| /* Copyright (c) 2006, Google Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Google Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * --- |
| * Author: Sanjay Ghemawat |
| */ |
| |
| // Implementation of atomic operations for x86. This file should not |
| // be included directly. Clients should instead include |
| // "base/atomicops.h". |
| |
| #ifndef BASE_ATOMICOPS_INTERNALS_X86_H_ |
| #define BASE_ATOMICOPS_INTERNALS_X86_H_ |
| |
| typedef int32_t Atomic32; |
| #define BASE_HAS_ATOMIC64 1 // Use only in tests and base/atomic* |
| |
| |
| // NOTE(vchen): x86 does not need to define AtomicWordCastType, because it |
| // already matches Atomic32 or Atomic64, depending on the platform. |
| |
| |
| // This struct is not part of the public API of this module; clients may not |
| // use it. |
| // Features of this x86. Values may not be correct before main() is run, |
| // but are set conservatively. |
| struct AtomicOps_x86CPUFeatureStruct { |
| bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence |
| // after acquire compare-and-swap. |
| bool has_sse2; // Processor has SSE2. |
| bool has_cmpxchg16b; // Processor supports cmpxchg16b instruction. |
| }; |
| extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures; |
| |
| |
| #define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory") |
| |
| |
| namespace base { |
| namespace subtle { |
| |
| typedef int64_t Atomic64; |
| |
| // 32-bit low-level operations on any platform. |
| |
| inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
| Atomic32 old_value, |
| Atomic32 new_value) { |
| Atomic32 prev; |
| __asm__ __volatile__("lock; cmpxchgl %1,%2" |
| : "=a" (prev) |
| : "q" (new_value), "m" (*ptr), "0" (old_value) |
| : "memory"); |
| return prev; |
| } |
| |
| inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
| Atomic32 new_value) { |
| __asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg. |
| : "=r" (new_value) |
| : "m" (*ptr), "0" (new_value) |
| : "memory"); |
| return new_value; // Now it's the previous value. |
| } |
| |
| inline Atomic32 Acquire_AtomicExchange(volatile Atomic32* ptr, |
| Atomic32 new_value) { |
| Atomic32 old_val = NoBarrier_AtomicExchange(ptr, new_value); |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return old_val; |
| } |
| |
| inline Atomic32 Release_AtomicExchange(volatile Atomic32* ptr, |
| Atomic32 new_value) { |
| // xchgl already has release memory barrier semantics. |
| return NoBarrier_AtomicExchange(ptr, new_value); |
| } |
| |
| inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
| Atomic32 increment) { |
| Atomic32 temp = increment; |
| __asm__ __volatile__("lock; xaddl %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now holds the old value of *ptr |
| return temp + increment; |
| } |
| |
| inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
| Atomic32 increment) { |
| Atomic32 temp = increment; |
| __asm__ __volatile__("lock; xaddl %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now holds the old value of *ptr |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return temp + increment; |
| } |
| |
| inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
| Atomic32 old_value, |
| Atomic32 new_value) { |
| Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return x; |
| } |
| |
| inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
| Atomic32 old_value, |
| Atomic32 new_value) { |
| return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| } |
| |
| inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { |
| *ptr = value; |
| } |
| |
| #if defined(__x86_64__) |
| |
| // 64-bit implementations of memory barrier can be simpler, because it |
| // "mfence" is guaranteed to exist. |
| inline void MemoryBarrier() { |
| __asm__ __volatile__("mfence" : : : "memory"); |
| } |
| |
| inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| *ptr = value; |
| MemoryBarrier(); |
| } |
| |
| #else |
| |
| inline void MemoryBarrier() { |
| if (AtomicOps_Internalx86CPUFeatures.has_sse2) { |
| __asm__ __volatile__("mfence" : : : "memory"); |
| } else { // mfence is faster but not present on PIII |
| Atomic32 x = 0; |
| Acquire_AtomicExchange(&x, 0); |
| } |
| } |
| |
| inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| if (AtomicOps_Internalx86CPUFeatures.has_sse2) { |
| *ptr = value; |
| __asm__ __volatile__("mfence" : : : "memory"); |
| } else { |
| Acquire_AtomicExchange(ptr, value); |
| } |
| } |
| #endif |
