| // -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- |
| /* Copyright (c) 2007, Google Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Google Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * --- |
| * Author: Joi Sigurdsson |
| * |
| * Implementation of MiniDisassembler. |
| */ |
| |
| #include "mini_disassembler.h" |
| |
| namespace sidestep { |
| |
| MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits, |
| bool address_default_is_32_bits) |
| : operand_default_is_32_bits_(operand_default_is_32_bits), |
| address_default_is_32_bits_(address_default_is_32_bits) { |
| Initialize(); |
| } |
| |
| MiniDisassembler::MiniDisassembler() |
| : operand_default_is_32_bits_(true), |
| address_default_is_32_bits_(true) { |
| Initialize(); |
| } |
| |
| InstructionType MiniDisassembler::Disassemble( |
| unsigned char* start_byte, |
| unsigned int& instruction_bytes) { |
| // Clean up any state from previous invocations. |
| Initialize(); |
| |
| // Start by processing any prefixes. |
| unsigned char* current_byte = start_byte; |
| unsigned int size = 0; |
| InstructionType instruction_type = ProcessPrefixes(current_byte, size); |
| |
| if (IT_UNKNOWN == instruction_type) |
| return instruction_type; |
| |
| current_byte += size; |
| size = 0; |
| |
| // Invariant: We have stripped all prefixes, and the operand_is_32_bits_ |
| // and address_is_32_bits_ flags are correctly set. |
| |
| instruction_type = ProcessOpcode(current_byte, 0, size); |
| |
| // Check for error processing instruction |
| if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) { |
| return IT_UNKNOWN; |
| } |
| |
| current_byte += size; |
| |
| // Invariant: operand_bytes_ indicates the total size of operands |
| // specified by the opcode and/or ModR/M byte and/or SIB byte. |
| // pCurrentByte points to the first byte after the ModR/M byte, or after |
| // the SIB byte if it is present (i.e. the first byte of any operands |
| // encoded in the instruction). |
| |
| // We get the total length of any prefixes, the opcode, and the ModR/M and |
| // SIB bytes if present, by taking the difference of the original starting |
| // address and the current byte (which points to the first byte of the |
| // operands if present, or to the first byte of the next instruction if |
| // they are not). Adding the count of bytes in the operands encoded in |
| // the instruction gives us the full length of the instruction in bytes. |
| instruction_bytes += operand_bytes_ + (current_byte - start_byte); |
| |
| // Return the instruction type, which was set by ProcessOpcode(). |
| return instruction_type_; |
| } |
| |
| void MiniDisassembler::Initialize() { |
| operand_is_32_bits_ = operand_default_is_32_bits_; |
| address_is_32_bits_ = address_default_is_32_bits_; |
| #ifdef _M_X64 |
| operand_default_support_64_bits_ = true; |
| #else |
| operand_default_support_64_bits_ = false; |
| #endif |
| operand_is_64_bits_ = false; |
| operand_bytes_ = 0; |
| have_modrm_ = false; |
| should_decode_modrm_ = false; |
| instruction_type_ = IT_UNKNOWN; |
| got_f2_prefix_ = false; |
| got_f3_prefix_ = false; |
| got_66_prefix_ = false; |
| } |
| |
| InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte, |
| unsigned int& size) { |
| InstructionType instruction_type = IT_GENERIC; |
| const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte]; |
| |
| switch (opcode.type_) { |
| case IT_PREFIX_ADDRESS: |
| address_is_32_bits_ = !address_default_is_32_bits_; |
| goto nochangeoperand; |
| case IT_PREFIX_OPERAND: |
| operand_is_32_bits_ = !operand_default_is_32_bits_; |
| nochangeoperand: |
| case IT_PREFIX: |
| |
| if (0xF2 == (*start_byte)) |
| got_f2_prefix_ = true; |
| else if (0xF3 == (*start_byte)) |
| got_f3_prefix_ = true; |
| else if (0x66 == (*start_byte)) |
| got_66_prefix_ = true; |
| else if (operand_default_support_64_bits_ && (*start_byte) & 0x48) |
| operand_is_64_bits_ = true; |
| |
| instruction_type = opcode.type_; |
| size ++; |
| // we got a prefix, so add one and check next byte |
| ProcessPrefixes(start_byte + 1, size); |
| default: |
| break; // not a prefix byte |
| } |
| |
| return instruction_type; |
| } |
| |
| InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte, |
| unsigned int table_index, |
| unsigned int& size) { |
| const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table |
| unsigned char current_byte = (*start_byte) >> table.shift_; |
| current_byte = current_byte & table.mask_; // Mask out the bits we will use |
| |
| // Check whether the byte we have is inside the table we have. |
| if (current_byte < table.min_lim_ || current_byte > table.max_lim_) { |
| instruction_type_ = IT_UNKNOWN; |
| return instruction_type_; |
| } |
| |
