefore |
| // the copy op takes 3 bytes to encode, and this type of item leads |
| // to at most the 62/60 blowup for representing literals. |
| // |
| // Suppose the "copy" op copies 5 bytes of data. If the offset is big |
| // enough, it will take 5 bytes to encode the copy op. Therefore the |
| // worst case here is a one-byte literal followed by a five-byte copy. |
| // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. |
| // |
| // This last factor dominates the blowup, so the final estimate is: |
| return 32 + source_bytes + source_bytes / 6; |
| } |
| |
| namespace { |
| |
| void UnalignedCopy64(const void* src, void* dst) { |
| char tmp[8]; |
| std::memcpy(tmp, src, 8); |
| std::memcpy(dst, tmp, 8); |
| } |
| |
| void UnalignedCopy128(const void* src, void* dst) { |
| // std::memcpy() gets vectorized when the appropriate compiler options are |
| // used. For example, x86 compilers targeting SSE2+ will optimize to an SSE2 |
| // load and store. |
| char tmp[16]; |
| std::memcpy(tmp, src, 16); |
| std::memcpy(dst, tmp, 16); |
| } |
| |
| template <bool use_16bytes_chunk> |
| inline void ConditionalUnalignedCopy128(const char* src, char* dst) { |
| if (use_16bytes_chunk) { |
| UnalignedCopy128(src, dst); |
| } else { |
| UnalignedCopy64(src, dst); |
| UnalignedCopy64(src + 8, dst + 8); |
| } |
| } |
| |
| // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used |
| // for handling COPY operations where the input and output regions may overlap. |
| // For example, suppose: |
| // src == "ab" |
| // op == src + 2 |
| // op_limit == op + 20 |
| // After IncrementalCopySlow(src, op, op_limit), the result will have eleven |
| // copies of "ab" |
| // ababababababababababab |
| // Note that this does not match the semantics of either std::memcpy() or |
| // std::memmove(). |
| inline char* IncrementalCopySlow(const char* src, char* op, |
| char* const op_limit) { |
| // TODO: Remove pragma when LLVM is aware this |
| // function is only called in cold regions and when cold regions don't get |
| // vectorized or unrolled. |
| #ifdef __clang__ |
| #pragma clang loop unroll(disable) |
| #endif |
| while (op < op_limit) { |
| *op++ = *src++; |
| } |
| return op_limit; |
| } |
| |
| #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| |
| // Computes the bytes for shuffle control mask (please read comments on |
| // 'pattern_generation_masks' as well) for the given index_offset and |
| // pattern_size. For example, when the 'offset' is 6, it will generate a |
| // repeating pattern of size 6. So, the first 16 byte indexes will correspond to |
| // the pattern-bytes {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3} and the |
| // next 16 byte indexes will correspond to the pattern-bytes {4, 5, 0, 1, 2, 3, |
| // 4, 5, 0, 1, 2, 3, 4, 5, 0, 1}. These byte index sequences are generated by |
| // calling MakePatternMaskBytes(0, 6, index_sequence<16>()) and |
| // MakePatternMaskBytes(16, 6, index_sequence<16>()) respectively. |
| template <size_t... indexes> |
| inline constexpr std::array<char, sizeof...(indexes)> MakePatternMaskBytes( |
| int index_offset, int pattern_size, index_sequence<indexes...>) { |
| return {static_cast<char>((index_offset + indexes) % pattern_size)...}; |
| } |
| |
| // Computes the shuffle control mask bytes array for given pattern-sizes and |
| // returns an array. |
| template <size_t... pattern_sizes_minus_one> |
| inline constexpr std::array<std::array<char, sizeof(V128)>, |
| sizeof...(pattern_sizes_minus_one)> |
| MakePatternMaskBytesTable(int index_offset, |
| index_sequence<pattern_sizes_minus_one...>) { |
| return { |
| MakePatternMaskBytes(index_offset, pattern_sizes_minus_one + 1, |
| make_index_sequence</*indexes=*/sizeof(V128)>())...}; |
| } |
| |
| // This is an array of shuffle control masks that can be used as the source |
| // operand for PSHUFB to permute the contents of the destination XMM register |
| // into a repeating byte pattern. |
| alignas(16) constexpr std::array<std::array<char, sizeof(V128)>, |
| 16> pattern_generation_masks = |
| MakePatternMaskBytesTable( |
| /*index_offset=*/0, |
| /*pattern_sizes_minus_one=*/make_index_sequence<16>()); |
| |
| // Similar to 'pattern_generation_masks', this table is used to "rotate" the |
| // pattern so that we can copy the *next 16 bytes* consistent with the pattern. |
| // Basically, pattern_reshuffle_masks is a continuation of |
| // pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as |
| // pattern_generation_masks for offsets 1, 2, 4, 8 and 16. |
| alignas(16) constexpr std::array<std::array<char, sizeof(V128)>, |
| 16> pattern_reshuffle_masks = |
| MakePatternMaskBytesTable( |
| /*index_offset=*/16, |
| /*pattern_sizes_minus_one=*/make_index_sequence<16>()); |
| |
| SNAPPY_ATTRIBUTE_ALWAYS_INLINE |
| static inline V128 LoadPattern(const char* src, const size_t pattern_size) { |
| V128 generation_mask = V128_Load(reinterpret_cast<const V128*>( |
| pattern_generation_masks[pattern_size - 1].data())); |
| // Uninitialized bytes are masked out by the shuffle mask. |
| // TODO: remove annotation and macro defs once MSan is fixed. |
| SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size); |
| return V128_Shuffle(V128_LoadU(reinterpret_cast<const V128*>(src)), |
| generation_mask); |
| } |
| |
| SNAPPY_ATTRIBUTE_ALWAYS_INLINE |
| static inline std::pair<V128 /* pattern */, V128 /* reshuffle_mask */> |
| LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) { |
| V128 pattern = LoadPattern(src, pattern_size); |
| |
| // This mask will generate the next 16 bytes in-place. Doing so enables us to |
| // write data by at most 4 V128_StoreU. |
| // |
| // For example, suppose pattern is: abcdefabcdefabcd |
| // Shuffling with this mask will generate: efabcdefabcdefab |
| // Shuffling again will generate: cdefabcdefabcdef |
| V128 reshuffle_mask = V128_Load(reinterpret_cast<const V128*>( |
| pattern_reshuffle_masks[pattern_size - 1].data())); |
| return {pattern, reshuffle_mask}; |
| } |
| |
| #endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| |
| // Fallback for when we need to copy while extending the pattern, for example |
| // copying 10 bytes from 3 positions back abc -> abcabcabcabca. |
| // |
| // REQUIRES: [dst - offset, dst + 64) is a valid address range. |
| SNAPPY_ATTRIBUTE_ALWAYS_INLINE |
| static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) { |
| #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| if (SNAPPY_PREDICT_TRUE(offset <= 16)) { |
| switch (offset) { |
| case 0: |
| return false; |
| case 1: { |
| // TODO: Ideally we should memset, move back once the |
| // codegen issues are fixed. |
| V128 pattern = V128_DupChar(dst[-1]); |
| for (int i = 0; i < 4; i++) { |
| V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern); |
| } |
| return true; |
| } |
| case 2: |
| case 4: |
| case 8: |
| case 16: { |
| V128 pattern = LoadPattern(dst - offset, offset); |
| for (int i = 0; i < 4; i++) { |
| V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern); |
| } |
| return true; |
| } |
| default: { |
| auto pattern_and_reshuffle_mask = |
| LoadPatternAndReshuffleMask(dst - offset, offset); |
| V128 pattern = pattern_and_reshuffle_mask.first; |
| V128 reshuffle_mask = pattern_and_reshuffle_mask.second; |
| for (int i = 0; i < 4; i++) { |
| V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern); |
| pattern = V128_Shuffle(pattern, reshuffle_mask); |
| } |
| return true; |
| } |
| } |
| } |
| #else |
| if (SNAPPY_PREDICT_TRUE(offset < 16)) { |
| if (SNAPPY_PREDICT_FALSE(offset == 0)) return false; |
| // Extend the pattern to the first 16 bytes. |
| // The simpler formulation of `dst[i - offset]` induces undefined behavior. |
| for (int i = 0; i < 16; i++) dst[i] = (dst - offset)[i]; |
| // Find a multiple of pattern >= 16. |
| static std::array<uint8_t, 16> pattern_sizes = []() { |
| std::array<uint8_t, 16> res; |
| for (int i = 1; i < 16; i++) res[i] = (16 / i + 1) * i; |
| return res; |
| }(); |
| offset = pattern_sizes[offset]; |
| for (int i = 1; i < 4; i++) { |
| std::memcpy(dst + i * 16, dst + i * 16 - offset, 16); |
| } |
| return true; |
| } |
| #endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| |
| // Very rare. |
| for (int i = 0; i < 4; i++) { |
| std::memcpy(dst + i * 16, dst + i * 16 - offset, 16); |
| } |
| return true; |
| } |
| |
| // Copy [src, src+(op_limit-op)) to [op, op_limit) but faster than |
| // IncrementalCopySlow. buf_limit is the address past the end of the writable |
| // region of the buffer. |
| inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, |
| char* const buf_limit) { |
| #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| constexpr int big_pattern_size_lower_bound = 16; |
| #else |
| constexpr int big_pattern_size_lower_bound = 8; |
| #endif |
| |
| // Terminology: |
| // |
| // slop = buf_limit - op |
| // pat = op - src |
| // len = op_limit - op |
| assert(src < op); |
| assert(op < op_limit); |
| assert(op_limit <= buf_limit); |
| // NOTE: The copy tags use 3 or 6 bits to store the copy length, so len <= 64. |
| assert(op_limit - op <= 64); |
| // NOTE: In practice the compressor always emits len >= 4, so it is ok to |
| // assume that to optimize this function, but this is not guaranteed by the |
| // compression format, so we have to also handle len < 4 in case the input |
| // does not satisfy these conditions. |
| |
| size_t pattern_size = op - src; |
| // The cases are split into different branches to allow the branch predictor, |
| // FDO, and static prediction hints to work better. For each input we list the |
| // ratio of invocations that match each condition. |
| // |
| // input slop < 16 pat < 8 len > 16 |
| // ------------------------------------------ |
| // html|html4|cp 0% 1.01% 27.73% |
| // urls 0% 0.88% 14.79% |
| // jpg 0% 64.29% 7.14% |
| // pdf 0% 2.56% 58.06% |
| // txt[1-4] 0% 0.23% 0.97% |
| // pb 0% 0.96% 13.88% |
| // bin 0.01% 22.27% 41.17% |
| // |
| // It is very rare that we don't have enough slop for doing block copies. It |
| // is also rare that we need to expand a pattern. Small patterns are common |
| // for incompressible formats and for those we are plenty fast already. |
