blob: aa6bb157e3c17cbc8cabc32a8f15acf1f09adb33 [file] [log] [blame]
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat <opensource@google.com>
//
// Common definitions for tcmalloc code.
#ifndef TCMALLOC_COMMON_H_
#define TCMALLOC_COMMON_H_
#include "config.h"
#include <stddef.h> // for size_t
#include <stdint.h> // for uintptr_t, uint64_t
#include "internal_logging.h" // for ASSERT, etc
#include "base/basictypes.h" // for LIKELY, etc
// Type that can hold a page number
typedef uintptr_t PageID;
// Type that can hold the length of a run of pages
typedef uintptr_t Length;
//-------------------------------------------------------------------
// Configuration
//-------------------------------------------------------------------
#if defined(TCMALLOC_ALIGN_8BYTES)
// Unless we force to use 8 bytes alignment we use an alignment of
// at least 16 bytes to statisfy requirements for some SSE types.
// Keep in mind when using the 16 bytes alignment you can have a space
// waste due alignment of 25%. (eg malloc of 24 bytes will get 32 bytes)
static const size_t kMinAlign = 8;
#else
static const size_t kMinAlign = 16;
#endif
// Using large pages speeds up the execution at a cost of larger memory use.
// Deallocation may speed up by a factor as the page map gets 8x smaller, so
// lookups in the page map result in fewer L2 cache misses, which translates to
// speedup for application/platform combinations with high L2 cache pressure.
// As the number of size classes increases with large pages, we increase
// the thread cache allowance to avoid passing more free ranges to and from
// central lists. Also, larger pages are less likely to get freed.
// These two factors cause a bounded increase in memory use.
#if defined(TCMALLOC_PAGE_SIZE_SHIFT)
static const size_t kPageShift = TCMALLOC_PAGE_SIZE_SHIFT;
#else
static const size_t kPageShift = 13;
#endif
static const size_t kClassSizesMax = 128;
static const size_t kMaxThreadCacheSize = 4 << 20;
static const size_t kPageSize = 1 << kPageShift;
static const size_t kMaxSize = 256 * 1024;
static const size_t kAlignment = 8;
// For all span-lengths <= kMaxPages we keep an exact-size list in PageHeap.
static const size_t kMaxPages = 1 << (20 - kPageShift);
// Default bound on the total amount of thread caches.
#ifdef TCMALLOC_SMALL_BUT_SLOW
// Make the overall thread cache no bigger than that of a single thread
// for the small memory footprint case.
static const size_t kDefaultOverallThreadCacheSize = kMaxThreadCacheSize;
#else
static const size_t kDefaultOverallThreadCacheSize = 8u * kMaxThreadCacheSize;
#endif
// Lower bound on the per-thread cache sizes
static const size_t kMinThreadCacheSize = kMaxSize * 2;
// The number of bytes one ThreadCache will steal from another when
// the first ThreadCache is forced to Scavenge(), delaying the
// next call to Scavenge for this thread.
static const size_t kStealAmount = 1 << 16;
// The number of times that a deallocation can cause a freelist to
// go over its max_length() before shrinking max_length().
static const int kMaxOverages = 3;
// Maximum length we allow a per-thread free-list to have before we
// move objects from it into the corresponding central free-list. We
// want this big to avoid locking the central free-list too often. It
// should not hurt to make this list somewhat big because the
// scavenging code will shrink it down when its contents are not in use.
static const int kMaxDynamicFreeListLength = 8192;
static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
#if (__aarch64__ || __x86_64__ || _M_AMD64 || _M_ARM64) && !__sun__
// All current x86_64 processors only look at the lower 48 bits in
// virtual to physical address translation. The top 16 are all same as
// bit 47. And bit 47 value 1 reserved for kernel-space addresses in
// practice. So it is actually 47 usable bits from malloc
// perspective. This lets us use faster two level page maps on this
// architecture.
//
// There is very similar story on 64-bit arms except it has full 48
// bits for user-space. Because of that, and because in principle OSes
// can start giving some of highest-bit-set addresses to user-space,
// we don't bother to limit x86 to 47 bits.
//
// As of now there are published plans to add more bits to x86-64
// virtual address space, but since 48 bits has been norm for long
// time and lots of software is relying on it, it will be opt-in from
// OS perspective. So we can keep doing "48 bits" at least for now.
static const int kAddressBits = (sizeof(void*) < 8 ? (8 * sizeof(void*)) : 48);
#else
// mipsen and ppcs have more general hardware so we have to support
// full 64-bits of addresses.
static const int kAddressBits = 8 * sizeof(void*);
#endif
namespace tcmalloc {
// Convert byte size into pages. This won't overflow, but may return
// an unreasonably large value if bytes is huge enough.
inline Length pages(size_t bytes) {
return (bytes >> kPageShift) +
((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
}
// Size-class information + mapping
class SizeMap {
private:
//-------------------------------------------------------------------
// Mapping from size to size_class and vice versa
//-------------------------------------------------------------------
// Sizes <= 1024 have an alignment >= 8. So for such sizes we have an
// array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128.
