| // -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- |
| // Copyright (c) 2005, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // --- |
| // Author: Sanjay Ghemawat <opensource@google.com> |
| // |
| // A malloc that uses a per-thread cache to satisfy small malloc requests. |
| // (The time for malloc/free of a small object drops from 300 ns to 50 ns.) |
| // |
| // See doc/tcmalloc.html for a high-level |
| // description of how this malloc works. |
| // |
| // SYNCHRONIZATION |
| // 1. The thread-specific lists are accessed without acquiring any locks. |
| // This is safe because each such list is only accessed by one thread. |
| // 2. We have a lock per central free-list, and hold it while manipulating |
| // the central free list for a particular size. |
| // 3. The central page allocator is protected by "pageheap_lock". |
| // 4. The pagemap (which maps from page-number to descriptor), |
| // can be read without holding any locks, and written while holding |
| // the "pageheap_lock". |
| // 5. To improve performance, a subset of the information one can get |
| // from the pagemap is cached in a data structure, pagemap_cache_, |
| // that atomically reads and writes its entries. This cache can be |
| // read and written without locking. |
| // |
| // This multi-threaded access to the pagemap is safe for fairly |
| // subtle reasons. We basically assume that when an object X is |
| // allocated by thread A and deallocated by thread B, there must |
| // have been appropriate synchronization in the handoff of object |
| // X from thread A to thread B. The same logic applies to pagemap_cache_. |
| // |
| // THE PAGEID-TO-SIZECLASS CACHE |
| // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache |
| // returns 0 for a particular PageID then that means "no information," not that |
| // the sizeclass is 0. The cache may have stale information for pages that do |
| // not hold the beginning of any free()'able object. Staleness is eliminated |
| // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and |
| // do_memalign() for all other relevant pages. |
| // |
| // PAGEMAP |
| // ------- |
| // Page map contains a mapping from page id to Span. |
| // |
| // If Span s occupies pages [p..q], |
| // pagemap[p] == s |
| // pagemap[q] == s |
| // pagemap[p+1..q-1] are undefined |
| // pagemap[p-1] and pagemap[q+1] are defined: |
| // NULL if the corresponding page is not yet in the address space. |
| // Otherwise it points to a Span. This span may be free |
| // or allocated. If free, it is in one of pageheap's freelist. |
| // |
| // TODO: Bias reclamation to larger addresses |
| // TODO: implement mallinfo/mallopt |
| // TODO: Better testing |
| // |
| // 9/28/2003 (new page-level allocator replaces ptmalloc2): |
| // * malloc/free of small objects goes from ~300 ns to ~50 ns. |
| // * allocation of a reasonably complicated struct |
| // goes from about 1100 ns to about 300 ns. |
| |
| #include "config.h" |
| #include <gperftools/tcmalloc.h> |
| |
| #include <errno.h> // for ENOMEM, EINVAL, errno |
| #ifdef HAVE_SYS_CDEFS_H |
| #include <sys/cdefs.h> // for __THROW |
| #endif |
| #if defined HAVE_STDINT_H |
| #include <stdint.h> |
| #elif defined HAVE_INTTYPES_H |
| #include <inttypes.h> |
| #else |
| #include <sys/types.h> |
| #endif |
| #include <stddef.h> // for size_t, NULL |
| #include <stdlib.h> // for getenv |
| #include <string.h> // for strcmp, memset, strlen, etc |
| #ifdef HAVE_UNISTD_H |
| #include <unistd.h> // for getpagesize, write, etc |
| #endif |
| #include <algorithm> // for max, min |
| #include <limits> // for numeric_limits |
| #include <new> // for nothrow_t (ptr only), etc |
| #include <vector> // for vector |
| |
| #include <gperftools/malloc_extension.h> |
| #include <gperftools/malloc_hook.h> // for MallocHook |
| #include "base/basictypes.h" // for int64 |
| #include "base/commandlineflags.h" // for RegisterFlagValidator, etc |
| #include "base/dynamic_annotations.h" // for RunningOnValgrind |
| #include "base/spinlock.h" // for SpinLockHolder |
| #include "central_freelist.h" // for CentralFreeListPadded |
| #include "common.h" // for StackTrace, kPageShift, etc |
| #include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc |
| #include "linked_list.h" // for SLL_SetNext |
| #include "malloc_hook-inl.h" // for MallocHook::InvokeNewHook, etc |
| #include "page_heap.h" // for PageHeap, PageHeap::Stats |
| #include "page_heap_allocator.h" // for PageHeapAllocator |
| #include "span.h" // for Span, DLL_Prepend, etc |
| #include "stack_trace_table.h" // for StackTraceTable |
| #include "static_vars.h" // for Static |
| #include "system-alloc.h" // for DumpSystemAllocatorStats, etc |
| #include "tcmalloc_guard.h" // for TCMallocGuard |
| #include "thread_cache.h" // for ThreadCache |
| |
| #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS) |
| # define WIN32_DO_PATCHING 1 |
| #endif |
| |
| // Some windows file somewhere (at least on cygwin) #define's small (!) |
| #undef small |
| |
| using STL_NAMESPACE::max; |
| using STL_NAMESPACE::numeric_limits; |
| using STL_NAMESPACE::vector; |
| |
| #include "libc_override.h" |
| |
| // __THROW is defined in glibc (via <sys/cdefs.h>). It means, |
| // counter-intuitively, "This function will never throw an exception." |