| // Lengths are normally not greater than 16 but they vary depending on the |
| // input. In general if we always predict len <= 16 it would be an ok |
| // prediction. |
| // |
| // In order to be fast we want a pattern >= 16 bytes (or 8 bytes in non-SSE) |
| // and an unrolled loop copying 1x 16 bytes (or 2x 8 bytes in non-SSE) at a |
| // time. |
| |
| // Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE) |
| // bytes. |
| if (pattern_size < big_pattern_size_lower_bound) { |
| #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB |
| // to permute the register's contents in-place into a repeating sequence of |
| // the first "pattern_size" bytes. |
| // For example, suppose: |
| // src == "abc" |
| // op == op + 3 |
| // After V128_Shuffle(), "pattern" will have five copies of "abc" |
| // followed by one byte of slop: abcabcabcabcabca. |
| // |
| // The non-SSE fallback implementation suffers from store-forwarding stalls |
| // because its loads and stores partly overlap. By expanding the pattern |
| // in-place, we avoid the penalty. |
| |
| // Typically, the op_limit is the gating factor so try to simplify the loop |
| // based on that. |
| if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) { |
| auto pattern_and_reshuffle_mask = |
| LoadPatternAndReshuffleMask(src, pattern_size); |
| V128 pattern = pattern_and_reshuffle_mask.first; |
| V128 reshuffle_mask = pattern_and_reshuffle_mask.second; |
| |
| // There is at least one, and at most four 16-byte blocks. Writing four |
| // conditionals instead of a loop allows FDO to layout the code with |
| // respect to the actual probabilities of each length. |
| // TODO: Replace with loop with trip count hint. |
| V128_StoreU(reinterpret_cast<V128*>(op), pattern); |
| |
| if (op + 16 < op_limit) { |
| pattern = V128_Shuffle(pattern, reshuffle_mask); |
| V128_StoreU(reinterpret_cast<V128*>(op + 16), pattern); |
| } |
| if (op + 32 < op_limit) { |
| pattern = V128_Shuffle(pattern, reshuffle_mask); |
| V128_StoreU(reinterpret_cast<V128*>(op + 32), pattern); |
| } |
| if (op + 48 < op_limit) { |
| pattern = V128_Shuffle(pattern, reshuffle_mask); |
| V128_StoreU(reinterpret_cast<V128*>(op + 48), pattern); |
| } |
| return op_limit; |
| } |
| char* const op_end = buf_limit - 15; |
| if (SNAPPY_PREDICT_TRUE(op < op_end)) { |
| auto pattern_and_reshuffle_mask = |
| LoadPatternAndReshuffleMask(src, pattern_size); |
| V128 pattern = pattern_and_reshuffle_mask.first; |
| V128 reshuffle_mask = pattern_and_reshuffle_mask.second; |
| |
| // This code path is relatively cold however so we save code size |
| // by avoiding unrolling and vectorizing. |
| // |
| // TODO: Remove pragma when when cold regions don't get |
| // vectorized or unrolled. |
| #ifdef __clang__ |
| #pragma clang loop unroll(disable) |
| #endif |
| do { |
| V128_StoreU(reinterpret_cast<V128*>(op), pattern); |
| pattern = V128_Shuffle(pattern, reshuffle_mask); |
| op += 16; |
| } while (SNAPPY_PREDICT_TRUE(op < op_end)); |
| } |
| return IncrementalCopySlow(op - pattern_size, op, op_limit); |
| #else // !SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| // If plenty of buffer space remains, expand the pattern to at least 8 |
| // bytes. The way the following loop is written, we need 8 bytes of buffer |
| // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10 |
| // bytes if pattern_size is 2. Precisely encoding that is probably not |
| // worthwhile; instead, invoke the slow path if we cannot write 11 bytes |
| // (because 11 are required in the worst case). |
| if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) { |
| while (pattern_size < 8) { |
| UnalignedCopy64(src, op); |
| op += pattern_size; |
| pattern_size *= 2; |
| } |
| if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; |
| } else { |
| return IncrementalCopySlow(src, op, op_limit); |
| } |
| #endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE |
| } |
| assert(pattern_size >= big_pattern_size_lower_bound); |
| constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16; |
| |
| // Copy 1x 16 bytes (or 2x 8 bytes in non-SSE) at a time. Because op - src can |
| // be < 16 in non-SSE, a single UnalignedCopy128 might overwrite data in op. |
| // UnalignedCopy64 is safe because expanding the pattern to at least 8 bytes |
| // guarantees that op - src >= 8. |
| // |
| // Typically, the op_limit is the gating factor so try to simplify the loop |
| // based on that. |
| if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) { |
| // There is at least one, and at most four 16-byte blocks. Writing four |
| // conditionals instead of a loop allows FDO to layout the code with respect |
| // to the actual probabilities of each length. |
| // TODO: Replace with loop with trip count hint. |
| ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op); |
| if (op + 16 < op_limit) { |
| ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 16, op + 16); |
| } |
| if (op + 32 < op_limit) { |
| ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 32, op + 32); |
| } |
| if (op + 48 < op_limit) { |
| ConditionalUnalignedCopy128<use_16bytes_chunk>(src + 48, op + 48); |
| } |
| return op_limit; |
| } |
| |
| // Fall back to doing as much as we can with the available slop in the |
| // buffer. This code path is relatively cold however so we save code size by |
| // avoiding unrolling and vectorizing. |
| // |
| // TODO: Remove pragma when when cold regions don't get vectorized |
| // or unrolled. |
| #ifdef __clang__ |
| #pragma clang loop unroll(disable) |
| #endif |
| for (char* op_end = buf_limit - 16; op < op_end; op += 16, src += 16) { |
| ConditionalUnalignedCopy128<use_16bytes_chunk>(src, op); |
| } |
| if (op >= op_limit) return op_limit; |
| |
| // We only take this branch if we didn't have enough slop and we can do a |
| // single 8 byte copy. |
| if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { |
| UnalignedCopy64(src, op); |
| src += 8; |
| op += 8; |
| } |
| return IncrementalCopySlow(src, op, op_limit); |
| } |
| |
| } // namespace |
| |
| template <bool allow_fast_path> |
| static inline char* EmitLiteral(char* op, const char* literal, int len) { |
| // The vast majority of copies are below 16 bytes, for which a |
| // call to std::memcpy() is overkill. This fast path can sometimes |
| // copy up to 15 bytes too much, but that is okay in the |
| // main loop, since we have a bit to go on for both sides: |
| // |
| // - The input will always have kInputMarginBytes = 15 extra |
| // available bytes, as long as we're in the main loop, and |
| // if not, allow_fast_path = false. |
| // - The output will always have 32 spare bytes (see |
| // MaxCompressedLength). |
| assert(len > 0); // Zero-length literals are disallowed |
| int n = len - 1; |
| if (allow_fast_path && len <= 16) { |
| // Fits in tag byte |
| *op++ = LITERAL | (n << 2); |
| |
| UnalignedCopy128(literal, op); |
| return op + len; |
| } |
| |
| if (n < 60) { |
| // Fits in tag byte |
| *op++ = LITERAL | (n << 2); |
| } else { |
| int count = (Bits::Log2Floor(n) >> 3) + 1; |
| assert(count >= 1); |
| assert(count <= 4); |
| *op++ = LITERAL | ((59 + count) << 2); |
| // Encode in upcoming bytes. |
| // Write 4 bytes, though we may care about only 1 of them. The output buffer |
| // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds |
| // here and there is a std::memcpy() of size 'len' below. |
| LittleEndian::Store32(op, n); |
| op += count; |
| } |
| // When allow_fast_path is true, we can overwrite up to 16 bytes. |
| if (allow_fast_path) { |
| char* destination = op; |
| const char* source = literal; |
| const char* end = destination + len; |
| do { |
| std::memcpy(destination, source, 16); |
| destination += 16; |
| source += 16; |
| } while (destination < end); |
| } else { |
| std::memcpy(op, literal, len); |
| } |
| return op + len; |
| } |
| |
| template <bool len_less_than_12> |
| static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) { |
| assert(len <= 64); |
| assert(len >= 4); |
| assert(offset < 65536); |
| assert(len_less_than_12 == (len < 12)); |
| |
| if (len_less_than_12) { |
| uint32_t u = (len << 2) + (offset << 8); |
| uint32_t copy1 = COPY_1_BYTE_OFFSET - (4 << 2) + ((offset >> 3) & 0xe0); |
| uint32_t copy2 = COPY_2_BYTE_OFFSET - (1 << 2); |
| // It turns out that offset < 2048 is a difficult to predict branch. |
| // `perf record` shows this is the highest percentage of branch misses in |
| // benchmarks. This code produces branch free code, the data dependency |
| // chain that bottlenecks the throughput is so long that a few extra |
| // instructions are completely free (IPC << 6 because of data deps). |
| u += offset < 2048 ? copy1 : copy2; |
| LittleEndian::Store32(op, u); |
| op += offset < 2048 ? 2 : 3; |
| } else { |
| // Write 4 bytes, though we only care about 3 of them. The output buffer |
| // is required to have some slack, so the extra byte won't overrun it. |
| uint32_t u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); |
| LittleEndian::Store32(op, u); |
| op += 3; |
| } |
| return op; |
| } |
| |
| template <bool len_less_than_12> |
| static inline char* EmitCopy(char* op, size_t offset, size_t len) { |
| assert(len_less_than_12 == (len < 12)); |
| if (len_less_than_12) { |
| return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); |
| } else { |
| // A special case for len <= 64 might help, but so far measurements suggest |
| // it's in the noise. |
| |
| // Emit 64 byte copies but make sure to keep at least four bytes reserved. |
| while (SNAPPY_PREDICT_FALSE(len >= 68)) { |
| op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64); |
| len -= 64; |
| } |
| |
| // One or two copies will now finish the job. |
| if (len > 64) { |
| op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60); |
| len -= 60; |
| } |
| |
| // Emit remainder. |
| if (len < 12) { |
| op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); |
| } else { |
| op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len); |
| } |
| return op; |
| } |
| } |
| |
| bool GetUncompressedLength(const char* start, size_t n, size_t* result) { |
| uint32_t v = 0; |
| const char* limit = start + n; |
| if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { |
