blob: f52ae2af029e2174f00c58e04c1af9e954c31c0e [file] [log] [blame]
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat <opensource@google.com>
#include <config.h>
#ifdef HAVE_INTTYPES_H
#include <inttypes.h> // for PRIuPTR
#endif
#include <errno.h> // for ENOMEM, errno
#include <gperftools/malloc_extension.h> // for MallocRange, etc
#include "base/basictypes.h"
#include "base/commandlineflags.h"
#include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc
#include "page_heap_allocator.h" // for PageHeapAllocator
#include "static_vars.h" // for Static
#include "system-alloc.h" // for TCMalloc_SystemAlloc, etc
DEFINE_double(tcmalloc_release_rate,
EnvToDouble("TCMALLOC_RELEASE_RATE", 1.0),
"Rate at which we release unused memory to the system. "
"Zero means we never release memory back to the system. "
"Increase this flag to return memory faster; decrease it "
"to return memory slower. Reasonable rates are in the "
"range [0,10]");
DEFINE_int64(tcmalloc_heap_limit_mb,
EnvToInt("TCMALLOC_HEAP_LIMIT_MB", 0),
"Limit total size of the process heap to the "
"specified number of MiB. "
"When we approach the limit the memory is released "
"to the system more aggressively (more minor page faults). "
"Zero means to allocate as long as system allows.");
namespace tcmalloc {
PageHeap::PageHeap()
: pagemap_(MetaDataAlloc),
pagemap_cache_(0),
scavenge_counter_(0),
// Start scavenging at kMaxPages list
release_index_(kMaxPages),
aggressive_decommit_(false) {
COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
DLL_Init(&large_.normal);
DLL_Init(&large_.returned);
for (int i = 0; i < kMaxPages; i++) {
DLL_Init(&free_[i].normal);
DLL_Init(&free_[i].returned);
}
}
Span* PageHeap::SearchFreeAndLargeLists(Length n) {
ASSERT(Check());
ASSERT(n > 0);
// Find first size >= n that has a non-empty list
for (Length s = n; s < kMaxPages; s++) {
Span* ll = &free_[s].normal;
// If we're lucky, ll is non-empty, meaning it has a suitable span.
if (!DLL_IsEmpty(ll)) {
ASSERT(ll->next->location == Span::ON_NORMAL_FREELIST);
return Carve(ll->next, n);
}
// Alternatively, maybe there's a usable returned span.
ll = &free_[s].returned;
if (!DLL_IsEmpty(ll)) {
// We did not call EnsureLimit before, to avoid releasing the span
// that will be taken immediately back.
// Calling EnsureLimit here is not very expensive, as it fails only if
// there is no more normal spans (and it fails efficiently)
// or SystemRelease does not work (there is probably no returned spans).
if (EnsureLimit(n)) {
// ll may have became empty due to coalescing
if (!DLL_IsEmpty(ll)) {
ASSERT(ll->next->location == Span::ON_RETURNED_FREELIST);
return Carve(ll->next, n);
}
}
}
}
// No luck in free lists, our last chance is in a larger class.
return AllocLarge(n); // May be NULL
}
static const size_t kForcedCoalesceInterval = 128*1024*1024;
Span* PageHeap::New(Length n) {
ASSERT(Check());
ASSERT(n > 0);
Span* result = SearchFreeAndLargeLists(n);
if (result != NULL)
return result;
if (stats_.free_bytes != 0 && stats_.unmapped_bytes != 0
&& stats_.free_bytes + stats_.unmapped_bytes >= stats_.system_bytes / 4
&& (stats_.system_bytes / kForcedCoalesceInterval
!= (stats_.system_bytes + (n << kPageShift)) / kForcedCoalesceInterval)) {
// We're about to grow heap, but there are lots of free pages.
// tcmalloc's design decision to keep unmapped and free spans
// separately and never coalesce them means that sometimes there
// can be free pages span of sufficient size, but it consists of
// "segments" of different type so page heap search cannot find
// it. In order to prevent growing heap and wasting memory in such
// case we're going to unmap all free pages. So that all free
// spans are maximally coalesced.
//
// We're also limiting 'rate' of going into this path to be at
// most once per 128 megs of heap growth. Otherwise programs that
// grow heap frequently (and that means by small amount) could be
// penalized with higher count of minor page faults.