| // It's an optional optimization tool, but we may need to use it to |
| // match glibc prototypes. |
| #ifndef __THROW // I guess we're not on a glibc system |
| # define __THROW // __THROW is just an optimization, so ok to make it "" |
| #endif |
| |
| using tcmalloc::AlignmentForSize; |
| using tcmalloc::kLog; |
| using tcmalloc::kCrash; |
| using tcmalloc::kCrashWithStats; |
| using tcmalloc::Log; |
| using tcmalloc::PageHeap; |
| using tcmalloc::PageHeapAllocator; |
| using tcmalloc::SizeMap; |
| using tcmalloc::Span; |
| using tcmalloc::StackTrace; |
| using tcmalloc::Static; |
| using tcmalloc::ThreadCache; |
| |
| DECLARE_int64(tcmalloc_sample_parameter); |
| DECLARE_double(tcmalloc_release_rate); |
| |
| // For windows, the printf we use to report large allocs is |
| // potentially dangerous: it could cause a malloc that would cause an |
| // infinite loop. So by default we set the threshold to a huge number |
| // on windows, so this bad situation will never trigger. You can |
| // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you |
| // want this functionality. |
| #ifdef _WIN32 |
| const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62; |
| #else |
| const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30; |
| #endif |
| DEFINE_int64(tcmalloc_large_alloc_report_threshold, |
| EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD", |
| kDefaultLargeAllocReportThreshold), |
| "Allocations larger than this value cause a stack " |
| "trace to be dumped to stderr. The threshold for " |
| "dumping stack traces is increased by a factor of 1.125 " |
| "every time we print a message so that the threshold " |
| "automatically goes up by a factor of ~1000 every 60 " |
| "messages. This bounds the amount of extra logging " |
| "generated by this flag. Default value of this flag " |
| "is very large and therefore you should see no extra " |
| "logging unless the flag is overridden. Set to 0 to " |
| "disable reporting entirely."); |
| |
| |
| // We already declared these functions in tcmalloc.h, but we have to |
| // declare them again to give them an ATTRIBUTE_SECTION: we want to |
| // put all callers of MallocHook::Invoke* in this module into |
| // ATTRIBUTE_SECTION(google_malloc) section, so that |
| // MallocHook::GetCallerStackTrace can function accurately. |
| #ifndef _WIN32 // windows doesn't have attribute_section, so don't bother |
| extern "C" { |
| void* tc_malloc(size_t size) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void tc_free(void* ptr) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void* tc_realloc(void* ptr, size_t size) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void* tc_calloc(size_t nmemb, size_t size) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void tc_cfree(void* ptr) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| |
| void* tc_memalign(size_t __alignment, size_t __size) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void* tc_valloc(size_t __size) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void* tc_pvalloc(size_t __size) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| |
| void tc_malloc_stats(void) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| int tc_mallopt(int cmd, int value) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| #ifdef HAVE_STRUCT_MALLINFO |
| struct mallinfo tc_mallinfo(void) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| #endif |
| |
| void* tc_new(size_t size) |
| ATTRIBUTE_SECTION(google_malloc); |
| void tc_delete(void* p) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void* tc_newarray(size_t size) |
| ATTRIBUTE_SECTION(google_malloc); |
| void tc_deletearray(void* p) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| |
| // And the nothrow variants of these: |
| void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| // Surprisingly, standard C++ library implementations use a |
| // nothrow-delete internally. See, eg: |
| // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html |
| void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| |
| // Some non-standard extensions that we support. |
| |
| // This is equivalent to |
| // OS X: malloc_size() |
| // glibc: malloc_usable_size() |
| // Windows: _msize() |
| size_t tc_malloc_size(void* p) __THROW |
| ATTRIBUTE_SECTION(google_malloc); |
| } // extern "C" |
| #endif // #ifndef _WIN32 |
| |
| // ----------------------- IMPLEMENTATION ------------------------------- |
| |
| static int tc_new_mode = 0; // See tc_set_new_mode(). |
| |
| // Routines such as free() and realloc() catch some erroneous pointers |
| // passed to them, and invoke the below when they do. (An erroneous pointer |
| // won't be caught if it's within a valid span or a stale span for which |
| // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing |
| // required) kind of exception handling for these routines. |
| namespace { |
| void InvalidFree(void* ptr) { |
| Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr); |
| } |
| |
| size_t InvalidGetSizeForRealloc(const void* old_ptr) { |
| Log(kCrash, __FILE__, __LINE__, |
| "Attempt to realloc invalid pointer", old_ptr); |
| return 0; |
| } |
| |
| size_t InvalidGetAllocatedSize(const void* ptr) { |
| Log(kCrash, __FILE__, __LINE__, |