| *result = v; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| namespace { |
| uint32_t CalculateTableSize(uint32_t input_size) { |
| static_assert( |
| kMaxHashTableSize >= kMinHashTableSize, |
| "kMaxHashTableSize should be greater or equal to kMinHashTableSize."); |
| if (input_size > kMaxHashTableSize) { |
| return kMaxHashTableSize; |
| } |
| if (input_size < kMinHashTableSize) { |
| return kMinHashTableSize; |
| } |
| // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1. |
| // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)). |
| return 2u << Bits::Log2Floor(input_size - 1); |
| } |
| } // namespace |
| |
| namespace internal { |
| WorkingMemory::WorkingMemory(size_t input_size) { |
| const size_t max_fragment_size = std::min(input_size, kBlockSize); |
| const size_t table_size = CalculateTableSize(max_fragment_size); |
| size_ = table_size * sizeof(*table_) + max_fragment_size + |
| MaxCompressedLength(max_fragment_size); |
| mem_ = std::allocator<char>().allocate(size_); |
| table_ = reinterpret_cast<uint16_t*>(mem_); |
| input_ = mem_ + table_size * sizeof(*table_); |
| output_ = input_ + max_fragment_size; |
| } |
| |
| WorkingMemory::~WorkingMemory() { |
| std::allocator<char>().deallocate(mem_, size_); |
| } |
| |
| uint16_t* WorkingMemory::GetHashTable(size_t fragment_size, |
| int* table_size) const { |
| const size_t htsize = CalculateTableSize(fragment_size); |
| memset(table_, 0, htsize * sizeof(*table_)); |
| *table_size = htsize; |
| return table_; |
| } |
| } // end namespace internal |
| |
| // Flat array compression that does not emit the "uncompressed length" |
| // prefix. Compresses "input" string to the "*op" buffer. |
| // |
| // REQUIRES: "input" is at most "kBlockSize" bytes long. |
| // REQUIRES: "op" points to an array of memory that is at least |
| // "MaxCompressedLength(input.size())" in size. |
| // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. |
| // REQUIRES: "table_size" is a power of two |
| // |
| // Returns an "end" pointer into "op" buffer. |
| // "end - op" is the compressed size of "input". |
| namespace internal { |
| char* CompressFragment(const char* input, size_t input_size, char* op, |
| uint16_t* table, const int table_size) { |
| // "ip" is the input pointer, and "op" is the output pointer. |
| const char* ip = input; |
| assert(input_size <= kBlockSize); |
| assert((table_size & (table_size - 1)) == 0); // table must be power of two |
| const uint32_t mask = 2 * (table_size - 1); |
| const char* ip_end = input + input_size; |
| const char* base_ip = ip; |
| |
| const size_t kInputMarginBytes = 15; |
| if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { |
| const char* ip_limit = input + input_size - kInputMarginBytes; |
| |
| for (uint32_t preload = LittleEndian::Load32(ip + 1);;) { |
| // Bytes in [next_emit, ip) will be emitted as literal bytes. Or |
| // [next_emit, ip_end) after the main loop. |
| const char* next_emit = ip++; |
| uint64_t data = LittleEndian::Load64(ip); |
| // The body of this loop calls EmitLiteral once and then EmitCopy one or |
| // more times. (The exception is that when we're close to exhausting |
| // the input we goto emit_remainder.) |
| // |
| // In the first iteration of this loop we're just starting, so |
| // there's nothing to copy, so calling EmitLiteral once is |
| // necessary. And we only start a new iteration when the |
| // current iteration has determined that a call to EmitLiteral will |
| // precede the next call to EmitCopy (if any). |
| // |
| // Step 1: Scan forward in the input looking for a 4-byte-long match. |
| // If we get close to exhausting the input then goto emit_remainder. |
| // |
| // Heuristic match skipping: If 32 bytes are scanned with no matches |
| // found, start looking only at every other byte. If 32 more bytes are |
| // scanned (or skipped), look at every third byte, etc.. When a match is |
| // found, immediately go back to looking at every byte. This is a small |
| // loss (~5% performance, ~0.1% density) for compressible data due to more |
| // bookkeeping, but for non-compressible data (such as JPEG) it's a huge |
| // win since the compressor quickly "realizes" the data is incompressible |
| // and doesn't bother looking for matches everywhere. |
| // |
| // The "skip" variable keeps track of how many bytes there are since the |
| // last match; dividing it by 32 (ie. right-shifting by five) gives the |
| // number of bytes to move ahead for each iteration. |
| uint32_t skip = 32; |
| |
| const char* candidate; |
| if (ip_limit - ip >= 16) { |
| auto delta = ip - base_ip; |
| for (int j = 0; j < 4; ++j) { |
| for (int k = 0; k < 4; ++k) { |
| int i = 4 * j + k; |
| // These for-loops are meant to be unrolled. So we can freely |
| // special case the first iteration to use the value already |
| // loaded in preload. |
| uint32_t dword = i == 0 ? preload : static_cast<uint32_t>(data); |
| assert(dword == LittleEndian::Load32(ip + i)); |
| uint16_t* table_entry = TableEntry(table, dword, mask); |
| candidate = base_ip + *table_entry; |
| assert(candidate >= base_ip); |
| assert(candidate < ip + i); |
| *table_entry = delta + i; |
| if (SNAPPY_PREDICT_FALSE(LittleEndian::Load32(candidate) == dword)) { |
| *op = LITERAL | (i << 2); |
| UnalignedCopy128(next_emit, op + 1); |
| ip += i; |
| op = op + i + 2; |
| goto emit_match; |
| } |
| data >>= 8; |
| } |
| data = LittleEndian::Load64(ip + 4 * j + 4); |
| } |
| ip += 16; |
| skip += 16; |
| } |
| while (true) { |
| assert(static_cast<uint32_t>(data) == LittleEndian::Load32(ip)); |
| uint16_t* table_entry = TableEntry(table, data, mask); |
| uint32_t bytes_between_hash_lookups = skip >> 5; |
| skip += bytes_between_hash_lookups; |
| const char* next_ip = ip + bytes_between_hash_lookups; |
| if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { |
| ip = next_emit; |
| goto emit_remainder; |
| } |
| candidate = base_ip + *table_entry; |
| assert(candidate >= base_ip); |
| assert(candidate < ip); |
| |
| *table_entry = ip - base_ip; |
| if (SNAPPY_PREDICT_FALSE(static_cast<uint32_t>(data) == |
| LittleEndian::Load32(candidate))) { |
| break; |
| } |
| data = LittleEndian::Load32(next_ip); |
| ip = next_ip; |
| } |
| |
| // Step 2: A 4-byte match has been found. We'll later see if more |
| // than 4 bytes match. But, prior to the match, input |
| // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." |
| assert(next_emit + 16 <= ip_end); |
| op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit); |
| |
| // Step 3: Call EmitCopy, and then see if another EmitCopy could |
| // be our next move. Repeat until we find no match for the |
| // input immediately after what was consumed by the last EmitCopy call. |
| // |
| // If we exit this loop normally then we need to call EmitLiteral next, |
| // though we don't yet know how big the literal will be. We handle that |
| // by proceeding to the next iteration of the main loop. We also can exit |
| // this loop via goto if we get close to exhausting the input. |
| emit_match: |
| do { |
| // We have a 4-byte match at ip, and no need to emit any |
| // "literal bytes" prior to ip. |
| const char* base = ip; |
| std::pair<size_t, bool> p = |
| FindMatchLength(candidate + 4, ip + 4, ip_end, &data); |
| size_t matched = 4 + p.first; |
| ip += matched; |
| size_t offset = base - candidate; |
| assert(0 == memcmp(base, candidate, matched)); |
| if (p.second) { |
| op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched); |
| } else { |
| op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched); |
| } |
| if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { |
| goto emit_remainder; |
| } |
| // Expect 5 bytes to match |
| assert((data & 0xFFFFFFFFFF) == |
| (LittleEndian::Load64(ip) & 0xFFFFFFFFFF)); |
| // We are now looking for a 4-byte match again. We read |
| // table[Hash(ip, mask)] for that. To improve compression, |
| // we also update table[Hash(ip - 1, mask)] and table[Hash(ip, mask)]. |
| *TableEntry(table, LittleEndian::Load32(ip - 1), mask) = |
| ip - base_ip - 1; |
| uint16_t* table_entry = TableEntry(table, data, mask); |
| candidate = base_ip + *table_entry; |
| *table_entry = ip - base_ip; |
| // Measurements on the benchmarks have shown the following probabilities |
| // for the loop to exit (ie. avg. number of iterations is reciprocal). |
| // BM_Flat/6 txt1 p = 0.3-0.4 |
| // BM_Flat/7 txt2 p = 0.35 |
| // BM_Flat/8 txt3 p = 0.3-0.4 |
| // BM_Flat/9 txt3 p = 0.34-0.4 |
| // BM_Flat/10 pb p = 0.4 |
| // BM_Flat/11 gaviota p = 0.1 |
| // BM_Flat/12 cp p = 0.5 |
| // BM_Flat/13 c p = 0.3 |
| } while (static_cast<uint32_t>(data) == LittleEndian::Load32(candidate)); |
| // Because the least significant 5 bytes matched, we can utilize data |
| // for the next iteration. |
| preload = data >> 8; |
| } |
| } |
| |
| emit_remainder: |
| // Emit the remaining bytes as a literal |
| if (ip < ip_end) { |
| op = EmitLiteral</*allow_fast_path=*/false>(op, ip, ip_end - ip); |
| } |
| |
| return op; |
| } |
| } // end namespace internal |
| |
| // Called back at avery compression call to trace parameters and sizes. |
| static inline void Report(const char *algorithm, size_t compressed_size, |
| size_t uncompressed_size) { |
| // TODO: Switch to [[maybe_unused]] when we can assume C++17. |
| (void)algorithm; |
| (void)compressed_size; |
| (void)uncompressed_size; |
| } |
| |
| // Signature of output types needed by decompression code. |
| // The decompression code is templatized on a type that obeys this |
| // signature so that we do not pay virtual function call overhead in |
| // the middle of a tight decompression loop. |
| // |
| // class DecompressionWriter { |
| // public: |
| // // Called before decompression |
| // void SetExpectedLength(size_t length); |
| // |
| // // For performance a writer may choose to donate the cursor variable to the |
| // // decompression function. The decompression will inject it in all its |
| // // function calls to the writer. Keeping the important output cursor as a |
| // // function local stack variable allows the compiler to keep it in |
| // // register, which greatly aids performance by avoiding loads and stores of |
| // // this variable in the fast path loop iterations. |