//
// See also large_heap_fragmentation_unittest.cc and
// https://code.google.com/p/gperftools/issues/detail?id=368
ReleaseAtLeastNPages(static_cast<Length>(0x7fffffff));
// then try again. If we are forced to grow heap because of large
// spans fragmentation and not because of problem described above,
// then at the very least we've just unmapped free but
// insufficiently big large spans back to OS. So in case of really
// unlucky memory fragmentation we'll be consuming virtual address
// space, but not real memory
result = SearchFreeAndLargeLists(n);
if (result != NULL) return result;
}
// Grow the heap and try again.
if (!GrowHeap(n)) {
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
ASSERT(Check());
// underlying SysAllocator likely set ENOMEM but we can get here
// due to EnsureLimit so we set it here too.
//
// Setting errno to ENOMEM here allows us to avoid dealing with it
// in fast-path.
errno = ENOMEM;
return NULL;
}
return SearchFreeAndLargeLists(n);
}
Span* PageHeap::AllocLarge(Length n) {
// find the best span (closest to n in size).
// The following loops implements address-ordered best-fit.
Span *best = NULL;
// Search through normal list
for (Span* span = large_.normal.next;
span != &large_.normal;
span = span->next) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
ASSERT(best->location == Span::ON_NORMAL_FREELIST);
}
}
}
Span *bestNormal = best;
// Search through released list in case it has a better fit
for (Span* span = large_.returned.next;
span != &large_.returned;
span = span->next) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
ASSERT(best->location == Span::ON_RETURNED_FREELIST);
}
}
}
if (best == bestNormal) {
return best == NULL ? NULL : Carve(best, n);
}
// best comes from returned list.
if (EnsureLimit(n, false)) {
return Carve(best, n);
}
if (EnsureLimit(n, true)) {
// best could have been destroyed by coalescing.
// bestNormal is not a best-fit, and it could be destroyed as well.
// We retry, the limit is already ensured:
return AllocLarge(n);
}
// If bestNormal existed, EnsureLimit would succeeded:
ASSERT(bestNormal == NULL);
// We are not allowed to take best from returned list.
return NULL;
}
Span* PageHeap::Split(Span* span, Length n) {
ASSERT(0 < n);
ASSERT(n < span->length);
ASSERT(span->location == Span::IN_USE);
ASSERT(span->sizeclass == 0);
Event(span, 'T', n);
const int extra = span->length - n;
Span* leftover = NewSpan(span->start + n, extra);
ASSERT(leftover->location == Span::IN_USE);
Event(leftover, 'U', extra);
RecordSpan(leftover);
pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
span->length = n;
return leftover;
}
void PageHeap::CommitSpan(Span* span) {
TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift),
static_cast<size_t>(span->length << kPageShift));
stats_.committed_bytes += span->length << kPageShift;
}
bool PageHeap::DecommitSpan(Span* span) {
bool rv = TCMalloc_SystemRelease(reinterpret_cast<void*>(span->start << kPageShift),
static_cast<size_t>(span->length << kPageShift));
if (rv) {
stats_.committed_bytes -= span->length << kPageShift;
}
return rv;
}
Span* PageHeap::Carve(Span* span, Length n) {
ASSERT(n > 0);
ASSERT(span->location != Span::IN_USE);
const int old_location = span->location;
RemoveFromFreeList(span);
span->location = Span::IN_USE;
Event(span, 'A', n);
const int extra = span->length - n;
ASSERT(extra >= 0);
if (extra > 0) {
Span* leftover = NewSpan(span->start + n, extra);
leftover->location = old_location;
Event(leftover, 'S', extra);
RecordSpan(leftover);
// The previous span of |leftover| was just splitted -- no need to
// coalesce them. The next span of |leftover| was not previously coalesced
// with |span|, i.e. is NULL or has got location other than |old_location|.
#ifndef NDEBUG
const PageID p = leftover->start;
const Length len = leftover->length;
Span* next = GetDescriptor(p+len);
ASSERT (next == NULL ||
next->location == Span::IN_USE ||
next->location != leftover->location);
#endif
PrependToFreeList(leftover); // Skip coalescing - no candidates possible
span->length = n;
pagemap_.set(span->start + n - 1, span);
}
ASSERT(Check());
if (old_location == Span::ON_RETURNED_FREELIST) {
// We need to recommit this address space.