// So for these larger sizes we have an array indexed by ceil(size/128).
//
// We flatten both logical arrays into one physical array and use
// arithmetic to compute an appropriate index. The constants used by
// ClassIndex() were selected to make the flattening work.
//
// Examples:
// Size Expression Index
// -------------------------------------------------------
// 0 (0 + 7) / 8 0
// 1 (1 + 7) / 8 1
// ...
// 1024 (1024 + 7) / 8 128
// 1025 (1025 + 127 + (120<<7)) / 128 129
// ...
// 32768 (32768 + 127 + (120<<7)) / 128 376
static const int kMaxSmallSize = 1024;
static const size_t kClassArraySize =
((kMaxSize + 127 + (120 << 7)) >> 7) + 1;
unsigned char class_array_[kClassArraySize];
static inline size_t SmallSizeClass(size_t s) {
return (static_cast<uint32_t>(s) + 7) >> 3;
}
static inline size_t LargeSizeClass(size_t s) {
return (static_cast<uint32_t>(s) + 127 + (120 << 7)) >> 7;
}
// If size is no more than kMaxSize, compute index of the
// class_array[] entry for it, putting the class index in output
// parameter idx and returning true. Otherwise return false.
static ALWAYS_INLINE bool ClassIndexMaybe(size_t s,
uint32_t* idx) {
if (PREDICT_TRUE(s <= kMaxSmallSize)) {
*idx = (static_cast<uint32_t>(s) + 7) >> 3;
return true;
} else if (s <= kMaxSize) {
*idx = (static_cast<uint32_t>(s) + 127 + (120 << 7)) >> 7;
return true;
}
return false;
}
// Compute index of the class_array[] entry for a given size
static inline size_t ClassIndex(size_t s) {
// Use unsigned arithmetic to avoid unnecessary sign extensions.
ASSERT(0 <= s);
ASSERT(s <= kMaxSize);
if (PREDICT_TRUE(s <= kMaxSmallSize)) {
return SmallSizeClass(s);
} else {
return LargeSizeClass(s);
}
}
// Number of objects to move between a per-thread list and a central
// list in one shot. We want this to be not too small so we can
// amortize the lock overhead for accessing the central list. Making
// it too big may temporarily cause unnecessary memory wastage in the
// per-thread free list until the scavenger cleans up the list.
int num_objects_to_move_[kClassSizesMax];
int NumMoveSize(size_t size);
// Mapping from size class to max size storable in that class
int32_t class_to_size_[kClassSizesMax];
// Mapping from size class to number of pages to allocate at a time
size_t class_to_pages_[kClassSizesMax];
size_t min_span_size_in_pages_;
public:
size_t num_size_classes;
// Constructor should do nothing since we rely on explicit Init()
// call, which may or may not be called before the constructor runs.
SizeMap() { }
// Initialize the mapping arrays
void Init();
inline int SizeClass(size_t size) {
return class_array_[ClassIndex(size)];
}
// Check if size is small enough to be representable by a size
// class, and if it is, put matching size class into *cl. Returns
// true iff matching size class was found.
ALWAYS_INLINE bool GetSizeClass(size_t size, uint32_t* cl) {
uint32_t idx;
if (!ClassIndexMaybe(size, &idx)) {
return false;
}
*cl = class_array_[idx];
return true;
}
// Get the byte-size for a specified class
ALWAYS_INLINE int32_t ByteSizeForClass(uint32_t cl) {
return class_to_size_[cl];
}
// Mapping from size class to max size storable in that class
int32_t class_to_size(uint32_t cl) {
return class_to_size_[cl];
}
// Mapping from size class to number of pages to allocate at a time
size_t class_to_pages(uint32_t cl) {
return class_to_pages_[cl];
}
// Number of objects to move between a per-thread list and a central
// list in one shot. We want this to be not too small so we can
// amortize the lock overhead for accessing the central list. Making
// it too big may temporarily cause unnecessary memory wastage in the
// per-thread free list until the scavenger cleans up the list.
int num_objects_to_move(uint32_t cl) {
return num_objects_to_move_[cl];
}
// Smallest Span size in bytes (max of system's page size and
// kPageSize).
Length min_span_size_in_pages() {
return min_span_size_in_pages_;
}
};
// Allocates "bytes" worth of memory and returns it. Increments
// metadata_system_bytes appropriately. May return NULL if allocation
// fails. Requires pageheap_lock is held.
void* MetaDataAlloc(size_t bytes);
// Returns the total number of bytes allocated from the system.
// Requires pageheap_lock is held.
uint64_t metadata_system_bytes();
// size/depth are made the same size as a pointer so that some generic
// code below can conveniently cast them back and forth to void*.
static const int kMaxStackDepth = 31;
struct StackTrace {
uintptr_t size; // Size of object
uintptr_t depth; // Number of PC values stored in array below
void* stack[kMaxStackDepth];
};
} // namespace tcmalloc
#endif // TCMALLOC_COMMON_H_