| // T GetOutputPtr() const; |
| // |
| // // At end of decompression the loop donates the ownership of the cursor |
| // // variable back to the writer by calling this function. |
| // void SetOutputPtr(T op); |
| // |
| // // Called after decompression |
| // bool CheckLength() const; |
| // |
| // // Called repeatedly during decompression |
| // // Each function get a pointer to the op (output pointer), that the writer |
| // // can use and update. Note it's important that these functions get fully |
| // // inlined so that no actual address of the local variable needs to be |
| // // taken. |
| // bool Append(const char* ip, size_t length, T* op); |
| // bool AppendFromSelf(uint32_t offset, size_t length, T* op); |
| // |
| // // The rules for how TryFastAppend differs from Append are somewhat |
| // // convoluted: |
| // // |
| // // - TryFastAppend is allowed to decline (return false) at any |
| // // time, for any reason -- just "return false" would be |
| // // a perfectly legal implementation of TryFastAppend. |
| // // The intention is for TryFastAppend to allow a fast path |
| // // in the common case of a small append. |
| // // - TryFastAppend is allowed to read up to <available> bytes |
| // // from the input buffer, whereas Append is allowed to read |
| // // <length>. However, if it returns true, it must leave |
| // // at least five (kMaximumTagLength) bytes in the input buffer |
| // // afterwards, so that there is always enough space to read the |
| // // next tag without checking for a refill. |
| // // - TryFastAppend must always return decline (return false) |
| // // if <length> is 61 or more, as in this case the literal length is not |
| // // decoded fully. In practice, this should not be a big problem, |
| // // as it is unlikely that one would implement a fast path accepting |
| // // this much data. |
| // // |
| // bool TryFastAppend(const char* ip, size_t available, size_t length, T* op); |
| // }; |
| |
| static inline uint32_t ExtractLowBytes(const uint32_t& v, int n) { |
| assert(n >= 0); |
| assert(n <= 4); |
| #if SNAPPY_HAVE_BMI2 |
| return _bzhi_u32(v, 8 * n); |
| #else |
| // This needs to be wider than uint32_t otherwise `mask << 32` will be |
| // undefined. |
| uint64_t mask = 0xffffffff; |
| return v & ~(mask << (8 * n)); |
| #endif |
| } |
| |
| static inline bool LeftShiftOverflows(uint8_t value, uint32_t shift) { |
| assert(shift < 32); |
| static const uint8_t masks[] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // |
| 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe}; |
| return (value & masks[shift]) != 0; |
| } |
| |
| inline bool Copy64BytesWithPatternExtension(ptrdiff_t dst, size_t offset) { |
| // TODO: Switch to [[maybe_unused]] when we can assume C++17. |
| (void)dst; |
| return offset != 0; |
| } |
| |
| // Copies between size bytes and 64 bytes from src to dest. size cannot exceed |
| // 64. More than size bytes, but never exceeding 64, might be copied if doing |
| // so gives better performance. [src, src + size) must not overlap with |
| // [dst, dst + size), but [src, src + 64) may overlap with [dst, dst + 64). |
| void MemCopy64(char* dst, const void* src, size_t size) { |
| // Always copy this many bytes. If that's below size then copy the full 64. |
| constexpr int kShortMemCopy = 32; |
| |
| assert(size <= 64); |
| assert(std::less_equal<const void*>()(static_cast<const char*>(src) + size, |
| dst) || |
| std::less_equal<const void*>()(dst + size, src)); |
| |
| // We know that src and dst are at least size bytes apart. However, because we |
| // might copy more than size bytes the copy still might overlap past size. |
| // E.g. if src and dst appear consecutively in memory (src + size >= dst). |
| // TODO: Investigate wider copies on other platforms. |
| #if defined(__x86_64__) && defined(__AVX__) |
| assert(kShortMemCopy <= 32); |
| __m256i data = _mm256_lddqu_si256(static_cast<const __m256i *>(src)); |
| _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst), data); |
| // Profiling shows that nearly all copies are short. |
| if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) { |
| data = _mm256_lddqu_si256(static_cast<const __m256i *>(src) + 1); |
| _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst) + 1, data); |
| } |
| #else |
| std::memmove(dst, src, kShortMemCopy); |
| // Profiling shows that nearly all copies are short. |
| if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) { |
| std::memmove(dst + kShortMemCopy, |
| static_cast<const uint8_t*>(src) + kShortMemCopy, |
| 64 - kShortMemCopy); |
| } |
| #endif |
| } |
| |
| void MemCopy64(ptrdiff_t dst, const void* src, size_t size) { |
| // TODO: Switch to [[maybe_unused]] when we can assume C++17. |
| (void)dst; |
| (void)src; |
| (void)size; |
| } |
| |
| void ClearDeferred(const void** deferred_src, size_t* deferred_length, |
| uint8_t* safe_source) { |
| *deferred_src = safe_source; |
| *deferred_length = 0; |
| } |
| |
| void DeferMemCopy(const void** deferred_src, size_t* deferred_length, |
| const void* src, size_t length) { |
| *deferred_src = src; |
| *deferred_length = length; |
| } |
| |
| SNAPPY_ATTRIBUTE_ALWAYS_INLINE |
| inline size_t AdvanceToNextTagARMOptimized(const uint8_t** ip_p, size_t* tag) { |
| const uint8_t*& ip = *ip_p; |
| // This section is crucial for the throughput of the decompression loop. |
| // The latency of an iteration is fundamentally constrained by the |
| // following data chain on ip. |
| // ip -> c = Load(ip) -> delta1 = (c & 3) -> ip += delta1 or delta2 |
| // delta2 = ((c >> 2) + 1) ip++ |
| // This is different from X86 optimizations because ARM has conditional add |
| // instruction (csinc) and it removes several register moves. |
| const size_t tag_type = *tag & 3; |
| const bool is_literal = (tag_type == 0); |
| if (is_literal) { |
| size_t next_literal_tag = (*tag >> 2) + 1; |
| *tag = ip[next_literal_tag]; |
| ip += next_literal_tag + 1; |
| } else { |
| *tag = ip[tag_type]; |
| ip += tag_type + 1; |
| } |
| return tag_type; |
| } |
| |
| SNAPPY_ATTRIBUTE_ALWAYS_INLINE |
| inline size_t AdvanceToNextTagX86Optimized(const uint8_t** ip_p, size_t* tag) { |
| const uint8_t*& ip = *ip_p; |
| // This section is crucial for the throughput of the decompression loop. |
| // The latency of an iteration is fundamentally constrained by the |
| // following data chain on ip. |
| // ip -> c = Load(ip) -> ip1 = ip + 1 + (c & 3) -> ip = ip1 or ip2 |
| // ip2 = ip + 2 + (c >> 2) |
| // This amounts to 8 cycles. |
| // 5 (load) + 1 (c & 3) + 1 (lea ip1, [ip + (c & 3) + 1]) + 1 (cmov) |
| size_t literal_len = *tag >> 2; |
| size_t tag_type = *tag; |
| bool is_literal; |
| #if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__) |
| // TODO clang misses the fact that the (c & 3) already correctly |
| // sets the zero flag. |
| asm("and $3, %k[tag_type]\n\t" |
| : [tag_type] "+r"(tag_type), "=@ccz"(is_literal) |
| :: "cc"); |
| #else |
| tag_type &= 3; |
| is_literal = (tag_type == 0); |
| #endif |
| // TODO |
| // This is code is subtle. Loading the values first and then cmov has less |
| // latency then cmov ip and then load. However clang would move the loads |
| // in an optimization phase, volatile prevents this transformation. |
| // Note that we have enough slop bytes (64) that the loads are always valid. |
| size_t tag_literal = |
| static_cast<const volatile uint8_t*>(ip)[1 + literal_len]; |
| size_t tag_copy = static_cast<const volatile uint8_t*>(ip)[tag_type]; |
| *tag = is_literal ? tag_literal : tag_copy; |
| const uint8_t* ip_copy = ip + 1 + tag_type; |
| const uint8_t* ip_literal = ip + 2 + literal_len; |
| ip = is_literal ? ip_literal : ip_copy; |
| #if defined(__GNUC__) && defined(__x86_64__) |
| // TODO Clang is "optimizing" zero-extension (a totally free |
| // operation) this means that after the cmov of tag, it emits another movzb |
| // tag, byte(tag). It really matters as it's on the core chain. This dummy |
| // asm, persuades clang to do the zero-extension at the load (it's automatic) |
| // removing the expensive movzb. |
| asm("" ::"r"(tag_copy)); |
| #endif |
| return tag_type; |
| } |
| |
| // Extract the offset for copy-1 and copy-2 returns 0 for literals or copy-4. |
| inline uint32_t ExtractOffset(uint32_t val, size_t tag_type) { |
| // For x86 non-static storage works better. For ARM static storage is better. |
| // TODO: Once the array is recognized as a register, improve the |
| // readability for x86. |
| #if defined(__x86_64__) |
| constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull; |
| uint16_t result; |
| memcpy(&result, |
| reinterpret_cast<const char*>(&kExtractMasksCombined) + 2 * tag_type, |
| sizeof(result)); |
| return val & result; |
| #elif defined(__aarch64__) |
| constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull; |
| return val & static_cast<uint32_t>( |
| (kExtractMasksCombined >> (tag_type * 16)) & 0xFFFF); |
| #else |
| static constexpr uint32_t kExtractMasks[4] = {0, 0xFF, 0xFFFF, 0}; |
| return val & kExtractMasks[tag_type]; |
| #endif |
| }; |
| |
| // Core decompression loop, when there is enough data available. |
| // Decompresses the input buffer [ip, ip_limit) into the output buffer |
| // [op, op_limit_min_slop). Returning when either we are too close to the end |
| // of the input buffer, or we exceed op_limit_min_slop or when a exceptional |
| // tag is encountered (literal of length > 60) or a copy-4. |
| // Returns {ip, op} at the points it stopped decoding. |
| // TODO This function probably does not need to be inlined, as it |
| // should decode large chunks at a time. This allows runtime dispatch to |
| // implementations based on CPU capability (BMI2 / perhaps 32 / 64 byte memcpy). |
| template <typename T> |
| std::pair<const uint8_t*, ptrdiff_t> DecompressBranchless( |
| const uint8_t* ip, const uint8_t* ip_limit, ptrdiff_t op, T op_base, |
| ptrdiff_t op_limit_min_slop) { |
| // If deferred_src is invalid point it here. |
| uint8_t safe_source[64]; |
| const void* deferred_src; |
| size_t deferred_length; |
| ClearDeferred(&deferred_src, &deferred_length, safe_source); |
| |
| // We unroll the inner loop twice so we need twice the spare room. |