| const Opcode& opcode = table.table_[current_byte]; |
| if (IT_UNUSED == opcode.type_) { |
| // This instruction is not used by the IA-32 ISA, so we indicate |
| // this to the user. Probably means that we were pointed to |
| // a byte in memory that was not the start of an instruction. |
| instruction_type_ = IT_UNUSED; |
| return instruction_type_; |
| } else if (IT_REFERENCE == opcode.type_) { |
| // We are looking at an opcode that has more bytes (or is continued |
| // in the ModR/M byte). Recursively find the opcode definition in |
| // the table for the opcode's next byte. |
| size++; |
| ProcessOpcode(start_byte + 1, opcode.table_index_, size); |
| return instruction_type_; |
| } |
| |
| const SpecificOpcode* specific_opcode = (SpecificOpcode*)&opcode; |
| if (opcode.is_prefix_dependent_) { |
| if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) { |
| specific_opcode = &opcode.opcode_if_f2_prefix_; |
| } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) { |
| specific_opcode = &opcode.opcode_if_f3_prefix_; |
| } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) { |
| specific_opcode = &opcode.opcode_if_66_prefix_; |
| } |
| } |
| |
| // Inv: The opcode type is known. |
| instruction_type_ = specific_opcode->type_; |
| |
| // Let's process the operand types to see if we have any immediate |
| // operands, and/or a ModR/M byte. |
| |
| ProcessOperand(specific_opcode->flag_dest_); |
| ProcessOperand(specific_opcode->flag_source_); |
| ProcessOperand(specific_opcode->flag_aux_); |
| |
| // Inv: We have processed the opcode and incremented operand_bytes_ |
| // by the number of bytes of any operands specified by the opcode |
| // that are stored in the instruction (not registers etc.). Now |
| // we need to return the total number of bytes for the opcode and |
| // for the ModR/M or SIB bytes if they are present. |
| |
| if (table.mask_ != 0xff) { |
| if (have_modrm_) { |
| // we're looking at a ModR/M byte so we're not going to |
| // count that into the opcode size |
| ProcessModrm(start_byte, size); |
| return IT_GENERIC; |
| } else { |
| // need to count the ModR/M byte even if it's just being |
| // used for opcode extension |
| size++; |
| return IT_GENERIC; |
| } |
| } else { |
| if (have_modrm_) { |
| // The ModR/M byte is the next byte. |
| size++; |
| ProcessModrm(start_byte + 1, size); |
| return IT_GENERIC; |
| } else { |
| size++; |
| return IT_GENERIC; |
| } |
| } |
| } |
| |
| bool MiniDisassembler::ProcessOperand(int flag_operand) { |
| bool succeeded = true; |
| if (AM_NOT_USED == flag_operand) |
| return succeeded; |
| |
| // Decide what to do based on the addressing mode. |
| switch (flag_operand & AM_MASK) { |
| // No ModR/M byte indicated by these addressing modes, and no |
| // additional (e.g. immediate) parameters. |
| case AM_A: // Direct address |
| case AM_F: // EFLAGS register |
| case AM_X: // Memory addressed by the DS:SI register pair |
| case AM_Y: // Memory addressed by the ES:DI register pair |
| case AM_IMPLICIT: // Parameter is implicit, occupies no space in |
| // instruction |
| break; |
| |
| // There is a ModR/M byte but it does not necessarily need |
| // to be decoded. |
| case AM_C: // reg field of ModR/M selects a control register |
| case AM_D: // reg field of ModR/M selects a debug register |
| case AM_G: // reg field of ModR/M selects a general register |
| case AM_P: // reg field of ModR/M selects an MMX register |
| case AM_R: // mod field of ModR/M may refer only to a general register |
| case AM_S: // reg field of ModR/M selects a segment register |
| case AM_T: // reg field of ModR/M selects a test register |
| case AM_V: // reg field of ModR/M selects a 128-bit XMM register |
| have_modrm_ = true; |
| break; |
| |
| // In these addressing modes, there is a ModR/M byte and it needs to be |
| // decoded. No other (e.g. immediate) params than indicated in ModR/M. |
| case AM_E: // Operand is either a general-purpose register or memory, |
| // specified by ModR/M byte |
| case AM_M: // ModR/M byte will refer only to memory |
| case AM_Q: // Operand is either an MMX register or memory (complex |
| // evaluation), specified by ModR/M byte |
| case AM_W: // Operand is either a 128-bit XMM register or memory (complex |
| // eval), specified by ModR/M byte |
| have_modrm_ = true; |
| should_decode_modrm_ = true; |
| break; |
| |
| // These addressing modes specify an immediate or an offset value |
| // directly, so we need to look at the operand type to see how many |
| // bytes. |
| case AM_I: // Immediate data. |
| case AM_J: // Jump to offset. |
| case AM_O: // Operand is at offset. |
| switch (flag_operand & OT_MASK) { |
| case OT_B: // Byte regardless of operand-size attribute. |