CommitSpan(span);
}
ASSERT(span->location == Span::IN_USE);
ASSERT(span->length == n);
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
return span;
}
void PageHeap::Delete(Span* span) {
ASSERT(Check());
ASSERT(span->location == Span::IN_USE);
ASSERT(span->length > 0);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start + span->length - 1) == span);
const Length n = span->length;
span->sizeclass = 0;
span->sample = 0;
span->location = Span::ON_NORMAL_FREELIST;
Event(span, 'D', span->length);
MergeIntoFreeList(span); // Coalesces if possible
IncrementalScavenge(n);
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
ASSERT(Check());
}
bool PageHeap::MayMergeSpans(Span *span, Span *other) {
if (aggressive_decommit_) {
return other->location != Span::IN_USE;
}
return span->location == other->location;
}
void PageHeap::MergeIntoFreeList(Span* span) {
ASSERT(span->location != Span::IN_USE);
// Coalesce -- we guarantee that "p" != 0, so no bounds checking
// necessary. We do not bother resetting the stale pagemap
// entries for the pieces we are merging together because we only
// care about the pagemap entries for the boundaries.
//
// Note: depending on aggressive_decommit_ mode we allow only
// similar spans to be coalesced.
//
// The following applies if aggressive_decommit_ is enabled:
//
// Note that the adjacent spans we merge into "span" may come out of a
// "normal" (committed) list, and cleanly merge with our IN_USE span, which
// is implicitly committed. If the adjacents spans are on the "returned"
// (decommitted) list, then we must get both spans into the same state before
// or after we coalesce them. The current code always decomits. This is
// achieved by blindly decommitting the entire coalesced region, which may
// include any combination of committed and decommitted spans, at the end of
// the method.
// TODO(jar): "Always decommit" causes some extra calls to commit when we are
// called in GrowHeap() during an allocation :-/. We need to eval the cost of
// that oscillation, and possibly do something to reduce it.
// TODO(jar): We need a better strategy for deciding to commit, or decommit,
// based on memory usage and free heap sizes.
uint64_t temp_committed = 0;
const PageID p = span->start;
const Length n = span->length;
Span* prev = GetDescriptor(p-1);
if (prev != NULL && MayMergeSpans(span, prev)) {
// Merge preceding span into this span
ASSERT(prev->start + prev->length == p);
const Length len = prev->length;
if (aggressive_decommit_ && prev->location == Span::ON_RETURNED_FREELIST) {
// We're about to put the merge span into the returned freelist and call
// DecommitSpan() on it, which will mark the entire span including this
// one as released and decrease stats_.committed_bytes by the size of the
// merged span. To make the math work out we temporarily increase the
// stats_.committed_bytes amount.
temp_committed = prev->length << kPageShift;
}
RemoveFromFreeList(prev);
DeleteSpan(prev);
span->start -= len;
span->length += len;
pagemap_.set(span->start, span);
Event(span, 'L', len);
}
Span* next = GetDescriptor(p+n);
if (next != NULL && MayMergeSpans(span, next)) {
// Merge next span into this span
ASSERT(next->start == p+n);
const Length len = next->length;
if (aggressive_decommit_ && next->location == Span::ON_RETURNED_FREELIST) {
// See the comment below 'if (prev->location ...' for explanation.
temp_committed += next->length << kPageShift;
}
RemoveFromFreeList(next);
DeleteSpan(next);
span->length += len;
pagemap_.set(span->start + span->length - 1, span);
Event(span, 'R', len);
}
if (aggressive_decommit_) {
if (DecommitSpan(span)) {
span->location = Span::ON_RETURNED_FREELIST;
stats_.committed_bytes += temp_committed;
} else {
ASSERT(temp_committed == 0);
}
}
PrependToFreeList(span);
}
void PageHeap::PrependToFreeList(Span* span) {
ASSERT(span->location != Span::IN_USE);
SpanList* list = (span->length < kMaxPages) ? &free_[span->length] : &large_;
if (span->location == Span::ON_NORMAL_FREELIST) {
stats_.free_bytes += (span->length << kPageShift);
DLL_Prepend(&list->normal, span);
} else {
stats_.unmapped_bytes += (span->length << kPageShift);
DLL_Prepend(&list->returned, span);
}
}
void PageHeap::RemoveFromFreeList(Span* span) {
ASSERT(span->location != Span::IN_USE);
if (span->location == Span::ON_NORMAL_FREELIST) {
stats_.free_bytes -= (span->length << kPageShift);
} else {
stats_.unmapped_bytes -= (span->length << kPageShift);
}
DLL_Remove(span);
}
void PageHeap::IncrementalScavenge(Length n) {
// Fast path; not yet time to release memory
scavenge_counter_ -= n;
if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
const double rate = FLAGS_tcmalloc_release_rate;
if (rate <= 1e-6) {
// Tiny release rate means that releasing is disabled.