| |
| inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { |
| ATOMICOPS_COMPILER_BARRIER(); |
| *ptr = value; // An x86 store acts as a release barrier. |
| // See comments in Atomic64 version of Release_Store(), below. |
| } |
| |
| inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { |
| return *ptr; |
| } |
| |
| inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { |
| Atomic32 value = *ptr; // An x86 load acts as a acquire barrier. |
| // See comments in Atomic64 version of Release_Store(), below. |
| ATOMICOPS_COMPILER_BARRIER(); |
| return value; |
| } |
| |
| inline Atomic32 Release_Load(volatile const Atomic32* ptr) { |
| MemoryBarrier(); |
| return *ptr; |
| } |
| |
| #if defined(__x86_64__) |
| |
| // 64-bit low-level operations on 64-bit platform. |
| |
| inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, |
| Atomic64 old_value, |
| Atomic64 new_value) { |
| Atomic64 prev; |
| __asm__ __volatile__("lock; cmpxchgq %1,%2" |
| : "=a" (prev) |
| : "q" (new_value), "m" (*ptr), "0" (old_value) |
| : "memory"); |
| return prev; |
| } |
| |
| inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, |
| Atomic64 new_value) { |
| __asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg. |
| : "=r" (new_value) |
| : "m" (*ptr), "0" (new_value) |
| : "memory"); |
| return new_value; // Now it's the previous value. |
| } |
| |
| inline Atomic64 Acquire_AtomicExchange(volatile Atomic64* ptr, |
| Atomic64 new_value) { |
| Atomic64 old_val = NoBarrier_AtomicExchange(ptr, new_value); |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return old_val; |
| } |
| |
| inline Atomic64 Release_AtomicExchange(volatile Atomic64* ptr, |
| Atomic64 new_value) { |
| // xchgq already has release memory barrier semantics. |
| return NoBarrier_AtomicExchange(ptr, new_value); |
| } |
| |
| inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, |
| Atomic64 increment) { |
| Atomic64 temp = increment; |
| __asm__ __volatile__("lock; xaddq %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now contains the previous value of *ptr |
| return temp + increment; |
| } |
| |
| inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, |
| Atomic64 increment) { |
| Atomic64 temp = increment; |
| __asm__ __volatile__("lock; xaddq %0,%1" |
| : "+r" (temp), "+m" (*ptr) |
| : : "memory"); |
| // temp now contains the previous value of *ptr |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return temp + increment; |
| } |
| |
| inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { |
| *ptr = value; |
| } |
| |
| inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { |
| *ptr = value; |
| MemoryBarrier(); |
| } |
| |
| inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { |
| ATOMICOPS_COMPILER_BARRIER(); |
| |
| *ptr = value; // An x86 store acts as a release barrier |
| // for current AMD/Intel chips as of Jan 2008. |
| // See also Acquire_Load(), below. |
| |
| // When new chips come out, check: |
| // IA-32 Intel Architecture Software Developer's Manual, Volume 3: |
| // System Programming Guide, Chatper 7: Multiple-processor management, |
| // Section 7.2, Memory Ordering. |
| // Last seen at: |
| // http://developer.intel.com/design/pentium4/manuals/index_new.htm |
| // |
| // x86 stores/loads fail to act as barriers for a few instructions (clflush |
| // maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are |
| // not generated by the compiler, and are rare. Users of these instructions |
| // need to know about cache behaviour in any case since all of these involve |
| // either flushing cache lines or non-temporal cache hints. |
| } |
| |
| inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { |
| return *ptr; |
| } |
| |
| inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { |
| Atomic64 value = *ptr; // An x86 load acts as a acquire barrier, |
| // for current AMD/Intel chips as of Jan 2008. |
| // See also Release_Store(), above. |
| ATOMICOPS_COMPILER_BARRIER(); |
| return value; |
| } |
| |
| inline Atomic64 Release_Load(volatile const Atomic64* ptr) { |
| MemoryBarrier(); |
| return *ptr; |
| } |
| |
| #else // defined(__x86_64__) |
| |
| // 64-bit low-level operations on 32-bit platform. |
| |
| #if !((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) |
| // For compilers older than gcc 4.1, we use inline asm. |
| // |
| // Potential pitfalls: |
| // |
| // 1. %ebx points to Global offset table (GOT) with -fPIC. |