| "Attempt to get the size of an invalid pointer", ptr); |
| return 0; |
| } |
| } // unnamed namespace |
| |
| // Extract interesting stats |
| struct TCMallocStats { |
| uint64_t thread_bytes; // Bytes in thread caches |
| uint64_t central_bytes; // Bytes in central cache |
| uint64_t transfer_bytes; // Bytes in central transfer cache |
| uint64_t metadata_bytes; // Bytes alloced for metadata |
| PageHeap::Stats pageheap; // Stats from page heap |
| }; |
| |
| // Get stats into "r". Also, if class_count != NULL, class_count[k] |
| // will be set to the total number of objects of size class k in the |
| // central cache, transfer cache, and per-thread caches. If small_spans |
| // is non-NULL, it is filled. Same for large_spans. |
| static void ExtractStats(TCMallocStats* r, uint64_t* class_count, |
| PageHeap::SmallSpanStats* small_spans, |
| PageHeap::LargeSpanStats* large_spans) { |
| r->central_bytes = 0; |
| r->transfer_bytes = 0; |
| for (int cl = 0; cl < kNumClasses; ++cl) { |
| const int length = Static::central_cache()[cl].length(); |
| const int tc_length = Static::central_cache()[cl].tc_length(); |
| const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes(); |
| const size_t size = static_cast<uint64_t>( |
| Static::sizemap()->ByteSizeForClass(cl)); |
| r->central_bytes += (size * length) + cache_overhead; |
| r->transfer_bytes += (size * tc_length); |
| if (class_count) { |
| // Sum the lengths of all per-class freelists, except the per-thread |
| // freelists, which get counted when we call GetThreadStats(), below. |
| class_count[cl] = length + tc_length; |
| } |
| |
| } |
| |
| // Add stats from per-thread heaps |
| r->thread_bytes = 0; |
| { // scope |
| SpinLockHolder h(Static::pageheap_lock()); |
| ThreadCache::GetThreadStats(&r->thread_bytes, class_count); |
| r->metadata_bytes = tcmalloc::metadata_system_bytes(); |
| r->pageheap = Static::pageheap()->stats(); |
| if (small_spans != NULL) { |
| Static::pageheap()->GetSmallSpanStats(small_spans); |
| } |
| if (large_spans != NULL) { |
| Static::pageheap()->GetLargeSpanStats(large_spans); |
| } |
| } |
| } |
| |
| static double PagesToMiB(uint64_t pages) { |
| return (pages << kPageShift) / 1048576.0; |
| } |
| |
| // WRITE stats to "out" |
| static void DumpStats(TCMalloc_Printer* out, int level) { |
| TCMallocStats stats; |
| uint64_t class_count[kNumClasses]; |
| PageHeap::SmallSpanStats small; |
| PageHeap::LargeSpanStats large; |
| if (level >= 2) { |
| ExtractStats(&stats, class_count, &small, &large); |
| } else { |
| ExtractStats(&stats, NULL, NULL, NULL); |
| } |
| |
| static const double MiB = 1048576.0; |
| |
| const uint64_t virtual_memory_used = (stats.pageheap.system_bytes |
| + stats.metadata_bytes); |
| const uint64_t physical_memory_used = (virtual_memory_used |
| - stats.pageheap.unmapped_bytes); |
| const uint64_t bytes_in_use_by_app = (physical_memory_used |
| - stats.metadata_bytes |
| - stats.pageheap.free_bytes |
| - stats.central_bytes |
| - stats.transfer_bytes |
| - stats.thread_bytes); |
| |
| #ifdef TCMALLOC_SMALL_BUT_SLOW |
| out->printf( |
| "NOTE: SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n"); |
| #endif |
| out->printf( |
| "------------------------------------------------\n" |
| "MALLOC: %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n" |
| "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n" |
| "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n" |
| "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n" |
| "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n" |
| "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n" |
| "MALLOC: ------------\n" |
| "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n" |
| "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n" |
| "MALLOC: ------------\n" |
| "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n" |
| "MALLOC:\n" |
| "MALLOC: %12" PRIu64 " Spans in use\n" |
| "MALLOC: %12" PRIu64 " Thread heaps in use\n" |
| "MALLOC: %12" PRIu64 " Tcmalloc page size\n" |
| "------------------------------------------------\n" |
| "Call ReleaseFreeMemory() to release freelist memory to the OS" |
| " (via madvise()).\n" |
| "Bytes released to the OS take up virtual address space" |
| " but no physical memory.\n", |
| bytes_in_use_by_app, bytes_in_use_by_app / MiB, |
| stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB, |
| stats.central_bytes, stats.central_bytes / MiB, |
| stats.transfer_bytes, stats.transfer_bytes / MiB, |
| stats.thread_bytes, stats.thread_bytes / MiB, |
| stats.metadata_bytes, stats.metadata_bytes / MiB, |
| physical_memory_used, physical_memory_used / MiB, |
| stats.pageheap.unmapped_bytes, stats.pageheap.unmapped_bytes / MiB, |
| virtual_memory_used, virtual_memory_used / MiB, |
| uint64_t(Static::span_allocator()->inuse()), |
| uint64_t(ThreadCache::HeapsInUse()), |
| uint64_t(kPageSize)); |
| |
| if (level >= 2) { |
| out->printf("------------------------------------------------\n"); |
| out->printf("Total size of freelists for per-thread caches,\n"); |
| out->printf("transfer cache, and central cache, by size class\n"); |
| out->printf("------------------------------------------------\n"); |
| uint64_t cumulative = 0; |
| for (int cl = 0; cl < kNumClasses; ++cl) { |
| if (class_count[cl] > 0) { |
