blob: 66c9d74e4a03c504f0c7bafe200ed76af5d18dd2 [file] [log] [blame]
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2009, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat
// Nabeel Mian
//
// Implements management of profile timers and the corresponding signal handler.
#include "config.h"
#include "profile-handler.h"
#if !(defined(__CYGWIN__) || defined(__CYGWIN32__))
#include <stdio.h>
#include <errno.h>
#include <sys/time.h>
#include <list>
#include <string>
#if HAVE_LINUX_SIGEV_THREAD_ID
// for timer_{create,settime} and associated typedefs & constants
#include <time.h>
// for sys_gettid
#include "base/linux_syscall_support.h"
// for perftools_pthread_key_create
#include "maybe_threads.h"
#endif
#include "base/dynamic_annotations.h"
#include "base/googleinit.h"
#include "base/logging.h"
#include "base/spinlock.h"
#include "maybe_threads.h"
using std::list;
using std::string;
// This structure is used by ProfileHandlerRegisterCallback and
// ProfileHandlerUnregisterCallback as a handle to a registered callback.
struct ProfileHandlerToken {
// Sets the callback and associated arg.
ProfileHandlerToken(ProfileHandlerCallback cb, void* cb_arg)
: callback(cb),
callback_arg(cb_arg) {
}
// Callback function to be invoked on receiving a profile timer interrupt.
ProfileHandlerCallback callback;
// Argument for the callback function.
void* callback_arg;
};
// This class manages profile timers and associated signal handler. This is a
// a singleton.
class ProfileHandler {
public:
// Registers the current thread with the profile handler. On systems which
// have a separate interval timer for each thread, this function starts the
// timer for the current thread.
//
// The function also attempts to determine whether or not timers are shared by
// all threads in the process. (With LinuxThreads, and with NPTL on some
// Linux kernel versions, each thread has separate timers.)
//
// Prior to determining whether timers are shared, this function will
// unconditionally start the timer. However, if this function determines
// that timers are shared, then it will stop the timer if no callbacks are
// currently registered.
void RegisterThread();
// Registers a callback routine to receive profile timer ticks. The returned
// token is to be used when unregistering this callback and must not be
// deleted by the caller. Registration of the first callback enables the
// SIGPROF handler (or SIGALRM if using ITIMER_REAL).
ProfileHandlerToken* RegisterCallback(ProfileHandlerCallback callback,
void* callback_arg);
// Unregisters a previously registered callback. Expects the token returned
// by the corresponding RegisterCallback routine. Unregistering the last
// callback disables the SIGPROF handler (or SIGALRM if using ITIMER_REAL).
void UnregisterCallback(ProfileHandlerToken* token)
NO_THREAD_SAFETY_ANALYSIS;
// Unregisters all the callbacks, stops the timer if shared, disables the
// SIGPROF (or SIGALRM) handler and clears the timer_sharing_ state.
void Reset();
// Gets the current state of profile handler.
void GetState(ProfileHandlerState* state);
// Initializes and returns the ProfileHandler singleton.
static ProfileHandler* Instance();
private:
ProfileHandler();
~ProfileHandler();
// Largest allowed frequency.
static const int32 kMaxFrequency = 4000;
// Default frequency.
static const int32 kDefaultFrequency = 100;
// ProfileHandler singleton.
static ProfileHandler* instance_;
// pthread_once_t for one time initialization of ProfileHandler singleton.
static pthread_once_t once_;
// Initializes the ProfileHandler singleton via GoogleOnceInit.
static void Init();
// The number of SIGPROF (or SIGALRM for ITIMER_REAL) interrupts received.
int64 interrupts_ GUARDED_BY(signal_lock_);
// SIGPROF/SIGALRM interrupt frequency, read-only after construction.
int32 frequency_;
// ITIMER_PROF (which uses SIGPROF), or ITIMER_REAL (which uses SIGALRM)
int timer_type_;
// Signal number for timer signal.
int signal_number_;
// Counts the number of callbacks registered.
int32 callback_count_ GUARDED_BY(control_lock_);
// Is profiling allowed at all?
bool allowed_;
bool per_thread_timer_enabled_;
#ifdef HAVE_LINUX_SIGEV_THREAD_ID
// this is used to destroy per-thread profiling timers on thread
// termination
pthread_key_t thread_timer_key;
#endif
// Whether or not the threading system provides interval timers that are
// shared by all threads in a process.
enum {
// No timer initialization attempted yet.