| op_limit_min_slop -= kSlopBytes; |
| if (2 * (kSlopBytes + 1) < ip_limit - ip && op < op_limit_min_slop) { |
| const uint8_t* const ip_limit_min_slop = ip_limit - 2 * kSlopBytes - 1; |
| ip++; |
| // ip points just past the tag and we are touching at maximum kSlopBytes |
| // in an iteration. |
| size_t tag = ip[-1]; |
| #if defined(__clang__) && defined(__aarch64__) |
| // Workaround for https://bugs.llvm.org/show_bug.cgi?id=51317 |
| // when loading 1 byte, clang for aarch64 doesn't realize that it(ldrb) |
| // comes with free zero-extension, so clang generates another |
| // 'and xn, xm, 0xff' before it use that as the offset. This 'and' is |
| // redundant and can be removed by adding this dummy asm, which gives |
| // clang a hint that we're doing the zero-extension at the load. |
| asm("" ::"r"(tag)); |
| #endif |
| do { |
| // The throughput is limited by instructions, unrolling the inner loop |
| // twice reduces the amount of instructions checking limits and also |
| // leads to reduced mov's. |
| |
| SNAPPY_PREFETCH(ip + 128); |
| for (int i = 0; i < 2; i++) { |
| const uint8_t* old_ip = ip; |
| assert(tag == ip[-1]); |
| // For literals tag_type = 0, hence we will always obtain 0 from |
| // ExtractLowBytes. For literals offset will thus be kLiteralOffset. |
| ptrdiff_t len_minus_offset = kLengthMinusOffset[tag]; |
| uint32_t next; |
| #if defined(__aarch64__) |
| size_t tag_type = AdvanceToNextTagARMOptimized(&ip, &tag); |
| // We never need more than 16 bits. Doing a Load16 allows the compiler |
| // to elide the masking operation in ExtractOffset. |
| next = LittleEndian::Load16(old_ip); |
| #else |
| size_t tag_type = AdvanceToNextTagX86Optimized(&ip, &tag); |
| next = LittleEndian::Load32(old_ip); |
| #endif |
| size_t len = len_minus_offset & 0xFF; |
| ptrdiff_t extracted = ExtractOffset(next, tag_type); |
| ptrdiff_t len_min_offset = len_minus_offset - extracted; |
| if (SNAPPY_PREDICT_FALSE(len_minus_offset > extracted)) { |
| if (SNAPPY_PREDICT_FALSE(len & 0x80)) { |
| // Exceptional case (long literal or copy 4). |
| // Actually doing the copy here is negatively impacting the main |
| // loop due to compiler incorrectly allocating a register for |
| // this fallback. Hence we just break. |
| break_loop: |
| ip = old_ip; |
| goto exit; |
| } |
| // Only copy-1 or copy-2 tags can get here. |
| assert(tag_type == 1 || tag_type == 2); |
| std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len; |
| // Guard against copies before the buffer start. |
| // Execute any deferred MemCopy since we write to dst here. |
| MemCopy64(op_base + op, deferred_src, deferred_length); |
| op += deferred_length; |
| ClearDeferred(&deferred_src, &deferred_length, safe_source); |
| if (SNAPPY_PREDICT_FALSE(delta < 0 || |
| !Copy64BytesWithPatternExtension( |
| op_base + op, len - len_min_offset))) { |
| goto break_loop; |
| } |
| // We aren't deferring this copy so add length right away. |
| op += len; |
| continue; |
| } |
| std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len; |
| if (SNAPPY_PREDICT_FALSE(delta < 0)) { |
| // Due to the spurious offset in literals have this will trigger |
| // at the start of a block when op is still smaller than 256. |
| if (tag_type != 0) goto break_loop; |
| MemCopy64(op_base + op, deferred_src, deferred_length); |
| op += deferred_length; |
| DeferMemCopy(&deferred_src, &deferred_length, old_ip, len); |
| continue; |
| } |
| |
| // For copies we need to copy from op_base + delta, for literals |
| // we need to copy from ip instead of from the stream. |
| const void* from = |
| tag_type ? reinterpret_cast<void*>(op_base + delta) : old_ip; |
| MemCopy64(op_base + op, deferred_src, deferred_length); |
| op += deferred_length; |
| DeferMemCopy(&deferred_src, &deferred_length, from, len); |
| } |
| } while (ip < ip_limit_min_slop && |
| (op + deferred_length) < op_limit_min_slop); |
| exit: |
| ip--; |
| assert(ip <= ip_limit); |
| } |
| // If we deferred a copy then we can perform. If we are up to date then we |
| // might not have enough slop bytes and could run past the end. |
| if (deferred_length) { |
| MemCopy64(op_base + op, deferred_src, deferred_length); |
| op += deferred_length; |
| ClearDeferred(&deferred_src, &deferred_length, safe_source); |
| } |
| return {ip, op}; |
| } |
| |
| // Helper class for decompression |
| class SnappyDecompressor { |
| private: |
| Source* reader_; // Underlying source of bytes to decompress |
| const char* ip_; // Points to next buffered byte |
| const char* ip_limit_; // Points just past buffered bytes |
| // If ip < ip_limit_min_maxtaglen_ it's safe to read kMaxTagLength from |
| // buffer. |
| const char* ip_limit_min_maxtaglen_; |
| uint32_t peeked_; // Bytes peeked from reader (need to skip) |
| bool eof_; // Hit end of input without an error? |
| char scratch_[kMaximumTagLength]; // See RefillTag(). |
| |
| // Ensure that all of the tag metadata for the next tag is available |
| // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even |
| // if (ip_limit_ - ip_ < 5). |
| // |
| // Returns true on success, false on error or end of input. |
| bool RefillTag(); |
| |
| void ResetLimit(const char* ip) { |
| ip_limit_min_maxtaglen_ = |
| ip_limit_ - std::min<ptrdiff_t>(ip_limit_ - ip, kMaximumTagLength - 1); |
| } |
| |
| public: |
| explicit SnappyDecompressor(Source* reader) |
| : reader_(reader), ip_(NULL), ip_limit_(NULL), peeked_(0), eof_(false) {} |
| |
| ~SnappyDecompressor() { |
| // Advance past any bytes we peeked at from the reader |
| reader_->Skip(peeked_); |
| } |
| |
| // Returns true iff we have hit the end of the input without an error. |
| bool eof() const { return eof_; } |
| |
| // Read the uncompressed length stored at the start of the compressed data. |
| // On success, stores the length in *result and returns true. |
| // On failure, returns false. |
| bool ReadUncompressedLength(uint32_t* result) { |
| assert(ip_ == NULL); // Must not have read anything yet |
| // Length is encoded in 1..5 bytes |
| *result = 0; |
| uint32_t shift = 0; |
| while (true) { |
| if (shift >= 32) return false; |
| size_t n; |
| const char* ip = reader_->Peek(&n); |
| if (n == 0) return false; |
| const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
| reader_->Skip(1); |
| uint32_t val = c & 0x7f; |
| if (LeftShiftOverflows(static_cast<uint8_t>(val), shift)) return false; |
| *result |= val << shift; |
| if (c < 128) { |
| break; |
| } |
| shift += 7; |
| } |
| return true; |
| } |
| |
| // Process the next item found in the input. |
| // Returns true if successful, false on error or end of input. |
| template <class Writer> |
| #if defined(__GNUC__) && defined(__x86_64__) |
| __attribute__((aligned(32))) |
| #endif |
| void |
| DecompressAllTags(Writer* writer) { |
| const char* ip = ip_; |
| ResetLimit(ip); |
| auto op = writer->GetOutputPtr(); |
| // We could have put this refill fragment only at the beginning of the loop. |
| // However, duplicating it at the end of each branch gives the compiler more |
| // scope to optimize the <ip_limit_ - ip> expression based on the local |
| // context, which overall increases speed. |
| #define MAYBE_REFILL() \ |
| if (SNAPPY_PREDICT_FALSE(ip >= ip_limit_min_maxtaglen_)) { \ |
| ip_ = ip; \ |
| if (SNAPPY_PREDICT_FALSE(!RefillTag())) goto exit; \ |
| ip = ip_; \ |
| ResetLimit(ip); \ |
| } \ |
| preload = static_cast<uint8_t>(*ip) |
| |
| // At the start of the for loop below the least significant byte of preload |
| // contains the tag. |
| uint32_t preload; |
| MAYBE_REFILL(); |
| for (;;) { |
| { |
| ptrdiff_t op_limit_min_slop; |
| auto op_base = writer->GetBase(&op_limit_min_slop); |
| if (op_base) { |
| auto res = |
| DecompressBranchless(reinterpret_cast<const uint8_t*>(ip), |
| reinterpret_cast<const uint8_t*>(ip_limit_), |
| op - op_base, op_base, op_limit_min_slop); |
| ip = reinterpret_cast<const char*>(res.first); |
| op = op_base + res.second; |
| MAYBE_REFILL(); |
| } |
| } |
| const uint8_t c = static_cast<uint8_t>(preload); |
| ip++; |
| |
| // Ratio of iterations that have LITERAL vs non-LITERAL for different |
| // inputs. |
| // |
| // input LITERAL NON_LITERAL |
| // ----------------------------------- |
| // html|html4|cp 23% 77% |
| // urls 36% 64% |
| // jpg 47% 53% |
| // pdf 19% 81% |
| // txt[1-4] 25% 75% |
| // pb 24% 76% |
| // bin 24% 76% |
| if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { |
| size_t literal_length = (c >> 2) + 1u; |
| if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length, &op)) { |
| assert(literal_length < 61); |
| ip += literal_length; |
| // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend() |
| // will not return true unless there's already at least five spare |
| // bytes in addition to the literal. |
| preload = static_cast<uint8_t>(*ip); |
| continue; |
| } |
| if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { |
| // Long literal. |
| const size_t literal_length_length = literal_length - 60; |
| literal_length = |
| ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) + |
| 1; |
| ip += literal_length_length; |
| } |
| |
| size_t avail = ip_limit_ - ip; |
| while (avail < literal_length) { |
| if (!writer->Append(ip, avail, &op)) goto exit; |
| literal_length -= avail; |
| reader_->Skip(peeked_); |
| size_t n; |
| ip = reader_->Peek(&n); |
| avail = n; |
| peeked_ = avail; |
| if (avail == 0) goto exit; |
| ip_limit_ = ip + avail; |
| ResetLimit(ip); |
| } |
| if (!writer->Append(ip, literal_length, &op)) goto exit; |
| ip += literal_length; |
| MAYBE_REFILL(); |
| } else { |
| if (SNAPPY_PREDICT_FALSE((c & 3) == COPY_4_BYTE_OFFSET)) { |
| const size_t copy_offset = LittleEndian::Load32(ip); |
| const size_t length = (c >> 2) + 1; |
| ip += 4; |
| |
| if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit; |
| } else { |
| const ptrdiff_t entry = kLengthMinusOffset[c]; |
| preload = LittleEndian::Load32(ip); |
| const uint32_t trailer = ExtractLowBytes(preload, c & 3); |
| const uint32_t length = entry & 0xff; |
| assert(length > 0); |
| |
| // copy_offset/256 is encoded in bits 8..10. By just fetching |
| // those bits, we get copy_offset (since the bit-field starts at |
| // bit 8). |
