blob: 7c67325f26acd83672d91da4a5bdf76b03186fed [file] [log] [blame]
/* Copyright (c) 2006, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ---
* Author: Sanjay Ghemawat
*/
// Implementation of atomic operations for x86. This file should not
// be included directly. Clients should instead include
// "base/atomicops.h".
#ifndef BASE_ATOMICOPS_INTERNALS_X86_H_
#define BASE_ATOMICOPS_INTERNALS_X86_H_
typedef int32_t Atomic32;
#define BASE_HAS_ATOMIC64 1 // Use only in tests and base/atomic*
// NOTE(vchen): x86 does not need to define AtomicWordCastType, because it
// already matches Atomic32 or Atomic64, depending on the platform.
// This struct is not part of the public API of this module; clients may not
// use it.
// Features of this x86. Values may not be correct before main() is run,
// but are set conservatively.
struct AtomicOps_x86CPUFeatureStruct {
bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence
// after acquire compare-and-swap.
bool has_sse2; // Processor has SSE2.
bool has_cmpxchg16b; // Processor supports cmpxchg16b instruction.
};
extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures;
#define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory")
namespace base {
namespace subtle {
typedef int64_t Atomic64;
// 32-bit low-level operations on any platform.
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
Atomic32 prev;
__asm__ __volatile__("lock; cmpxchgl %1,%2"
: "=a" (prev)
: "q" (new_value), "m" (*ptr), "0" (old_value)
: "memory");
return prev;
}
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
Atomic32 new_value) {
__asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg.
: "=r" (new_value)
: "m" (*ptr), "0" (new_value)
: "memory");
return new_value; // Now it's the previous value.
}
inline Atomic32 Acquire_AtomicExchange(volatile Atomic32* ptr,
Atomic32 new_value) {
Atomic32 old_val = NoBarrier_AtomicExchange(ptr, new_value);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return old_val;
}
inline Atomic32 Release_AtomicExchange(volatile Atomic32* ptr,
Atomic32 new_value) {
// xchgl already has release memory barrier semantics.
return NoBarrier_AtomicExchange(ptr, new_value);
}
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
Atomic32 increment) {
Atomic32 temp = increment;
__asm__ __volatile__("lock; xaddl %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now holds the old value of *ptr
return temp + increment;
}
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
Atomic32 increment) {
Atomic32 temp = increment;
__asm__ __volatile__("lock; xaddl %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now holds the old value of *ptr
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return temp + increment;
}
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return x;
}
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
}
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
*ptr = value;
}
#if defined(__x86_64__)
// 64-bit implementations of memory barrier can be simpler, because it
// "mfence" is guaranteed to exist.
inline void MemoryBarrier() {
__asm__ __volatile__("mfence" : : : "memory");
}
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
*ptr = value;
MemoryBarrier();
}
#else
inline void MemoryBarrier() {
if (AtomicOps_Internalx86CPUFeatures.has_sse2) {
__asm__ __volatile__("mfence" : : : "memory");
} else { // mfence is faster but not present on PIII
Atomic32 x = 0;
Acquire_AtomicExchange(&x, 0);
}
}
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
if (AtomicOps_Internalx86CPUFeatures.has_sse2) {
*ptr = value;
__asm__ __volatile__("mfence" : : : "memory");
} else {
Acquire_AtomicExchange(ptr, value);
}
}
#endif
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
ATOMICOPS_COMPILER_BARRIER();
*ptr = value; // An x86 store acts as a release barrier.
// See comments in Atomic64 version of Release_Store(), below.
}
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
return *ptr;
}
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
Atomic32 value = *ptr; // An x86 load acts as a acquire barrier.
// See comments in Atomic64 version of Release_Store(), below.
ATOMICOPS_COMPILER_BARRIER();
return value;
}
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
MemoryBarrier();
return *ptr;
}
#if defined(__x86_64__)
// 64-bit low-level operations on 64-bit platform.
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
Atomic64 prev;
__asm__ __volatile__("lock; cmpxchgq %1,%2"
: "=a" (prev)
: "q" (new_value), "m" (*ptr), "0" (old_value)
: "memory");
return prev;
}
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_value) {
__asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg.
: "=r" (new_value)
: "m" (*ptr), "0" (new_value)
: "memory");
return new_value; // Now it's the previous value.
}
inline Atomic64 Acquire_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_value) {
Atomic64 old_val = NoBarrier_AtomicExchange(ptr, new_value);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return old_val;
}
inline Atomic64 Release_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_value) {
// xchgq already has release memory barrier semantics.
return NoBarrier_AtomicExchange(ptr, new_value);
}
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
Atomic64 temp = increment;
__asm__ __volatile__("lock; xaddq %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now contains the previous value of *ptr
return temp + increment;
}
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
Atomic64 temp = increment;
__asm__ __volatile__("lock; xaddq %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now contains the previous value of *ptr
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return temp + increment;
}
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
*ptr = value;
}
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
*ptr = value;
MemoryBarrier();
}
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
ATOMICOPS_COMPILER_BARRIER();
*ptr = value; // An x86 store acts as a release barrier
// for current AMD/Intel chips as of Jan 2008.