| // We need to preserve this register. |
| // 2. When explicit registers are used in inline asm, the |
| // compiler may not be aware of it and might try to reuse |
| // the same register for another argument which has constraints |
| // that allow it ("r" for example). |
| |
| inline Atomic64 __sync_val_compare_and_swap(volatile Atomic64* ptr, |
| Atomic64 old_value, |
| Atomic64 new_value) { |
| Atomic64 prev; |
| __asm__ __volatile__("push %%ebx\n\t" |
| "movl (%3), %%ebx\n\t" // Move 64-bit new_value into |
| "movl 4(%3), %%ecx\n\t" // ecx:ebx |
| "lock; cmpxchg8b (%1)\n\t"// If edx:eax (old_value) same |
| "pop %%ebx\n\t" |
| : "=A" (prev) // as contents of ptr: |
| : "D" (ptr), // ecx:ebx => ptr |
| "0" (old_value), // else: |
| "S" (&new_value) // old *ptr => edx:eax |
| : "memory", "%ecx"); |
| return prev; |
| } |
| #endif // Compiler < gcc-4.1 |
| |
| inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, |
| Atomic64 old_val, |
| Atomic64 new_val) { |
| return __sync_val_compare_and_swap(ptr, old_val, new_val); |
| } |
| |
| inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, |
| Atomic64 new_val) { |
| Atomic64 old_val; |
| |
| do { |
| old_val = *ptr; |
| } while (__sync_val_compare_and_swap(ptr, old_val, new_val) != old_val); |
| |
| return old_val; |
| } |
| |
| inline Atomic64 Acquire_AtomicExchange(volatile Atomic64* ptr, |
| Atomic64 new_val) { |
| Atomic64 old_val = NoBarrier_AtomicExchange(ptr, new_val); |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return old_val; |
| } |
| |
| inline Atomic64 Release_AtomicExchange(volatile Atomic64* ptr, |
| Atomic64 new_val) { |
| return NoBarrier_AtomicExchange(ptr, new_val); |
| } |
| |
| inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, |
| Atomic64 increment) { |
| Atomic64 old_val, new_val; |
| |
| do { |
| old_val = *ptr; |
| new_val = old_val + increment; |
| } while (__sync_val_compare_and_swap(ptr, old_val, new_val) != old_val); |
| |
| return old_val + increment; |
| } |
| |
| inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, |
| Atomic64 increment) { |
| Atomic64 new_val = NoBarrier_AtomicIncrement(ptr, increment); |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return new_val; |
| } |
| |
| inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { |
| __asm__ __volatile__("movq %1, %%mm0\n\t" // Use mmx reg for 64-bit atomic |
| "movq %%mm0, %0\n\t" // moves (ptr could be read-only) |
| "emms\n\t" // Empty mmx state/Reset FP regs |
| : "=m" (*ptr) |
| : "m" (value) |
| : // mark the FP stack and mmx registers as clobbered |
| "st", "st(1)", "st(2)", "st(3)", "st(4)", |
| "st(5)", "st(6)", "st(7)", "mm0", "mm1", |
| "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"); |
| } |
| |
| inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { |
| NoBarrier_Store(ptr, value); |
| MemoryBarrier(); |
| } |
| |
| inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { |
| ATOMICOPS_COMPILER_BARRIER(); |
| NoBarrier_Store(ptr, value); |
| } |
| |
| inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { |
| Atomic64 value; |
| __asm__ __volatile__("movq %1, %%mm0\n\t" // Use mmx reg for 64-bit atomic |
| "movq %%mm0, %0\n\t" // moves (ptr could be read-only) |
| "emms\n\t" // Empty mmx state/Reset FP regs |
| : "=m" (value) |
| : "m" (*ptr) |
| : // mark the FP stack and mmx registers as clobbered |
| "st", "st(1)", "st(2)", "st(3)", "st(4)", |
| "st(5)", "st(6)", "st(7)", "mm0", "mm1", |
| "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"); |
| return value; |
| } |
| |
| inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { |
| Atomic64 value = NoBarrier_Load(ptr); |
| ATOMICOPS_COMPILER_BARRIER(); |
| return value; |
| } |
| |
| inline Atomic64 Release_Load(volatile const Atomic64* ptr) { |
| MemoryBarrier(); |
| return NoBarrier_Load(ptr); |
| } |
| |
| #endif // defined(__x86_64__) |
| |
| inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, |
| Atomic64 old_value, |
| Atomic64 new_value) { |
| Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { |
| __asm__ __volatile__("lfence" : : : "memory"); |
| } |
| return x; |
| } |
| |
| inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, |
| Atomic64 old_value, |
| Atomic64 new_value) { |
| return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| } |
| |
| } // namespace base::subtle |
| } // namespace base |
| |
| #undef ATOMICOPS_COMPILER_BARRIER |
| |
| #endif // BASE_ATOMICOPS_INTERNALS_X86_H_ |