| const uint32_t copy_offset = trailer - entry + length; |
| if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit; |
| |
| ip += (c & 3); |
| // By using the result of the previous load we reduce the critical |
| // dependency chain of ip to 4 cycles. |
| preload >>= (c & 3) * 8; |
| if (ip < ip_limit_min_maxtaglen_) continue; |
| } |
| MAYBE_REFILL(); |
| } |
| } |
| #undef MAYBE_REFILL |
| exit: |
| writer->SetOutputPtr(op); |
| } |
| }; |
| |
| constexpr uint32_t CalculateNeeded(uint8_t tag) { |
| return ((tag & 3) == 0 && tag >= (60 * 4)) |
| ? (tag >> 2) - 58 |
| : (0x05030201 >> ((tag * 8) & 31)) & 0xFF; |
| } |
| |
| #if __cplusplus >= 201402L |
| constexpr bool VerifyCalculateNeeded() { |
| for (int i = 0; i < 1; i++) { |
| if (CalculateNeeded(i) != (char_table[i] >> 11) + 1) return false; |
| } |
| return true; |
| } |
| |
| // Make sure CalculateNeeded is correct by verifying it against the established |
| // table encoding the number of added bytes needed. |
| static_assert(VerifyCalculateNeeded(), ""); |
| #endif // c++14 |
| |
| bool SnappyDecompressor::RefillTag() { |
| const char* ip = ip_; |
| if (ip == ip_limit_) { |
| // Fetch a new fragment from the reader |
| reader_->Skip(peeked_); // All peeked bytes are used up |
| size_t n; |
| ip = reader_->Peek(&n); |
| peeked_ = n; |
| eof_ = (n == 0); |
| if (eof_) return false; |
| ip_limit_ = ip + n; |
| } |
| |
| // Read the tag character |
| assert(ip < ip_limit_); |
| const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); |
| // At this point make sure that the data for the next tag is consecutive. |
| // For copy 1 this means the next 2 bytes (tag and 1 byte offset) |
| // For copy 2 the next 3 bytes (tag and 2 byte offset) |
| // For copy 4 the next 5 bytes (tag and 4 byte offset) |
| // For all small literals we only need 1 byte buf for literals 60...63 the |
| // length is encoded in 1...4 extra bytes. |
| const uint32_t needed = CalculateNeeded(c); |
| assert(needed <= sizeof(scratch_)); |
| |
| // Read more bytes from reader if needed |
| uint32_t nbuf = ip_limit_ - ip; |
| if (nbuf < needed) { |
| // Stitch together bytes from ip and reader to form the word |
| // contents. We store the needed bytes in "scratch_". They |
| // will be consumed immediately by the caller since we do not |
| // read more than we need. |
| std::memmove(scratch_, ip, nbuf); |
| reader_->Skip(peeked_); // All peeked bytes are used up |
| peeked_ = 0; |
| while (nbuf < needed) { |
| size_t length; |
| const char* src = reader_->Peek(&length); |
| if (length == 0) return false; |
| uint32_t to_add = std::min<uint32_t>(needed - nbuf, length); |
| std::memcpy(scratch_ + nbuf, src, to_add); |
| nbuf += to_add; |
| reader_->Skip(to_add); |
| } |
| assert(nbuf == needed); |
| ip_ = scratch_; |
| ip_limit_ = scratch_ + needed; |
| } else if (nbuf < kMaximumTagLength) { |
| // Have enough bytes, but move into scratch_ so that we do not |
| // read past end of input |
| std::memmove(scratch_, ip, nbuf); |
| reader_->Skip(peeked_); // All peeked bytes are used up |
| peeked_ = 0; |
| ip_ = scratch_; |
| ip_limit_ = scratch_ + nbuf; |
| } else { |
| // Pass pointer to buffer returned by reader_. |
| ip_ = ip; |
| } |
| return true; |
| } |
| |
| template <typename Writer> |
| static bool InternalUncompress(Source* r, Writer* writer) { |
| // Read the uncompressed length from the front of the compressed input |
| SnappyDecompressor decompressor(r); |
| uint32_t uncompressed_len = 0; |
| if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; |
| |
| return InternalUncompressAllTags(&decompressor, writer, r->Available(), |
| uncompressed_len); |
| } |
| |
| template <typename Writer> |
| static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, |
| Writer* writer, uint32_t compressed_len, |
| uint32_t uncompressed_len) { |
| Report("snappy_uncompress", compressed_len, uncompressed_len); |
| |
| writer->SetExpectedLength(uncompressed_len); |
| |
| // Process the entire input |
| decompressor->DecompressAllTags(writer); |
| writer->Flush(); |
| return (decompressor->eof() && writer->CheckLength()); |
| } |
| |
| bool GetUncompressedLength(Source* source, uint32_t* result) { |
| SnappyDecompressor decompressor(source); |
| return decompressor.ReadUncompressedLength(result); |
| } |
| |
| size_t Compress(Source* reader, Sink* writer) { |
| size_t written = 0; |
| size_t N = reader->Available(); |
| const size_t uncompressed_size = N; |
| char ulength[Varint::kMax32]; |
| char* p = Varint::Encode32(ulength, N); |
| writer->Append(ulength, p - ulength); |
| written += (p - ulength); |
| |
| internal::WorkingMemory wmem(N); |
| |
| while (N > 0) { |
| // Get next block to compress (without copying if possible) |
| size_t fragment_size; |
| const char* fragment = reader->Peek(&fragment_size); |
| assert(fragment_size != 0); // premature end of input |
| const size_t num_to_read = std::min(N, kBlockSize); |
| size_t bytes_read = fragment_size; |
| |
| size_t pending_advance = 0; |
| if (bytes_read >= num_to_read) { |
| // Buffer returned by reader is large enough |
| pending_advance = num_to_read; |
| fragment_size = num_to_read; |
| } else { |
| char* scratch = wmem.GetScratchInput(); |
| std::memcpy(scratch, fragment, bytes_read); |
| reader->Skip(bytes_read); |
| |
| while (bytes_read < num_to_read) { |
| fragment = reader->Peek(&fragment_size); |
| size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read); |
| std::memcpy(scratch + bytes_read, fragment, n); |
| bytes_read += n; |
| reader->Skip(n); |
| } |
| assert(bytes_read == num_to_read); |
| fragment = scratch; |
| fragment_size = num_to_read; |
| } |
| assert(fragment_size == num_to_read); |
| |
| // Get encoding table for compression |
| int table_size; |
| uint16_t* table = wmem.GetHashTable(num_to_read, &table_size); |
| |
| // Compress input_fragment and append to dest |
| const int max_output = MaxCompressedLength(num_to_read); |
| |
| // Need a scratch buffer for the output, in case the byte sink doesn't |
| // have room for us directly. |
| |
| // Since we encode kBlockSize regions followed by a region |
| // which is <= kBlockSize in length, a previously allocated |
| // scratch_output[] region is big enough for this iteration. |
| char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput()); |
| char* end = internal::CompressFragment(fragment, fragment_size, dest, table, |
| table_size); |
| writer->Append(dest, end - dest); |
| written += (end - dest); |
| |
| N -= num_to_read; |
| reader->Skip(pending_advance); |
| } |
| |
| Report("snappy_compress", written, uncompressed_size); |
| |
| return written; |
| } |
| |
| // ----------------------------------------------------------------------- |
| // IOVec interfaces |
| // ----------------------------------------------------------------------- |
| |
| // A `Source` implementation that yields the contents of an `iovec` array. Note |
| // that `total_size` is the total number of bytes to be read from the elements |
| // of `iov` (_not_ the total number of elements in `iov`). |
| class SnappyIOVecReader : public Source { |
| public: |
| SnappyIOVecReader(const struct iovec* iov, size_t total_size) |
| : curr_iov_(iov), |
| curr_pos_(total_size > 0 ? reinterpret_cast<const char*>(iov->iov_base) |
| : nullptr), |
| curr_size_remaining_(total_size > 0 ? iov->iov_len : 0), |
| total_size_remaining_(total_size) { |
| // Skip empty leading `iovec`s. |
| if (total_size > 0 && curr_size_remaining_ == 0) Advance(); |
| } |
| |
| ~SnappyIOVecReader() = default; |
| |
| size_t Available() const { return total_size_remaining_; } |
| |
| const char* Peek(size_t* len) { |
| *len = curr_size_remaining_; |
| return curr_pos_; |
| } |
| |
| void Skip(size_t n) { |
| while (n >= curr_size_remaining_ && n > 0) { |
| n -= curr_size_remaining_; |
| Advance(); |
| } |
| curr_size_remaining_ -= n; |
| total_size_remaining_ -= n; |
| curr_pos_ += n; |
| } |
| |
| private: |
| // Advances to the next nonempty `iovec` and updates related variables. |
| void Advance() { |
| do { |
| assert(total_size_remaining_ >= curr_size_remaining_); |
| total_size_remaining_ -= curr_size_remaining_; |
| if (total_size_remaining_ == 0) { |
| curr_pos_ = nullptr; |
| curr_size_remaining_ = 0; |
| return; |
| } |
| ++curr_iov_; |
| curr_pos_ = reinterpret_cast<const char*>(curr_iov_->iov_base); |
| curr_size_remaining_ = curr_iov_->iov_len; |
| } while (curr_size_remaining_ == 0); |
| } |
| |
| // The `iovec` currently being read. |
| const struct iovec* curr_iov_; |
| // The location in `curr_iov_` currently being read. |
| const char* curr_pos_; |
| // The amount of unread data in `curr_iov_`. |
| size_t curr_size_remaining_; |
| // The amount of unread data in the entire input array. |
| size_t total_size_remaining_; |
| }; |
| |
| // A type that writes to an iovec. |
| // Note that this is not a "ByteSink", but a type that matches the |
| // Writer template argument to SnappyDecompressor::DecompressAllTags(). |
| class SnappyIOVecWriter { |
| private: |
| // output_iov_end_ is set to iov + count and used to determine when |
| // the end of the iovs is reached. |
| const struct iovec* output_iov_end_; |
| |
| #if !defined(NDEBUG) |
| const struct iovec* output_iov_; |
| #endif // !defined(NDEBUG) |
| |
| // Current iov that is being written into. |
| const struct iovec* curr_iov_; |
| |
| // Pointer to current iov's write location. |
| char* curr_iov_output_; |
| |
| // Remaining bytes to write into curr_iov_output. |
| size_t curr_iov_remaining_; |
| |
| // Total bytes decompressed into output_iov_ so far. |
| size_t total_written_; |
| |
| // Maximum number of bytes that will be decompressed into output_iov_. |
| size_t output_limit_; |
| |
| static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) { |
| return reinterpret_cast<char*>(iov->iov_base) + offset; |
| } |
| |
| public: |
| // Does not take ownership of iov. iov must be valid during the |
| // entire lifetime of the SnappyIOVecWriter. |
| inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) |
| : output_iov_end_(iov + iov_count), |
| #if !defined(NDEBUG) |
| output_iov_(iov), |
| #endif // !defined(NDEBUG) |
| curr_iov_(iov), |
| curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base) |