TIMERS_UNTOUCHED,
// First thread has registered and set timer.
TIMERS_ONE_SET,
// Timers are shared by all threads.
TIMERS_SHARED,
// Timers are separate in each thread.
TIMERS_SEPARATE
} timer_sharing_ GUARDED_BY(control_lock_);
// This lock serializes the registration of threads and protects the
// callbacks_ list below.
// Locking order:
// In the context of a signal handler, acquire signal_lock_ to walk the
// callback list. Otherwise, acquire control_lock_, disable the signal
// handler and then acquire signal_lock_.
SpinLock control_lock_ ACQUIRED_BEFORE(signal_lock_);
SpinLock signal_lock_;
// Holds the list of registered callbacks. We expect the list to be pretty
// small. Currently, the cpu profiler (base/profiler) and thread module
// (base/thread.h) are the only two components registering callbacks.
// Following are the locking requirements for callbacks_:
// For read-write access outside the SIGPROF handler:
// - Acquire control_lock_
// - Disable SIGPROF handler.
// - Acquire signal_lock_
// For read-only access in the context of SIGPROF handler
// (Read-write access is *not allowed* in the SIGPROF handler)
// - Acquire signal_lock_
// For read-only access outside SIGPROF handler:
// - Acquire control_lock_
typedef list<ProfileHandlerToken*> CallbackList;
typedef CallbackList::iterator CallbackIterator;
CallbackList callbacks_ GUARDED_BY(signal_lock_);
// Starts the interval timer. If the thread library shares timers between
// threads, this function starts the shared timer. Otherwise, this will start
// the timer in the current thread.
void StartTimer() EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Stops the interval timer. If the thread library shares timers between
// threads, this fucntion stops the shared timer. Otherwise, this will stop
// the timer in the current thread.
void StopTimer() EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Returns true if the profile interval timer is enabled in the current
// thread. This actually checks the kernel's interval timer setting. (It is
// used to detect whether timers are shared or separate.)
bool IsTimerRunning() EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Sets the timer interrupt signal handler.
void EnableHandler() EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Disables (ignores) the timer interrupt signal.
void DisableHandler() EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Returns true if the handler is not being used by something else.
// This checks the kernel's signal handler table.
bool IsSignalHandlerAvailable();
// SIGPROF/SIGALRM handler. Iterate over and call all the registered callbacks.
static void SignalHandler(int sig, siginfo_t* sinfo, void* ucontext);
DISALLOW_COPY_AND_ASSIGN(ProfileHandler);
};
ProfileHandler* ProfileHandler::instance_ = NULL;
pthread_once_t ProfileHandler::once_ = PTHREAD_ONCE_INIT;
const int32 ProfileHandler::kMaxFrequency;
const int32 ProfileHandler::kDefaultFrequency;
// If we are LD_PRELOAD-ed against a non-pthreads app, then
// pthread_once won't be defined. We declare it here, for that
// case (with weak linkage) which will cause the non-definition to
// resolve to NULL. We can then check for NULL or not in Instance.
extern "C" int pthread_once(pthread_once_t *, void (*)(void))
ATTRIBUTE_WEAK;
#if HAVE_LINUX_SIGEV_THREAD_ID
// We use weak alias to timer_create to avoid runtime dependency on
// -lrt and in turn -lpthread.