| uint64_t class_bytes = |
| class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); |
| cumulative += class_bytes; |
| out->printf("class %3d [ %8" PRIuS " bytes ] : " |
| "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n", |
| cl, Static::sizemap()->ByteSizeForClass(cl), |
| class_count[cl], |
| class_bytes / MiB, |
| cumulative / MiB); |
| } |
| } |
| |
| // append page heap info |
| int nonempty_sizes = 0; |
| for (int s = 0; s < kMaxPages; s++) { |
| if (small.normal_length[s] + small.returned_length[s] > 0) { |
| nonempty_sizes++; |
| } |
| } |
| out->printf("------------------------------------------------\n"); |
| out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n", |
| nonempty_sizes, stats.pageheap.free_bytes / MiB, |
| stats.pageheap.unmapped_bytes / MiB); |
| out->printf("------------------------------------------------\n"); |
| uint64_t total_normal = 0; |
| uint64_t total_returned = 0; |
| for (int s = 0; s < kMaxPages; s++) { |
| const int n_length = small.normal_length[s]; |
| const int r_length = small.returned_length[s]; |
| if (n_length + r_length > 0) { |
| uint64_t n_pages = s * n_length; |
| uint64_t r_pages = s * r_length; |
| total_normal += n_pages; |
| total_returned += r_pages; |
| out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum" |
| "; unmapped: %6.1f MiB; %6.1f MiB cum\n", |
| s, |
| (n_length + r_length), |
| PagesToMiB(n_pages + r_pages), |
| PagesToMiB(total_normal + total_returned), |
| PagesToMiB(r_pages), |
| PagesToMiB(total_returned)); |
| } |
| } |
| |
| total_normal += large.normal_pages; |
| total_returned += large.returned_pages; |
| out->printf(">255 large * %6u spans ~ %6.1f MiB; %6.1f MiB cum" |
| "; unmapped: %6.1f MiB; %6.1f MiB cum\n", |
| static_cast<unsigned int>(large.spans), |
| PagesToMiB(large.normal_pages + large.returned_pages), |
| PagesToMiB(total_normal + total_returned), |
| PagesToMiB(large.returned_pages), |
| PagesToMiB(total_returned)); |
| } |
| } |
| |
| static void PrintStats(int level) { |
| const int kBufferSize = 16 << 10; |
| char* buffer = new char[kBufferSize]; |
| TCMalloc_Printer printer(buffer, kBufferSize); |
| DumpStats(&printer, level); |
| write(STDERR_FILENO, buffer, strlen(buffer)); |
| delete[] buffer; |
| } |
| |
| static void** DumpHeapGrowthStackTraces() { |
| // Count how much space we need |
| int needed_slots = 0; |
| { |
| SpinLockHolder h(Static::pageheap_lock()); |
| for (StackTrace* t = Static::growth_stacks(); |
| t != NULL; |
| t = reinterpret_cast<StackTrace*>( |
| t->stack[tcmalloc::kMaxStackDepth-1])) { |
| needed_slots += 3 + t->depth; |
| } |
| needed_slots += 100; // Slop in case list grows |
| needed_slots += needed_slots/8; // An extra 12.5% slop |
| } |
| |
| void** result = new void*[needed_slots]; |
| if (result == NULL) { |
| Log(kLog, __FILE__, __LINE__, |
| "tcmalloc: allocation failed for stack trace slots", |
| needed_slots * sizeof(*result)); |
| return NULL; |
| } |
| |
| SpinLockHolder h(Static::pageheap_lock()); |
| int used_slots = 0; |
| for (StackTrace* t = Static::growth_stacks(); |
| t != NULL; |
| t = reinterpret_cast<StackTrace*>( |
| t->stack[tcmalloc::kMaxStackDepth-1])) { |
| ASSERT(used_slots < needed_slots); // Need to leave room for terminator |
| if (used_slots + 3 + t->depth >= needed_slots) { |
| // No more room |
| break; |
| } |
| |
| result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1)); |
| result[used_slots+1] = reinterpret_cast<void*>(t->size); |
| result[used_slots+2] = reinterpret_cast<void*>(t->depth); |
| for (int d = 0; d < t->depth; d++) { |
| result[used_slots+3+d] = t->stack[d]; |
| } |
| used_slots += 3 + t->depth; |
| } |
| result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0)); |
| return result; |
| } |
| |
| static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) { |
| PageID page = 1; // Some code may assume that page==0 is never used |
| bool done = false; |
| while (!done) { |
| // Accumulate a small number of ranges in a local buffer |
| static const int kNumRanges = 16; |
| static base::MallocRange ranges[kNumRanges]; |
| int n = 0; |
| { |
| SpinLockHolder h(Static::pageheap_lock()); |
| while (n < kNumRanges) { |
| if (!Static::pageheap()->GetNextRange(page, &ranges[n])) { |
| done = true; |
| break; |
| } else { |
| uintptr_t limit = ranges[n].address + ranges[n].length; |
| page = (limit + kPageSize - 1) >> kPageShift; |
| n++; |
| } |
| } |
| } |
| |
| for (int i = 0; i < n; i++) { |
| (*func)(arg, &ranges[i]); |
| } |
| } |
| } |
| |
| // TCMalloc's support for extra malloc interfaces |
| class TCMallocImplementation : public MallocExtension { |
| private: |
| // ReleaseToSystem() might release more than the requested bytes because |
| // the page heap releases at the span granularity, and spans are of wildly |
| // different sizes. This member keeps track of the extra bytes bytes |
| // released so that the app can periodically call ReleaseToSystem() to |
| // release memory at a constant rate. |
| // NOTE: Protected by Static::pageheap_lock(). |
| size_t extra_bytes_released_; |
| |
| public: |
| TCMallocImplementation() |
| : extra_bytes_released_(0) { |
| } |
| |
| virtual void GetStats(char* buffer, int buffer_length) { |
| ASSERT(buffer_length > 0); |
| TCMalloc_Printer printer(buffer, buffer_length); |