scavenge_counter_ = kDefaultReleaseDelay;
return;
}
Length released_pages = ReleaseAtLeastNPages(1);
if (released_pages == 0) {
// Nothing to scavenge, delay for a while.
scavenge_counter_ = kDefaultReleaseDelay;
} else {
// Compute how long to wait until we return memory.
// FLAGS_tcmalloc_release_rate==1 means wait for 1000 pages
// after releasing one page.
const double mult = 1000.0 / rate;
double wait = mult * static_cast<double>(released_pages);
if (wait > kMaxReleaseDelay) {
// Avoid overflow and bound to reasonable range.
wait = kMaxReleaseDelay;
}
scavenge_counter_ = static_cast<int64_t>(wait);
}
}
Length PageHeap::ReleaseLastNormalSpan(SpanList* slist) {
Span* s = slist->normal.prev;
ASSERT(s->location == Span::ON_NORMAL_FREELIST);
if (DecommitSpan(s)) {
RemoveFromFreeList(s);
const Length n = s->length;
s->location = Span::ON_RETURNED_FREELIST;
MergeIntoFreeList(s); // Coalesces if possible.
return n;
}
return 0;
}
Length PageHeap::ReleaseAtLeastNPages(Length num_pages) {
Length released_pages = 0;
// Round robin through the lists of free spans, releasing the last
// span in each list. Stop after releasing at least num_pages
// or when there is nothing more to release.
while (released_pages < num_pages && stats_.free_bytes > 0) {
for (int i = 0; i < kMaxPages+1 && released_pages < num_pages;
i++, release_index_++) {
if (release_index_ > kMaxPages) release_index_ = 0;
SpanList* slist = (release_index_ == kMaxPages) ?
&large_ : &free_[release_index_];
if (!DLL_IsEmpty(&slist->normal)) {
Length released_len = ReleaseLastNormalSpan(slist);
// Some systems do not support release
if (released_len == 0) return released_pages;
released_pages += released_len;
}
}
}
return released_pages;
}
bool PageHeap::EnsureLimit(Length n, bool withRelease)
{
Length limit = (FLAGS_tcmalloc_heap_limit_mb*1024*1024) >> kPageShift;
if (limit == 0) return true; //there is no limit
// We do not use stats_.system_bytes because it does not take
// MetaDataAllocs into account.
Length takenPages = TCMalloc_SystemTaken >> kPageShift;
//XXX takenPages may be slightly bigger than limit for two reasons:
//* MetaDataAllocs ignore the limit (it is not easy to handle
// out of memory there)
//* sys_alloc may round allocation up to huge page size,
// although smaller limit was ensured
ASSERT(takenPages >= stats_.unmapped_bytes >> kPageShift);
takenPages -= stats_.unmapped_bytes >> kPageShift;
if (takenPages + n > limit && withRelease) {
takenPages -= ReleaseAtLeastNPages(takenPages + n - limit);
}
return takenPages + n <= limit;
}
void PageHeap::RegisterSizeClass(Span* span, size_t sc) {
// Associate span object with all interior pages as well
ASSERT(span->location == Span::IN_USE);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start+span->length-1) == span);
Event(span, 'C', sc);
span->sizeclass = sc;
for (Length i = 1; i < span->length-1; i++) {
pagemap_.set(span->start+i, span);
}
}
void PageHeap::GetSmallSpanStats(SmallSpanStats* result) {
for (int s = 0; s < kMaxPages; s++) {
result->normal_length[s] = DLL_Length(&free_[s].normal);
result->returned_length[s] = DLL_Length(&free_[s].returned);
}
}
void PageHeap::GetLargeSpanStats(LargeSpanStats* result) {
result->spans = 0;
result->normal_pages = 0;
result->returned_pages = 0;
for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
result->normal_pages += s->length;;
result->spans++;
}
for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
result->returned_pages += s->length;
result->spans++;
}
}
bool PageHeap::GetNextRange(PageID start, base::MallocRange* r) {
Span* span = reinterpret_cast<Span*>(pagemap_.Next(start));
if (span == NULL) {
return false;
}
r->address = span->start << kPageShift;
r->length = span->length << kPageShift;
r->fraction = 0;
switch (span->location) {
case Span::IN_USE:
r->type = base::MallocRange::INUSE;
r->fraction = 1;
if (span->sizeclass > 0) {
// Only some of the objects in this span may be in use.