//
// At runtime we detect if timer_create is available and if so we
// can enable linux-sigev-thread mode of profiling
extern "C" {
int timer_create(clockid_t clockid, struct sigevent *evp,
timer_t *timerid)
ATTRIBUTE_WEAK;
int timer_delete(timer_t timerid)
ATTRIBUTE_WEAK;
int timer_settime(timer_t timerid, int flags,
const struct itimerspec *value,
struct itimerspec *ovalue)
ATTRIBUTE_WEAK;
}
struct timer_id_holder {
timer_t timerid;
timer_id_holder(timer_t _timerid) : timerid(_timerid) {}
};
extern "C" {
static void ThreadTimerDestructor(void *arg) {
if (!arg) {
return;
}
timer_id_holder *holder = static_cast<timer_id_holder *>(arg);
timer_delete(holder->timerid);
delete holder;
}
}
static void CreateThreadTimerKey(pthread_key_t *pkey) {
int rv = perftools_pthread_key_create(pkey, ThreadTimerDestructor);
if (rv) {
RAW_LOG(FATAL, "aborting due to pthread_key_create error: %s", strerror(rv));
}
}
static void StartLinuxThreadTimer(int timer_type, int signal_number,
int32 frequency, pthread_key_t timer_key) {
int rv;
struct sigevent sevp;
timer_t timerid;
struct itimerspec its;
memset(&sevp, 0, sizeof(sevp));
sevp.sigev_notify = SIGEV_THREAD_ID;
sevp._sigev_un._tid = sys_gettid();
sevp.sigev_signo = signal_number;
clockid_t clock = CLOCK_THREAD_CPUTIME_ID;
if (timer_type == ITIMER_REAL) {
clock = CLOCK_MONOTONIC;
}
rv = timer_create(clock, &sevp, &timerid);
if (rv) {
RAW_LOG(FATAL, "aborting due to timer_create error: %s", strerror(errno));
}
timer_id_holder *holder = new timer_id_holder(timerid);
rv = perftools_pthread_setspecific(timer_key, holder);
if (rv) {
RAW_LOG(FATAL, "aborting due to pthread_setspecific error: %s", strerror(rv));
}
its.it_interval.tv_sec = 0;
its.it_interval.tv_nsec = 1000000000 / frequency;
its.it_value = its.it_interval;
rv = timer_settime(timerid, 0, &its, 0);
if (rv) {
RAW_LOG(FATAL, "aborting due to timer_settime error: %s", strerror(errno));
}
}
#endif
void ProfileHandler::Init() {
instance_ = new ProfileHandler();
}
ProfileHandler* ProfileHandler::Instance() {
if (pthread_once) {
pthread_once(&once_, Init);
}
if (instance_ == NULL) {
// This will be true on systems that don't link in pthreads,
// including on FreeBSD where pthread_once has a non-zero address
// (but doesn't do anything) even when pthreads isn't linked in.
Init();
assert(instance_ != NULL);
}
return instance_;
}
ProfileHandler::ProfileHandler()
: interrupts_(0),
callback_count_(0),
allowed_(true),
per_thread_timer_enabled_(false),
timer_sharing_(TIMERS_UNTOUCHED) {
SpinLockHolder cl(&control_lock_);
timer_type_ = (getenv("CPUPROFILE_REALTIME") ? ITIMER_REAL : ITIMER_PROF);
signal_number_ = (timer_type_ == ITIMER_PROF ? SIGPROF : SIGALRM);
// Get frequency of interrupts (if specified)
char junk;
const char* fr = getenv("CPUPROFILE_FREQUENCY");
if (fr != NULL && (sscanf(fr, "%u%c", &frequency_, &junk) == 1) &&
(frequency_ > 0)) {
// Limit to kMaxFrequency
frequency_ = (frequency_ > kMaxFrequency) ? kMaxFrequency : frequency_;
} else {
frequency_ = kDefaultFrequency;
}
if (!allowed_) {
return;
}
#if HAVE_LINUX_SIGEV_THREAD_ID
// Do this early because we might be overriding signal number.
const char *per_thread = getenv("CPUPROFILE_PER_THREAD_TIMERS");
const char *signal_number = getenv("CPUPROFILE_TIMER_SIGNAL");
if (per_thread || signal_number) {
if (timer_create && pthread_once) {
timer_sharing_ = TIMERS_SEPARATE;
CreateThreadTimerKey(&thread_timer_key);
per_thread_timer_enabled_ = true;
// Override signal number if requested.
if (signal_number) {
signal_number_ = strtol(signal_number, NULL, 0);
}
} else {
RAW_LOG(INFO,
"Ignoring CPUPROFILE_PER_THREAD_TIMERS and\n"
" CPUPROFILE_TIMER_SIGNAL due to lack of timer_create().\n"
" Preload or link to librt.so for this to work");
}
}
#endif
// If something else is using the signal handler,
// assume it has priority over us and stop.
if (!IsSignalHandlerAvailable()) {
RAW_LOG(INFO, "Disabling profiler because signal %d handler is already in use.",
signal_number_);
allowed_ = false;
return;
}
// Ignore signals until we decide to turn profiling on. (Paranoia;
// should already be ignored.)