| |
| // Print level one stats unless lots of space is available |
| if (buffer_length < 10000) { |
| DumpStats(&printer, 1); |
| } else { |
| DumpStats(&printer, 2); |
| } |
| } |
| |
| // We may print an extra, tcmalloc-specific warning message here. |
| virtual void GetHeapSample(MallocExtensionWriter* writer) { |
| if (FLAGS_tcmalloc_sample_parameter == 0) { |
| const char* const kWarningMsg = |
| "%warn\n" |
| "%warn This heap profile does not have any data in it, because\n" |
| "%warn the application was run with heap sampling turned off.\n" |
| "%warn To get useful data from GetHeapSample(), you must\n" |
| "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n" |
| "%warn a positive sampling period, such as 524288.\n" |
| "%warn\n"; |
| writer->append(kWarningMsg, strlen(kWarningMsg)); |
| } |
| MallocExtension::GetHeapSample(writer); |
| } |
| |
| virtual void** ReadStackTraces(int* sample_period) { |
| tcmalloc::StackTraceTable table; |
| { |
| SpinLockHolder h(Static::pageheap_lock()); |
| Span* sampled = Static::sampled_objects(); |
| for (Span* s = sampled->next; s != sampled; s = s->next) { |
| table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects)); |
| } |
| } |
| *sample_period = ThreadCache::GetCache()->GetSamplePeriod(); |
| return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock |
| } |
| |
| virtual void** ReadHeapGrowthStackTraces() { |
| return DumpHeapGrowthStackTraces(); |
| } |
| |
| virtual void Ranges(void* arg, RangeFunction func) { |
| IterateOverRanges(arg, func); |
| } |
| |
| virtual bool GetNumericProperty(const char* name, size_t* value) { |
| ASSERT(name != NULL); |
| |
| if (strcmp(name, "generic.current_allocated_bytes") == 0) { |
| TCMallocStats stats; |
| ExtractStats(&stats, NULL, NULL, NULL); |
| *value = stats.pageheap.system_bytes |
| - stats.thread_bytes |
| - stats.central_bytes |
| - stats.transfer_bytes |
| - stats.pageheap.free_bytes |
| - stats.pageheap.unmapped_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "generic.heap_size") == 0) { |
| TCMallocStats stats; |
| ExtractStats(&stats, NULL, NULL, NULL); |
| *value = stats.pageheap.system_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.slack_bytes") == 0) { |
| // Kept for backwards compatibility. Now defined externally as: |
| // pageheap_free_bytes + pageheap_unmapped_bytes. |
| SpinLockHolder l(Static::pageheap_lock()); |
| PageHeap::Stats stats = Static::pageheap()->stats(); |
| *value = stats.free_bytes + stats.unmapped_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.central_cache_free_bytes") == 0) { |
| TCMallocStats stats; |
| ExtractStats(&stats, NULL, NULL, NULL); |
| *value = stats.central_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.transfer_cache_free_bytes") == 0) { |
| TCMallocStats stats; |
| ExtractStats(&stats, NULL, NULL, NULL); |
| *value = stats.transfer_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.thread_cache_free_bytes") == 0) { |
| TCMallocStats stats; |
| ExtractStats(&stats, NULL, NULL, NULL); |
| *value = stats.thread_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) { |
| SpinLockHolder l(Static::pageheap_lock()); |
| *value = Static::pageheap()->stats().free_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) { |
| SpinLockHolder l(Static::pageheap_lock()); |
| *value = Static::pageheap()->stats().unmapped_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { |
| SpinLockHolder l(Static::pageheap_lock()); |
| *value = ThreadCache::overall_thread_cache_size(); |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) { |
| TCMallocStats stats; |
| ExtractStats(&stats, NULL, NULL, NULL); |
| *value = stats.thread_bytes; |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.aggressive_memory_decommit") == 0) { |
| *value = size_t(Static::pageheap()->GetAggressiveDecommit()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| virtual bool SetNumericProperty(const char* name, size_t value) { |
| ASSERT(name != NULL); |
| |
| if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { |
| SpinLockHolder l(Static::pageheap_lock()); |
| ThreadCache::set_overall_thread_cache_size(value); |
| return true; |
| } |
| |
| if (strcmp(name, "tcmalloc.aggressive_memory_decommit") == 0) { |
| Static::pageheap()->SetAggressiveDecommit(value != 0); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| virtual void MarkThreadIdle() { |
| ThreadCache::BecomeIdle(); |
| } |
| |
| virtual void MarkThreadBusy(); // Implemented below |
| |
| virtual SysAllocator* GetSystemAllocator() { |
| SpinLockHolder h(Static::pageheap_lock()); |
| return sys_alloc; |
| } |
| |
| virtual void SetSystemAllocator(SysAllocator* alloc) { |
| SpinLockHolder h(Static::pageheap_lock()); |
| sys_alloc = alloc; |
| } |
| |
| virtual void ReleaseToSystem(size_t num_bytes) { |
| SpinLockHolder h(Static::pageheap_lock()); |
| if (num_bytes <= extra_bytes_released_) { |
| // We released too much on a prior call, so don't release any |
| // more this time. |
| extra_bytes_released_ = extra_bytes_released_ - num_bytes; |
| return; |
| } |
| num_bytes = num_bytes - extra_bytes_released_; |
| // num_bytes might be less than one page. If we pass zero to |
| // ReleaseAtLeastNPages, it won't do anything, so we release a whole |