| operand_bytes_ += OS_BYTE; |
| break; |
| case OT_C: // Byte or word, depending on operand-size attribute. |
| if (operand_is_32_bits_) |
| operand_bytes_ += OS_WORD; |
| else |
| operand_bytes_ += OS_BYTE; |
| break; |
| case OT_D: // Doubleword, regardless of operand-size attribute. |
| operand_bytes_ += OS_DOUBLE_WORD; |
| break; |
| case OT_DQ: // Double-quadword, regardless of operand-size attribute. |
| operand_bytes_ += OS_DOUBLE_QUAD_WORD; |
| break; |
| case OT_P: // 32-bit or 48-bit pointer, depending on operand-size |
| // attribute. |
| if (operand_is_32_bits_) |
| operand_bytes_ += OS_48_BIT_POINTER; |
| else |
| operand_bytes_ += OS_32_BIT_POINTER; |
| break; |
| case OT_PS: // 128-bit packed single-precision floating-point data. |
| operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING; |
| break; |
| case OT_Q: // Quadword, regardless of operand-size attribute. |
| operand_bytes_ += OS_QUAD_WORD; |
| break; |
| case OT_S: // 6-byte pseudo-descriptor. |
| operand_bytes_ += OS_PSEUDO_DESCRIPTOR; |
| break; |
| case OT_SD: // Scalar Double-Precision Floating-Point Value |
| case OT_PD: // Unaligned packed double-precision floating point value |
| operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING; |
| break; |
| case OT_SS: |
| // Scalar element of a 128-bit packed single-precision |
| // floating data. |
| // We simply return enItUnknown since we don't have to support |
| // floating point |
| succeeded = false; |
| break; |
| case OT_V: // Word, doubleword or quadword, depending on operand-size |
| // attribute. |
| if (operand_is_64_bits_ && flag_operand & AM_I && |
| flag_operand & IOS_64) |
| operand_bytes_ += OS_QUAD_WORD; |
| else if (operand_is_32_bits_) |
| operand_bytes_ += OS_DOUBLE_WORD; |
| else |
| operand_bytes_ += OS_WORD; |
| break; |
| case OT_W: // Word, regardless of operand-size attribute. |
| operand_bytes_ += OS_WORD; |
| break; |
| |
| // Can safely ignore these. |
| case OT_A: // Two one-word operands in memory or two double-word |
| // operands in memory |
| case OT_PI: // Quadword MMX technology register (e.g. mm0) |
| case OT_SI: // Doubleword integer register (e.g., eax) |
| break; |
| |
| default: |
| break; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| return succeeded; |
| } |
| |
| bool MiniDisassembler::ProcessModrm(unsigned char* start_byte, |
| unsigned int& size) { |
| // If we don't need to decode, we just return the size of the ModR/M |
| // byte (there is never a SIB byte in this case). |
| if (!should_decode_modrm_) { |
| size++; |
| return true; |
| } |
| |
| // We never care about the reg field, only the combination of the mod |
| // and r/m fields, so let's start by packing those fields together into |
| // 5 bits. |
| unsigned char modrm = (*start_byte); |
| unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field |
| modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field |
| mod = mod >> 3; // shift the mod field to the right place |
| modrm = mod | modrm; // combine the r/m and mod fields as discussed |
| mod = mod >> 3; // shift the mod field to bits 2..0 |
| |
| // Invariant: modrm contains the mod field in bits 4..3 and the r/m field |
| // in bits 2..0, and mod contains the mod field in bits 2..0 |
| |
| const ModrmEntry* modrm_entry = 0; |
| if (address_is_32_bits_) |
| modrm_entry = &s_ia32_modrm_map_[modrm]; |
| else |
| modrm_entry = &s_ia16_modrm_map_[modrm]; |
| |
| // Invariant: modrm_entry points to information that we need to decode |
| // the ModR/M byte. |
| |
| // Add to the count of operand bytes, if the ModR/M byte indicates |
| // that some operands are encoded in the instruction. |
| if (modrm_entry->is_encoded_in_instruction_) |
| operand_bytes_ += modrm_entry->operand_size_; |
| |
| // Process the SIB byte if necessary, and return the count |
| // of ModR/M and SIB bytes. |
| if (modrm_entry->use_sib_byte_) { |
| size++; |
| return ProcessSib(start_byte + 1, mod, size); |
| } else { |
| size++; |
| return true; |
| } |
| } |
| |
| bool MiniDisassembler::ProcessSib(unsigned char* start_byte, |
| unsigned char mod, |
| unsigned int& size) { |
| // get the mod field from the 2..0 bits of the SIB byte |
| unsigned char sib_base = (*start_byte) & 0x07; |
| if (0x05 == sib_base) { |
| switch (mod) { |
| case 0x00: // mod == 00 |
| case 0x02: // mod == 10 |
| operand_bytes_ += OS_DOUBLE_WORD; |
| break; |
| case 0x01: // mod == 01 |
| operand_bytes_ += OS_BYTE; |
| break; |
| case 0x03: // mod == 11 |
| // According to the IA-32 docs, there does not seem to be a disp |
| // value for this value of mod |
| default: |
| break; |
| } |
| } |
| |
| size++; |
| return true; |
| } |
| |
| }; // namespace sidestep |