DisableHandler();
}
ProfileHandler::~ProfileHandler() {
Reset();
#ifdef HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) {
perftools_pthread_key_delete(thread_timer_key);
}
#endif
}
void ProfileHandler::RegisterThread() {
SpinLockHolder cl(&control_lock_);
if (!allowed_) {
return;
}
// We try to detect whether timers are being shared by setting a
// timer in the first call to this function, then checking whether
// it's set in the second call.
//
// Note that this detection method requires that the first two calls
// to RegisterThread must be made from different threads. (Subsequent
// calls will see timer_sharing_ set to either TIMERS_SEPARATE or
// TIMERS_SHARED, and won't try to detect the timer sharing type.)
//
// Also note that if timer settings were inherited across new thread
// creation but *not* shared, this approach wouldn't work. That's
// not an issue for any Linux threading implementation, and should
// not be a problem for a POSIX-compliant threads implementation.
switch (timer_sharing_) {
case TIMERS_UNTOUCHED:
StartTimer();
timer_sharing_ = TIMERS_ONE_SET;
break;
case TIMERS_ONE_SET:
// If the timer is running, that means that the main thread's
// timer setup is seen in this (second) thread -- and therefore
// that timers are shared.
if (IsTimerRunning()) {
timer_sharing_ = TIMERS_SHARED;
// If callback is already registered, we have to keep the timer
// running. If not, we disable the timer here.
if (callback_count_ == 0) {
StopTimer();
}
} else {
timer_sharing_ = TIMERS_SEPARATE;
StartTimer();
}
break;
case TIMERS_SHARED:
// Nothing needed.
break;
case TIMERS_SEPARATE:
StartTimer();
break;
}
}
ProfileHandlerToken* ProfileHandler::RegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
ProfileHandlerToken* token = new ProfileHandlerToken(callback, callback_arg);
SpinLockHolder cl(&control_lock_);
DisableHandler();
{
SpinLockHolder sl(&signal_lock_);
callbacks_.push_back(token);
}
// Start the timer if timer is shared and this is a first callback.
if ((callback_count_ == 0) && (timer_sharing_ == TIMERS_SHARED)) {
StartTimer();
}
++callback_count_;
EnableHandler();
return token;
}
void ProfileHandler::UnregisterCallback(ProfileHandlerToken* token) {
SpinLockHolder cl(&control_lock_);
for (CallbackIterator it = callbacks_.begin(); it != callbacks_.end();
++it) {
if ((*it) == token) {
RAW_CHECK(callback_count_ > 0, "Invalid callback count");
DisableHandler();
{
SpinLockHolder sl(&signal_lock_);
delete *it;
callbacks_.erase(it);
}
--callback_count_;
if (callback_count_ > 0) {
EnableHandler();
} else if (timer_sharing_ == TIMERS_SHARED) {
StopTimer();
}
return;
}
}
// Unknown token.
RAW_LOG(FATAL, "Invalid token");
}
void ProfileHandler::Reset() {
SpinLockHolder cl(&control_lock_);
DisableHandler();
{
SpinLockHolder sl(&signal_lock_);
CallbackIterator it = callbacks_.begin();
while (it != callbacks_.end()) {
CallbackIterator tmp = it;
++it;
delete *tmp;
callbacks_.erase(tmp);
}
}
callback_count_ = 0;
if (timer_sharing_ == TIMERS_SHARED) {
StopTimer();
}
timer_sharing_ = TIMERS_UNTOUCHED;
}
void ProfileHandler::GetState(ProfileHandlerState* state) {
SpinLockHolder cl(&control_lock_);
DisableHandler();
{
SpinLockHolder sl(&signal_lock_); // Protects interrupts_.