| // page now and let extra_bytes_released_ smooth it out over time. |
| Length num_pages = max<Length>(num_bytes >> kPageShift, 1); |
| size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages( |
| num_pages) << kPageShift; |
| if (bytes_released > num_bytes) { |
| extra_bytes_released_ = bytes_released - num_bytes; |
| } else { |
| // The PageHeap wasn't able to release num_bytes. Don't try to |
| // compensate with a big release next time. Specifically, |
| // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX). |
| extra_bytes_released_ = 0; |
| } |
| } |
| |
| virtual void SetMemoryReleaseRate(double rate) { |
| FLAGS_tcmalloc_release_rate = rate; |
| } |
| |
| virtual double GetMemoryReleaseRate() { |
| return FLAGS_tcmalloc_release_rate; |
| } |
| virtual size_t GetEstimatedAllocatedSize(size_t size) { |
| if (size <= kMaxSize) { |
| const size_t cl = Static::sizemap()->SizeClass(size); |
| const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl); |
| return alloc_size; |
| } else { |
| return tcmalloc::pages(size) << kPageShift; |
| } |
| } |
| |
| // This just calls GetSizeWithCallback, but because that's in an |
| // unnamed namespace, we need to move the definition below it in the |
| // file. |
| virtual size_t GetAllocatedSize(const void* ptr); |
| |
| // This duplicates some of the logic in GetSizeWithCallback, but is |
| // faster. This is important on OS X, where this function is called |
| // on every allocation operation. |
| virtual Ownership GetOwnership(const void* ptr) { |
| const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
| // The rest of tcmalloc assumes that all allocated pointers use at |
| // most kAddressBits bits. If ptr doesn't, then it definitely |
| // wasn't alloacted by tcmalloc. |
| if ((p >> (kAddressBits - kPageShift)) > 0) { |
| return kNotOwned; |
| } |
| size_t cl = Static::pageheap()->GetSizeClassIfCached(p); |
| if (cl != 0) { |
| return kOwned; |
| } |
| const Span *span = Static::pageheap()->GetDescriptor(p); |
| return span ? kOwned : kNotOwned; |
| } |
| |
| virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) { |
| static const char* kCentralCacheType = "tcmalloc.central"; |
| static const char* kTransferCacheType = "tcmalloc.transfer"; |
| static const char* kThreadCacheType = "tcmalloc.thread"; |
| static const char* kPageHeapType = "tcmalloc.page"; |
| static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped"; |
| static const char* kLargeSpanType = "tcmalloc.large"; |
| static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped"; |
| |
| v->clear(); |
| |
| // central class information |
| int64 prev_class_size = 0; |
| for (int cl = 1; cl < kNumClasses; ++cl) { |
| size_t class_size = Static::sizemap()->ByteSizeForClass(cl); |
| MallocExtension::FreeListInfo i; |
| i.min_object_size = prev_class_size + 1; |
| i.max_object_size = class_size; |
| i.total_bytes_free = |
| Static::central_cache()[cl].length() * class_size; |
| i.type = kCentralCacheType; |
| v->push_back(i); |
| |
| // transfer cache |
| i.total_bytes_free = |
| Static::central_cache()[cl].tc_length() * class_size; |
| i.type = kTransferCacheType; |
| v->push_back(i); |
| |
| prev_class_size = Static::sizemap()->ByteSizeForClass(cl); |
| } |
| |
| // Add stats from per-thread heaps |
| uint64_t class_count[kNumClasses]; |
| memset(class_count, 0, sizeof(class_count)); |
| { |
| SpinLockHolder h(Static::pageheap_lock()); |
| uint64_t thread_bytes = 0; |
| ThreadCache::GetThreadStats(&thread_bytes, class_count); |
| } |
| |
| prev_class_size = 0; |
| for (int cl = 1; cl < kNumClasses; ++cl) { |
| MallocExtension::FreeListInfo i; |
| i.min_object_size = prev_class_size + 1; |
| i.max_object_size = Static::sizemap()->ByteSizeForClass(cl); |
| i.total_bytes_free = |
| class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); |
| i.type = kThreadCacheType; |
| v->push_back(i); |
| } |
| |
| // append page heap info |
| PageHeap::SmallSpanStats small; |
| PageHeap::LargeSpanStats large; |
| { |
| SpinLockHolder h(Static::pageheap_lock()); |
| Static::pageheap()->GetSmallSpanStats(&small); |
| Static::pageheap()->GetLargeSpanStats(&large); |
| } |
| |
| // large spans: mapped |
| MallocExtension::FreeListInfo span_info; |
| span_info.type = kLargeSpanType; |
| span_info.max_object_size = (numeric_limits<size_t>::max)(); |
| span_info.min_object_size = kMaxPages << kPageShift; |
| span_info.total_bytes_free = large.normal_pages << kPageShift; |
| v->push_back(span_info); |
| |
| // large spans: unmapped |
| span_info.type = kLargeUnmappedSpanType; |
| span_info.total_bytes_free = large.returned_pages << kPageShift; |
| v->push_back(span_info); |
| |
| // small spans |
| for (int s = 1; s < kMaxPages; s++) { |
| MallocExtension::FreeListInfo i; |
| i.max_object_size = (s << kPageShift); |
| i.min_object_size = ((s - 1) << kPageShift); |
| |
| i.type = kPageHeapType; |
| i.total_bytes_free = (s << kPageShift) * small.normal_length[s]; |
| v->push_back(i); |
| |
| i.type = kPageHeapUnmappedType; |
| i.total_bytes_free = (s << kPageShift) * small.returned_length[s]; |
| v->push_back(i); |
| } |
| } |
| }; |
| |
| // The constructor allocates an object to ensure that initialization |
| // runs before main(), and therefore we do not have a chance to become |