| : nullptr), |
| curr_iov_remaining_(iov_count ? iov->iov_len : 0), |
| total_written_(0), |
| output_limit_(-1) { |
| } |
| |
| inline void SetExpectedLength(size_t len) { output_limit_ = len; } |
| |
| inline bool CheckLength() const { return total_written_ == output_limit_; } |
| |
| inline bool Append(const char* ip, size_t len, char**) { |
| if (total_written_ + len > output_limit_) { |
| return false; |
| } |
| |
| return AppendNoCheck(ip, len); |
| } |
| |
| char* GetOutputPtr() { return nullptr; } |
| char* GetBase(ptrdiff_t*) { return nullptr; } |
| void SetOutputPtr(char* op) { |
| // TODO: Switch to [[maybe_unused]] when we can assume C++17. |
| (void)op; |
| } |
| |
| inline bool AppendNoCheck(const char* ip, size_t len) { |
| while (len > 0) { |
| if (curr_iov_remaining_ == 0) { |
| // This iovec is full. Go to the next one. |
| if (curr_iov_ + 1 >= output_iov_end_) { |
| return false; |
| } |
| ++curr_iov_; |
| curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); |
| curr_iov_remaining_ = curr_iov_->iov_len; |
| } |
| |
| const size_t to_write = std::min(len, curr_iov_remaining_); |
| std::memcpy(curr_iov_output_, ip, to_write); |
| curr_iov_output_ += to_write; |
| curr_iov_remaining_ -= to_write; |
| total_written_ += to_write; |
| ip += to_write; |
| len -= to_write; |
| } |
| |
| return true; |
| } |
| |
| inline bool TryFastAppend(const char* ip, size_t available, size_t len, |
| char**) { |
| const size_t space_left = output_limit_ - total_written_; |
| if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && |
| curr_iov_remaining_ >= 16) { |
| // Fast path, used for the majority (about 95%) of invocations. |
| UnalignedCopy128(ip, curr_iov_output_); |
| curr_iov_output_ += len; |
| curr_iov_remaining_ -= len; |
| total_written_ += len; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| inline bool AppendFromSelf(size_t offset, size_t len, char**) { |
| // See SnappyArrayWriter::AppendFromSelf for an explanation of |
| // the "offset - 1u" trick. |
| if (offset - 1u >= total_written_) { |
| return false; |
| } |
| const size_t space_left = output_limit_ - total_written_; |
| if (len > space_left) { |
| return false; |
| } |
| |
| // Locate the iovec from which we need to start the copy. |
| const iovec* from_iov = curr_iov_; |
| size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_; |
| while (offset > 0) { |
| if (from_iov_offset >= offset) { |
| from_iov_offset -= offset; |
| break; |
| } |
| |
| offset -= from_iov_offset; |
| --from_iov; |
| #if !defined(NDEBUG) |
| assert(from_iov >= output_iov_); |
| #endif // !defined(NDEBUG) |
| from_iov_offset = from_iov->iov_len; |
| } |
| |
| // Copy <len> bytes starting from the iovec pointed to by from_iov_index to |
| // the current iovec. |
| while (len > 0) { |
| assert(from_iov <= curr_iov_); |
| if (from_iov != curr_iov_) { |
| const size_t to_copy = |
| std::min(from_iov->iov_len - from_iov_offset, len); |
| AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy); |
| len -= to_copy; |
| if (len > 0) { |
| ++from_iov; |
| from_iov_offset = 0; |
| } |
| } else { |
| size_t to_copy = curr_iov_remaining_; |
| if (to_copy == 0) { |
| // This iovec is full. Go to the next one. |
| if (curr_iov_ + 1 >= output_iov_end_) { |
| return false; |
| } |
| ++curr_iov_; |
| curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); |
| curr_iov_remaining_ = curr_iov_->iov_len; |
| continue; |
| } |
| if (to_copy > len) { |
| to_copy = len; |
| } |
| assert(to_copy > 0); |
| |
| IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset), |
| curr_iov_output_, curr_iov_output_ + to_copy, |
| curr_iov_output_ + curr_iov_remaining_); |
| curr_iov_output_ += to_copy; |
| curr_iov_remaining_ -= to_copy; |
| from_iov_offset += to_copy; |
| total_written_ += to_copy; |
| len -= to_copy; |
| } |
| } |
| |
| return true; |
| } |
| |
| inline void Flush() {} |
| }; |
| |
| bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, |
| const struct iovec* iov, size_t iov_cnt) { |
| ByteArraySource reader(compressed, compressed_length); |
| return RawUncompressToIOVec(&reader, iov, iov_cnt); |
| } |
| |
| bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, |
| size_t iov_cnt) { |
| SnappyIOVecWriter output(iov, iov_cnt); |
| return InternalUncompress(compressed, &output); |
| } |
| |
| // ----------------------------------------------------------------------- |
| // Flat array interfaces |
| // ----------------------------------------------------------------------- |
| |
| // A type that writes to a flat array. |
| // Note that this is not a "ByteSink", but a type that matches the |
| // Writer template argument to SnappyDecompressor::DecompressAllTags(). |
| class SnappyArrayWriter { |
| private: |
| char* base_; |
| char* op_; |
| char* op_limit_; |
| // If op < op_limit_min_slop_ then it's safe to unconditionally write |
| // kSlopBytes starting at op. |
| char* op_limit_min_slop_; |
| |
| public: |
| inline explicit SnappyArrayWriter(char* dst) |
| : base_(dst), |
| op_(dst), |
| op_limit_(dst), |
| op_limit_min_slop_(dst) {} // Safe default see invariant. |
| |
| inline void SetExpectedLength(size_t len) { |
| op_limit_ = op_ + len; |
| // Prevent pointer from being past the buffer. |
| op_limit_min_slop_ = op_limit_ - std::min<size_t>(kSlopBytes - 1, len); |
| } |
| |
| inline bool CheckLength() const { return op_ == op_limit_; } |
| |
| char* GetOutputPtr() { return op_; } |
| char* GetBase(ptrdiff_t* op_limit_min_slop) { |
| *op_limit_min_slop = op_limit_min_slop_ - base_; |
| return base_; |
| } |
| void SetOutputPtr(char* op) { op_ = op; } |
| |
| inline bool Append(const char* ip, size_t len, char** op_p) { |
| char* op = *op_p; |
| const size_t space_left = op_limit_ - op; |
| if (space_left < len) return false; |
| std::memcpy(op, ip, len); |
| *op_p = op + len; |
| return true; |
| } |
| |
| inline bool TryFastAppend(const char* ip, size_t available, size_t len, |
| char** op_p) { |
| char* op = *op_p; |
| const size_t space_left = op_limit_ - op; |
| if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { |
| // Fast path, used for the majority (about 95%) of invocations. |
| UnalignedCopy128(ip, op); |
| *op_p = op + len; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| SNAPPY_ATTRIBUTE_ALWAYS_INLINE |
| inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) { |
| assert(len > 0); |
| char* const op = *op_p; |
| assert(op >= base_); |
| char* const op_end = op + len; |
| |
| // Check if we try to append from before the start of the buffer. |
| if (SNAPPY_PREDICT_FALSE(static_cast<size_t>(op - base_) < offset)) |
| return false; |
| |
| if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) || |
| op >= op_limit_min_slop_ || offset < len)) { |
| if (op_end > op_limit_ || offset == 0) return false; |
| *op_p = IncrementalCopy(op - offset, op, op_end, op_limit_); |
| return true; |
| } |
| std::memmove(op, op - offset, kSlopBytes); |
| *op_p = op_end; |
| return true; |
| } |
| inline size_t Produced() const { |
| assert(op_ >= base_); |
| return op_ - base_; |
| } |
| inline void Flush() {} |
| }; |
| |
| bool RawUncompress(const char* compressed, size_t compressed_length, |
| char* uncompressed) { |
| ByteArraySource reader(compressed, compressed_length); |
| return RawUncompress(&reader, uncompressed); |
| } |
| |
| bool RawUncompress(Source* compressed, char* uncompressed) { |
| SnappyArrayWriter output(uncompressed); |
| return InternalUncompress(compressed, &output); |
| } |
| |
| bool Uncompress(const char* compressed, size_t compressed_length, |
| std::string* uncompressed) { |
| size_t ulength; |
| if (!GetUncompressedLength(compressed, compressed_length, &ulength)) { |
| return false; |
| } |
| // On 32-bit builds: max_size() < kuint32max. Check for that instead |
| // of crashing (e.g., consider externally specified compressed data). |
| if (ulength > uncompressed->max_size()) { |
| return false; |
| } |
| STLStringResizeUninitialized(uncompressed, ulength); |
| return RawUncompress(compressed, compressed_length, |
| string_as_array(uncompressed)); |
| } |
| |
| // A Writer that drops everything on the floor and just does validation |
| class SnappyDecompressionValidator { |
| private: |
| size_t expected_; |
| size_t produced_; |
| |
| public: |
| inline SnappyDecompressionValidator() : expected_(0), produced_(0) {} |
| inline void SetExpectedLength(size_t len) { expected_ = len; } |
| size_t GetOutputPtr() { return produced_; } |
| size_t GetBase(ptrdiff_t* op_limit_min_slop) { |
| *op_limit_min_slop = std::numeric_limits<ptrdiff_t>::max() - kSlopBytes + 1; |
| return 1; |
| } |
| void SetOutputPtr(size_t op) { produced_ = op; } |
| inline bool CheckLength() const { return expected_ == produced_; } |
| inline bool Append(const char* ip, size_t len, size_t* produced) { |
| // TODO: Switch to [[maybe_unused]] when we can assume C++17. |
| (void)ip; |
| |
| *produced += len; |
| return *produced <= expected_; |
| } |
| inline bool TryFastAppend(const char* ip, size_t available, size_t length, |
| size_t* produced) { |
| // TODO: Switch to [[maybe_unused]] when we can assume C++17. |
| (void)ip; |
| (void)available; |
| (void)length; |
| (void)produced; |
| |
| return false; |
| } |
| inline bool AppendFromSelf(size_t offset, size_t len, size_t* produced) { |
| // See SnappyArrayWriter::AppendFromSelf for an explanation of |
| // the "offset - 1u" trick. |
| if (*produced <= offset - 1u) return false; |
| *produced += len; |
| return *produced <= expected_; |
| } |
| inline void Flush() {} |
| }; |
| |
| bool IsValidCompressedBuffer(const char* compressed, size_t compressed_length) { |
| ByteArraySource reader(compressed, compressed_length); |
| SnappyDecompressionValidator writer; |
| return InternalUncompress(&reader, &writer); |
| } |
| |
| bool IsValidCompressed(Source* compressed) { |
| SnappyDecompressionValidator writer; |
| return InternalUncompress(compressed, &writer); |
| } |
| |
| void RawCompress(const char* input, size_t input_length, char* compressed, |
| size_t* compressed_length) { |
| ByteArraySource reader(input, input_length); |
| UncheckedByteArraySink writer(compressed); |
| Compress(&reader, &writer); |