const size_t osize = Static::sizemap()->class_to_size(span->sizeclass);
r->fraction = (1.0 * osize * span->refcount) / r->length;
}
break;
case Span::ON_NORMAL_FREELIST:
r->type = base::MallocRange::FREE;
break;
case Span::ON_RETURNED_FREELIST:
r->type = base::MallocRange::UNMAPPED;
break;
default:
r->type = base::MallocRange::UNKNOWN;
break;
}
return true;
}
static void RecordGrowth(size_t growth) {
StackTrace* t = Static::stacktrace_allocator()->New();
t->depth = GetStackTrace(t->stack, kMaxStackDepth-1, 3);
t->size = growth;
t->stack[kMaxStackDepth-1] = reinterpret_cast<void*>(Static::growth_stacks());
Static::set_growth_stacks(t);
}
bool PageHeap::GrowHeap(Length n) {
ASSERT(kMaxPages >= kMinSystemAlloc);
if (n > kMaxValidPages) return false;
Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
size_t actual_size;
void* ptr = NULL;
if (EnsureLimit(ask)) {
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
}
if (ptr == NULL) {
if (n < ask) {
// Try growing just "n" pages
ask = n;
if (EnsureLimit(ask)) {
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
}
}
if (ptr == NULL) return false;
}
ask = actual_size >> kPageShift;
RecordGrowth(ask << kPageShift);
uint64_t old_system_bytes = stats_.system_bytes;
stats_.system_bytes += (ask << kPageShift);
stats_.committed_bytes += (ask << kPageShift);
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
ASSERT(p > 0);
// If we have already a lot of pages allocated, just pre allocate a bunch of
// memory for the page map. This prevents fragmentation by pagemap metadata
// when a program keeps allocating and freeing large blocks.
if (old_system_bytes < kPageMapBigAllocationThreshold
&& stats_.system_bytes >= kPageMapBigAllocationThreshold) {
pagemap_.PreallocateMoreMemory();
}
// Make sure pagemap_ has entries for all of the new pages.
// Plus ensure one before and one after so coalescing code
// does not need bounds-checking.
if (pagemap_.Ensure(p-1, ask+2)) {
// Pretend the new area is allocated and then Delete() it to cause
// any necessary coalescing to occur.
Span* span = NewSpan(p, ask);
RecordSpan(span);
Delete(span);
ASSERT(stats_.unmapped_bytes+ stats_.committed_bytes==stats_.system_bytes);
ASSERT(Check());
return true;
} else {
// We could not allocate memory within "pagemap_"
// TODO: Once we can return memory to the system, return the new span
return false;
}
}
bool PageHeap::Check() {
ASSERT(free_[0].normal.next == &free_[0].normal);
ASSERT(free_[0].returned.next == &free_[0].returned);
return true;
}
bool PageHeap::CheckExpensive() {
bool result = Check();
CheckList(&large_.normal, kMaxPages, 1000000000, Span::ON_NORMAL_FREELIST);
CheckList(&large_.returned, kMaxPages, 1000000000, Span::ON_RETURNED_FREELIST);
for (Length s = 1; s < kMaxPages; s++) {
CheckList(&free_[s].normal, s, s, Span::ON_NORMAL_FREELIST);
CheckList(&free_[s].returned, s, s, Span::ON_RETURNED_FREELIST);
}
return result;
}
bool PageHeap::CheckList(Span* list, Length min_pages, Length max_pages,
int freelist) {
for (Span* s = list->next; s != list; s = s->next) {
CHECK_CONDITION(s->location == freelist); // NORMAL or RETURNED
CHECK_CONDITION(s->length >= min_pages);
CHECK_CONDITION(s->length <= max_pages);
CHECK_CONDITION(GetDescriptor(s->start) == s);
CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
}
return true;
}
} // namespace tcmalloc