| // multi-threaded before initialization. We also create the TSD key |
| // here. Presumably by the time this constructor runs, glibc is in |
| // good enough shape to handle pthread_key_create(). |
| // |
| // The constructor also takes the opportunity to tell STL to use |
| // tcmalloc. We want to do this early, before construct time, so |
| // all user STL allocations go through tcmalloc (which works really |
| // well for STL). |
| // |
| // The destructor prints stats when the program exits. |
| static int tcmallocguard_refcount = 0; // no lock needed: runs before main() |
| TCMallocGuard::TCMallocGuard() { |
| if (tcmallocguard_refcount++ == 0) { |
| #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS |
| // Check whether the kernel also supports TLS (needs to happen at runtime) |
| tcmalloc::CheckIfKernelSupportsTLS(); |
| #endif |
| ReplaceSystemAlloc(); // defined in libc_override_*.h |
| tc_free(tc_malloc(1)); |
| ThreadCache::InitTSD(); |
| tc_free(tc_malloc(1)); |
| // Either we, or debugallocation.cc, or valgrind will control memory |
| // management. We register our extension if we're the winner. |
| #ifdef TCMALLOC_USING_DEBUGALLOCATION |
| // Let debugallocation register its extension. |
| #else |
| if (RunningOnValgrind()) { |
| // Let Valgrind uses its own malloc (so don't register our extension). |
| } else { |
| MallocExtension::Register(new TCMallocImplementation); |
| } |
| #endif |
| } |
| } |
| |
| TCMallocGuard::~TCMallocGuard() { |
| if (--tcmallocguard_refcount == 0) { |
| const char* env = NULL; |
| if (!RunningOnValgrind()) { |
| // Valgrind uses it's own malloc so we cannot do MALLOCSTATS |
| env = getenv("MALLOCSTATS"); |
| } |
| if (env != NULL) { |
| int level = atoi(env); |
| if (level < 1) level = 1; |
| PrintStats(level); |
| } |
| } |
| } |
| #ifndef WIN32_OVERRIDE_ALLOCATORS |
| static TCMallocGuard module_enter_exit_hook; |
| #endif |
| |
| //------------------------------------------------------------------- |
| // Helpers for the exported routines below |
| //------------------------------------------------------------------- |
| |
| static inline bool CheckCachedSizeClass(void *ptr) { |
| PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
| size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p); |
| return cached_value == 0 || |
| cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass; |
| } |
| |
| static inline void* CheckedMallocResult(void *result) { |
| ASSERT(result == NULL || CheckCachedSizeClass(result)); |
| return result; |
| } |
| |
| static inline void* SpanToMallocResult(Span *span) { |
| Static::pageheap()->CacheSizeClass(span->start, 0); |
| return |
| CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift)); |
| } |
| |
| static void* DoSampledAllocation(size_t size) { |
| // Grab the stack trace outside the heap lock |
| StackTrace tmp; |
| tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1); |
| tmp.size = size; |
| |
| SpinLockHolder h(Static::pageheap_lock()); |
| // Allocate span |
| Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size)); |
| if (UNLIKELY(span == NULL)) { |
| return NULL; |
| } |
| |
| // Allocate stack trace |
| StackTrace *stack = Static::stacktrace_allocator()->New(); |
| if (UNLIKELY(stack == NULL)) { |
| // Sampling failed because of lack of memory |
| return span; |
| } |
| *stack = tmp; |
| span->sample = 1; |
| span->objects = stack; |
| tcmalloc::DLL_Prepend(Static::sampled_objects(), span); |
| |
| return SpanToMallocResult(span); |
| } |
| |
| namespace { |
| |
| // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with |
| // automatic increases factored in. |
| static int64_t large_alloc_threshold = |
| (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold |
| ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold); |
| |
| static void ReportLargeAlloc(Length num_pages, void* result) { |
| StackTrace stack; |
| stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1); |
| |
| static const int N = 1000; |
| char buffer[N]; |
| TCMalloc_Printer printer(buffer, N); |
| printer.printf("tcmalloc: large alloc %" PRIu64 " bytes == %p @ ", |
| static_cast<uint64>(num_pages) << kPageShift, |
| result); |
| for (int i = 0; i < stack.depth; i++) { |
| printer.printf(" %p", stack.stack[i]); |
| } |
| printer.printf("\n"); |
| write(STDERR_FILENO, buffer, strlen(buffer)); |
| } |
| |
| inline void* cpp_alloc(size_t size, bool nothrow); |
| inline void* do_malloc(size_t size); |
| inline void* do_malloc_no_errno(size_t size); |
| |
| // TODO(willchan): Investigate whether or not lining this much is harmful to |
| // performance. |
| // This is equivalent to do_malloc() except when tc_new_mode is set to true. |
| // Otherwise, it will run the std::new_handler if set. |
| inline void* do_malloc_or_cpp_alloc(size_t size) { |
| return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size); |
| } |
| |
| inline void* do_malloc_no_errno_or_cpp_alloc(size_t size) { |
| return tc_new_mode ? cpp_alloc(size, true) : do_malloc_no_errno(size); |
| } |
| |
| void* cpp_memalign(size_t align, size_t size); |
| void* do_memalign(size_t align, size_t size); |
| |
| inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) { |
| return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size); |
| } |
| |