state->interrupts = interrupts_;
}
if (callback_count_ > 0) {
EnableHandler();
}
state->frequency = frequency_;
state->callback_count = callback_count_;
state->allowed = allowed_;
}
void ProfileHandler::StartTimer() {
if (!allowed_) {
return;
}
#if HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) {
StartLinuxThreadTimer(timer_type_, signal_number_, frequency_, thread_timer_key);
return;
}
#endif
struct itimerval timer;
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = 1000000 / frequency_;
timer.it_value = timer.it_interval;
setitimer(timer_type_, &timer, 0);
}
void ProfileHandler::StopTimer() {
if (!allowed_) {
return;
}
if (per_thread_timer_enabled_) {
RAW_LOG(FATAL, "StopTimer cannot be called in linux-per-thread-timers mode");
}
struct itimerval timer;
memset(&timer, 0, sizeof timer);
setitimer(timer_type_, &timer, 0);
}
bool ProfileHandler::IsTimerRunning() {
if (!allowed_) {
return false;
}
if (per_thread_timer_enabled_) {
return false;
}
struct itimerval current_timer;
RAW_CHECK(0 == getitimer(timer_type_, &current_timer), "getitimer");
return (current_timer.it_value.tv_sec != 0 ||
current_timer.it_value.tv_usec != 0);
}
void ProfileHandler::EnableHandler() {
if (!allowed_) {
return;
}
struct sigaction sa;
sa.sa_sigaction = SignalHandler;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset(&sa.sa_mask);
RAW_CHECK(sigaction(signal_number_, &sa, NULL) == 0, "sigprof (enable)");
}
void ProfileHandler::DisableHandler() {
if (!allowed_) {
return;
}
struct sigaction sa;
sa.sa_handler = SIG_IGN;
sa.sa_flags = SA_RESTART;
sigemptyset(&sa.sa_mask);
RAW_CHECK(sigaction(signal_number_, &sa, NULL) == 0, "sigprof (disable)");
}
bool ProfileHandler::IsSignalHandlerAvailable() {
struct sigaction sa;
RAW_CHECK(sigaction(signal_number_, NULL, &sa) == 0, "is-signal-handler avail");
// We only take over the handler if the current one is unset.
// It must be SIG_IGN or SIG_DFL, not some other function.
// SIG_IGN must be allowed because when profiling is allowed but
// not actively in use, this code keeps the handler set to SIG_IGN.
// That setting will be inherited across fork+exec. In order for
// any child to be able to use profiling, SIG_IGN must be treated
// as available.
return sa.sa_handler == SIG_IGN || sa.sa_handler == SIG_DFL;
}
void ProfileHandler::SignalHandler(int sig, siginfo_t* sinfo, void* ucontext) {
int saved_errno = errno;
// At this moment, instance_ must be initialized because the handler is
// enabled in RegisterThread or RegisterCallback only after
// ProfileHandler::Instance runs.
ProfileHandler* instance = ANNOTATE_UNPROTECTED_READ(instance_);
RAW_CHECK(instance != NULL, "ProfileHandler is not initialized");
{
SpinLockHolder sl(&instance->signal_lock_);
++instance->interrupts_;
for (CallbackIterator it = instance->callbacks_.begin();
it != instance->callbacks_.end();
++it) {
(*it)->callback(sig, sinfo, ucontext, (*it)->callback_arg);
}
}
errno = saved_errno;
}
// This module initializer registers the main thread, so it must be
// executed in the context of the main thread.
REGISTER_MODULE_INITIALIZER(profile_main, ProfileHandlerRegisterThread());
extern "C" void ProfileHandlerRegisterThread() {
ProfileHandler::Instance()->RegisterThread();
}
extern "C" ProfileHandlerToken* ProfileHandlerRegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
return ProfileHandler::Instance()->RegisterCallback(callback, callback_arg);
}
extern "C" void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) {
ProfileHandler::Instance()->UnregisterCallback(token);
}
extern "C" void ProfileHandlerReset() {
return ProfileHandler::Instance()->Reset();
}
extern "C" void ProfileHandlerGetState(ProfileHandlerState* state) {
ProfileHandler::Instance()->GetState(state);
}
#else // OS_CYGWIN
// ITIMER_PROF doesn't work under cygwin. ITIMER_REAL is available, but doesn't
// work as well for profiling, and also interferes with alarm(). Because of
// these issues, unless a specific need is identified, profiler support is
// disabled under Cygwin.
extern "C" void ProfileHandlerRegisterThread() {
}
extern "C" ProfileHandlerToken* ProfileHandlerRegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
return NULL;
}
extern "C" void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) {
}
extern "C" void ProfileHandlerReset() {
}
extern "C" void ProfileHandlerGetState(ProfileHandlerState* state) {
}
#endif // OS_CYGWIN