| |
| // Compute how many bytes were added |
| *compressed_length = (writer.CurrentDestination() - compressed); |
| } |
| |
| void RawCompressFromIOVec(const struct iovec* iov, size_t uncompressed_length, |
| char* compressed, size_t* compressed_length) { |
| SnappyIOVecReader reader(iov, uncompressed_length); |
| UncheckedByteArraySink writer(compressed); |
| Compress(&reader, &writer); |
| |
| // Compute how many bytes were added. |
| *compressed_length = writer.CurrentDestination() - compressed; |
| } |
| |
| size_t Compress(const char* input, size_t input_length, |
| std::string* compressed) { |
| // Pre-grow the buffer to the max length of the compressed output |
| STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); |
| |
| size_t compressed_length; |
| RawCompress(input, input_length, string_as_array(compressed), |
| &compressed_length); |
| compressed->erase(compressed_length); |
| return compressed_length; |
| } |
| |
| size_t CompressFromIOVec(const struct iovec* iov, size_t iov_cnt, |
| std::string* compressed) { |
| // Compute the number of bytes to be compressed. |
| size_t uncompressed_length = 0; |
| for (size_t i = 0; i < iov_cnt; ++i) { |
| uncompressed_length += iov[i].iov_len; |
| } |
| |
| // Pre-grow the buffer to the max length of the compressed output. |
| STLStringResizeUninitialized(compressed, MaxCompressedLength( |
| uncompressed_length)); |
| |
| size_t compressed_length; |
| RawCompressFromIOVec(iov, uncompressed_length, string_as_array(compressed), |
| &compressed_length); |
| compressed->erase(compressed_length); |
| return compressed_length; |
| } |
| |
| // ----------------------------------------------------------------------- |
| // Sink interface |
| // ----------------------------------------------------------------------- |
| |
| // A type that decompresses into a Sink. The template parameter |
| // Allocator must export one method "char* Allocate(int size);", which |
| // allocates a buffer of "size" and appends that to the destination. |
| template <typename Allocator> |
| class SnappyScatteredWriter { |
| Allocator allocator_; |
| |
| // We need random access into the data generated so far. Therefore |
| // we keep track of all of the generated data as an array of blocks. |
| // All of the blocks except the last have length kBlockSize. |
| std::vector<char*> blocks_; |
| size_t expected_; |
| |
| // Total size of all fully generated blocks so far |
| size_t full_size_; |
| |
| // Pointer into current output block |
| char* op_base_; // Base of output block |
| char* op_ptr_; // Pointer to next unfilled byte in block |
| char* op_limit_; // Pointer just past block |
| // If op < op_limit_min_slop_ then it's safe to unconditionally write |
| // kSlopBytes starting at op. |
| char* op_limit_min_slop_; |
| |
| inline size_t Size() const { return full_size_ + (op_ptr_ - op_base_); } |
| |
| bool SlowAppend(const char* ip, size_t len); |
| bool SlowAppendFromSelf(size_t offset, size_t len); |
| |
| public: |
| inline explicit SnappyScatteredWriter(const Allocator& allocator) |
| : allocator_(allocator), |
| full_size_(0), |
| op_base_(NULL), |
| op_ptr_(NULL), |
| op_limit_(NULL), |
| op_limit_min_slop_(NULL) {} |
| char* GetOutputPtr() { return op_ptr_; } |
| char* GetBase(ptrdiff_t* op_limit_min_slop) { |
| *op_limit_min_slop = op_limit_min_slop_ - op_base_; |
| return op_base_; |
| } |
| void SetOutputPtr(char* op) { op_ptr_ = op; } |
| |
| inline void SetExpectedLength(size_t len) { |
| assert(blocks_.empty()); |
| expected_ = len; |
| } |
| |
| inline bool CheckLength() const { return Size() == expected_; } |
| |
| // Return the number of bytes actually uncompressed so far |
| inline size_t Produced() const { return Size(); } |
| |
| inline bool Append(const char* ip, size_t len, char** op_p) { |
| char* op = *op_p; |
| size_t avail = op_limit_ - op; |
| if (len <= avail) { |
| // Fast path |
| std::memcpy(op, ip, len); |
| *op_p = op + len; |
| return true; |
| } else { |
| op_ptr_ = op; |
| bool res = SlowAppend(ip, len); |
| *op_p = op_ptr_; |
| return res; |
| } |
| } |
| |
| inline bool TryFastAppend(const char* ip, size_t available, size_t length, |
| char** op_p) { |
| char* op = *op_p; |
| const int space_left = op_limit_ - op; |
| if (length <= 16 && available >= 16 + kMaximumTagLength && |
| space_left >= 16) { |
| // Fast path, used for the majority (about 95%) of invocations. |
| UnalignedCopy128(ip, op); |
| *op_p = op + length; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) { |
| char* op = *op_p; |
| assert(op >= op_base_); |
| // Check if we try to append from before the start of the buffer. |
| if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) || |
| static_cast<size_t>(op - op_base_) < offset || |
| op >= op_limit_min_slop_ || offset < len)) { |
| if (offset == 0) return false; |
| if (SNAPPY_PREDICT_FALSE(static_cast<size_t>(op - op_base_) < offset || |
| op + len > op_limit_)) { |
| op_ptr_ = op; |
| bool res = SlowAppendFromSelf(offset, len); |
| *op_p = op_ptr_; |
| return res; |
| } |
| *op_p = IncrementalCopy(op - offset, op, op + len, op_limit_); |
| return true; |
| } |
| // Fast path |
| char* const op_end = op + len; |
| std::memmove(op, op - offset, kSlopBytes); |
| *op_p = op_end; |
| return true; |
| } |
| |
| // Called at the end of the decompress. We ask the allocator |
| // write all blocks to the sink. |
| inline void Flush() { allocator_.Flush(Produced()); } |
| }; |
| |
| template <typename Allocator> |
| bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) { |
| size_t avail = op_limit_ - op_ptr_; |
| while (len > avail) { |
| // Completely fill this block |
| std::memcpy(op_ptr_, ip, avail); |
| op_ptr_ += avail; |
| assert(op_limit_ - op_ptr_ == 0); |
| full_size_ += (op_ptr_ - op_base_); |
| len -= avail; |
| ip += avail; |
| |
| // Bounds check |
| if (full_size_ + len > expected_) return false; |
| |
| // Make new block |
| size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_); |
| op_base_ = allocator_.Allocate(bsize); |
| op_ptr_ = op_base_; |
| op_limit_ = op_base_ + bsize; |
| op_limit_min_slop_ = op_limit_ - std::min<size_t>(kSlopBytes - 1, bsize); |
| |
| blocks_.push_back(op_base_); |
| avail = bsize; |
| } |
| |
| std::memcpy(op_ptr_, ip, len); |
| op_ptr_ += len; |
| return true; |
| } |
| |
| template <typename Allocator> |
| bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset, |
| size_t len) { |
| // Overflow check |
| // See SnappyArrayWriter::AppendFromSelf for an explanation of |
| // the "offset - 1u" trick. |
| const size_t cur = Size(); |
| if (offset - 1u >= cur) return false; |
| if (expected_ - cur < len) return false; |
| |
| // Currently we shouldn't ever hit this path because Compress() chops the |
| // input into blocks and does not create cross-block copies. However, it is |
| // nice if we do not rely on that, since we can get better compression if we |
| // allow cross-block copies and thus might want to change the compressor in |
| // the future. |
| // TODO Replace this with a properly optimized path. This is not |
| // triggered right now. But this is so super slow, that it would regress |
| // performance unacceptably if triggered. |
| size_t src = cur - offset; |
| char* op = op_ptr_; |
| while (len-- > 0) { |
| char c = blocks_[src >> kBlockLog][src & (kBlockSize - 1)]; |
| if (!Append(&c, 1, &op)) { |
| op_ptr_ = op; |
| return false; |
| } |
| src++; |
| } |
| op_ptr_ = op; |
| return true; |
| } |
| |
| class SnappySinkAllocator { |
| public: |
| explicit SnappySinkAllocator(Sink* dest) : dest_(dest) {} |
| ~SnappySinkAllocator() {} |
| |
| char* Allocate(int size) { |
| Datablock block(new char[size], size); |
| blocks_.push_back(block); |
| return block.data; |
| } |
| |
| // We flush only at the end, because the writer wants |
| // random access to the blocks and once we hand the |
| // block over to the sink, we can't access it anymore. |
| // Also we don't write more than has been actually written |
| // to the blocks. |
| void Flush(size_t size) { |
| size_t size_written = 0; |
| for (Datablock& block : blocks_) { |
| size_t block_size = std::min<size_t>(block.size, size - size_written); |
| dest_->AppendAndTakeOwnership(block.data, block_size, |
| &SnappySinkAllocator::Deleter, NULL); |
| size_written += block_size; |
| } |
| blocks_.clear(); |
| } |
| |
| private: |
| struct Datablock { |
| char* data; |
| size_t size; |
| Datablock(char* p, size_t s) : data(p), size(s) {} |
| }; |
| |
| static void Deleter(void* arg, const char* bytes, size_t size) { |
| // TODO: Switch to [[maybe_unused]] when we can assume C++17. |
| (void)arg; |
| (void)size; |
| |
| delete[] bytes; |
| } |
| |
| Sink* dest_; |
| std::vector<Datablock> blocks_; |
| |
| // Note: copying this object is allowed |
| }; |
| |
| size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) { |
| SnappySinkAllocator allocator(uncompressed); |
| SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); |
| InternalUncompress(compressed, &writer); |
| return writer.Produced(); |
| } |
| |
| bool Uncompress(Source* compressed, Sink* uncompressed) { |
| // Read the uncompressed length from the front of the compressed input |
| SnappyDecompressor decompressor(compressed); |
| uint32_t uncompressed_len = 0; |
| if (!decompressor.ReadUncompressedLength(&uncompressed_len)) { |
| return false; |
| } |
| |
| char c; |
| size_t allocated_size; |
| char* buf = uncompressed->GetAppendBufferVariable(1, uncompressed_len, &c, 1, |
| &allocated_size); |
| |
| const size_t compressed_len = compressed->Available(); |
| // If we can get a flat buffer, then use it, otherwise do block by block |
| // uncompression |
| if (allocated_size >= uncompressed_len) { |
| SnappyArrayWriter writer(buf); |
| bool result = InternalUncompressAllTags(&decompressor, &writer, |
| compressed_len, uncompressed_len); |
| uncompressed->Append(buf, writer.Produced()); |
| return result; |
| } else { |
| SnappySinkAllocator allocator(uncompressed); |
| SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); |
| return InternalUncompressAllTags(&decompressor, &writer, compressed_len, |
| uncompressed_len); |
| } |
| } |
| |
| } // namespace snappy |