// See also Acquire_Load(), below.
// When new chips come out, check:
// IA-32 Intel Architecture Software Developer's Manual, Volume 3:
// System Programming Guide, Chatper 7: Multiple-processor management,
// Section 7.2, Memory Ordering.
// Last seen at:
// http://developer.intel.com/design/pentium4/manuals/index_new.htm
//
// x86 stores/loads fail to act as barriers for a few instructions (clflush
// maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are
// not generated by the compiler, and are rare. Users of these instructions
// need to know about cache behaviour in any case since all of these involve
// either flushing cache lines or non-temporal cache hints.
}
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
return *ptr;
}
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
Atomic64 value = *ptr; // An x86 load acts as a acquire barrier,
// for current AMD/Intel chips as of Jan 2008.
// See also Release_Store(), above.
ATOMICOPS_COMPILER_BARRIER();
return value;
}
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
MemoryBarrier();
return *ptr;
}
#else // defined(__x86_64__)
// 64-bit low-level operations on 32-bit platform.
#if !((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
// For compilers older than gcc 4.1, we use inline asm.
//
// Potential pitfalls:
//
// 1. %ebx points to Global offset table (GOT) with -fPIC.
// We need to preserve this register.
// 2. When explicit registers are used in inline asm, the
// compiler may not be aware of it and might try to reuse
// the same register for another argument which has constraints
// that allow it ("r" for example).
inline Atomic64 __sync_val_compare_and_swap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
Atomic64 prev;
__asm__ __volatile__("push %%ebx\n\t"
"movl (%3), %%ebx\n\t" // Move 64-bit new_value into
"movl 4(%3), %%ecx\n\t" // ecx:ebx
"lock; cmpxchg8b (%1)\n\t"// If edx:eax (old_value) same
"pop %%ebx\n\t"
: "=A" (prev) // as contents of ptr:
: "D" (ptr), // ecx:ebx => ptr
"0" (old_value), // else:
"S" (&new_value) // old *ptr => edx:eax
: "memory", "%ecx");
return prev;
}
#endif // Compiler < gcc-4.1
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_val,
Atomic64 new_val) {
return __sync_val_compare_and_swap(ptr, old_val, new_val);
}
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_val) {
Atomic64 old_val;
do {
old_val = *ptr;
} while (__sync_val_compare_and_swap(ptr, old_val, new_val) != old_val);
return old_val;
}
inline Atomic64 Acquire_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_val) {
Atomic64 old_val = NoBarrier_AtomicExchange(ptr, new_val);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return old_val;
}
inline Atomic64 Release_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_val) {
return NoBarrier_AtomicExchange(ptr, new_val);
}
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
Atomic64 old_val, new_val;
do {
old_val = *ptr;
new_val = old_val + increment;
} while (__sync_val_compare_and_swap(ptr, old_val, new_val) != old_val);
return old_val + increment;
}
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
Atomic64 new_val = NoBarrier_AtomicIncrement(ptr, increment);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return new_val;
}
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
__asm__ __volatile__("movq %1, %%mm0\n\t" // Use mmx reg for 64-bit atomic
"movq %%mm0, %0\n\t" // moves (ptr could be read-only)
"emms\n\t" // Empty mmx state/Reset FP regs
: "=m" (*ptr)
: "m" (value)
: // mark the FP stack and mmx registers as clobbered
"st", "st(1)", "st(2)", "st(3)", "st(4)",
"st(5)", "st(6)", "st(7)", "mm0", "mm1",
"mm2", "mm3", "mm4", "mm5", "mm6", "mm7");
}
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
NoBarrier_Store(ptr, value);
MemoryBarrier();
}
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
ATOMICOPS_COMPILER_BARRIER();
NoBarrier_Store(ptr, value);
}
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
Atomic64 value;
__asm__ __volatile__("movq %1, %%mm0\n\t" // Use mmx reg for 64-bit atomic
"movq %%mm0, %0\n\t" // moves (ptr could be read-only)
"emms\n\t" // Empty mmx state/Reset FP regs
: "=m" (value)
: "m" (*ptr)
: // mark the FP stack and mmx registers as clobbered
"st", "st(1)", "st(2)", "st(3)", "st(4)",
"st(5)", "st(6)", "st(7)", "mm0", "mm1",
"mm2", "mm3", "mm4", "mm5", "mm6", "mm7");
return value;
}
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
Atomic64 value = NoBarrier_Load(ptr);
ATOMICOPS_COMPILER_BARRIER();
return value;
}
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
MemoryBarrier();
return NoBarrier_Load(ptr);
}
#endif // defined(__x86_64__)
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return x;
}
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
}
} // namespace base::subtle
} // namespace base
#undef ATOMICOPS_COMPILER_BARRIER
#endif // BASE_ATOMICOPS_INTERNALS_X86_H_