| // Must be called with the page lock held. |
| inline bool should_report_large(Length num_pages) { |
| const int64 threshold = large_alloc_threshold; |
| if (threshold > 0 && num_pages >= (threshold >> kPageShift)) { |
| // Increase the threshold by 1/8 every time we generate a report. |
| // We cap the threshold at 8GiB to avoid overflow problems. |
| large_alloc_threshold = (threshold + threshold/8 < 8ll<<30 |
| ? threshold + threshold/8 : 8ll<<30); |
| return true; |
| } |
| return false; |
| } |
| |
| // Helper for do_malloc(). |
| inline void* do_malloc_pages(ThreadCache* heap, size_t size) { |
| void* result; |
| bool report_large; |
| |
| Length num_pages = tcmalloc::pages(size); |
| size = num_pages << kPageShift; |
| |
| if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { |
| result = DoSampledAllocation(size); |
| |
| SpinLockHolder h(Static::pageheap_lock()); |
| report_large = should_report_large(num_pages); |
| } else { |
| SpinLockHolder h(Static::pageheap_lock()); |
| Span* span = Static::pageheap()->New(num_pages); |
| result = (UNLIKELY(span == NULL) ? NULL : SpanToMallocResult(span)); |
| report_large = should_report_large(num_pages); |
| } |
| |
| if (report_large) { |
| ReportLargeAlloc(num_pages, result); |
| } |
| return result; |
| } |
| |
| inline void* do_malloc_small(ThreadCache* heap, size_t size) { |
| ASSERT(Static::IsInited()); |
| ASSERT(heap != NULL); |
| size_t cl = Static::sizemap()->SizeClass(size); |
| size = Static::sizemap()->class_to_size(cl); |
| |
| if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { |
| return DoSampledAllocation(size); |
| } else { |
| // The common case, and also the simplest. This just pops the |
| // size-appropriate freelist, after replenishing it if it's empty. |
| return CheckedMallocResult(heap->Allocate(size, cl)); |
| } |
| } |
| |
| inline void* do_malloc_no_errno(size_t size) { |
| if (ThreadCache::have_tls && |
| LIKELY(size < ThreadCache::MinSizeForSlowPath())) { |
| return do_malloc_small(ThreadCache::GetCacheWhichMustBePresent(), size); |
| } else if (size <= kMaxSize) { |
| return do_malloc_small(ThreadCache::GetCache(), size); |
| } else { |
| return do_malloc_pages(ThreadCache::GetCache(), size); |
| } |
| } |
| |
| inline void* do_malloc(size_t size) { |
| void* ret = do_malloc_no_errno(size); |
| if (UNLIKELY(ret == NULL)) errno = ENOMEM; |
| return ret; |
| } |
| |
| inline void* do_calloc(size_t n, size_t elem_size) { |
| // Overflow check |
| const size_t size = n * elem_size; |
| if (elem_size != 0 && size / elem_size != n) return NULL; |
| |
| void* result = do_malloc_no_errno_or_cpp_alloc(size); |
| if (result == NULL) { |
| errno = ENOMEM; |
| } else { |
| memset(result, 0, size); |
| } |
| return result; |
| } |
| |
| // If ptr is NULL, do nothing. Otherwise invoke the given function. |
| inline void free_null_or_invalid(void* ptr, void (*invalid_free_fn)(void*)) { |
| if (ptr != NULL) { |
| (*invalid_free_fn)(ptr); |
| } |
| } |
| |
| // Helper for do_free_with_callback(), below. Inputs: |
| // ptr is object to be freed |
| // invalid_free_fn is a function that gets invoked on certain "bad frees" |
| // heap is the ThreadCache for this thread, or NULL if it isn't known |
| // heap_must_be_valid is whether heap is known to be non-NULL |
| // |
| // This function may only be used after Static::IsInited() is true. |
| // |
| // We can usually detect the case where ptr is not pointing to a page that |
| // tcmalloc is using, and in those cases we invoke invalid_free_fn. |
| // |
| // To maximize speed in the common case, we usually get here with |
| // heap_must_be_valid being a manifest constant equal to true. |
| inline void do_free_helper(void* ptr, |
| void (*invalid_free_fn)(void*), |
| ThreadCache* heap, |
| bool heap_must_be_valid) { |
| ASSERT((Static::IsInited() && heap != NULL) || !heap_must_be_valid); |
| if (!heap_must_be_valid && !Static::IsInited()) { |
| // We called free() before malloc(). This can occur if the |
| // (system) malloc() is called before tcmalloc is loaded, and then |
| // free() is called after tcmalloc is loaded (and tc_free has |
| // replaced free), but before the global constructor has run that |
| // sets up the tcmalloc data structures. |
| free_null_or_invalid(ptr, invalid_free_fn); |
| return; |
| } |
| Span* span = NULL; |
| const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
| size_t cl = Static::pageheap()->GetSizeClassIfCached(p); |
| if (UNLIKELY(cl == 0)) { |
| span = Static::pageheap()->GetDescriptor(p); |
| if (UNLIKELY(!span)) { |
| // span can be NULL because the pointer passed in is NULL or invalid |
| // (not something returned by malloc or friends), or because the |
| // pointer was allocated with some other allocator besides |
| // tcmalloc. The latter can happen if tcmalloc is linked in via |
| // a dynamic library, but is not listed last on the link line. |
| // In that case, libraries after it on the link line will |
| // allocate with libc malloc, but free with tcmalloc's free. |
| free_null_or_invalid(ptr, invalid_free_fn); |
| return; |
| } |
| cl = span->sizeclass; |
| Static::pageheap()->CacheSizeClass(p, cl); |
| } |
| ASSERT(ptr != NULL); |
| if (LIKELY(cl != 0)) { |
| ASSERT(!Static::pageheap()->GetDescriptor(p)->sample); |
| if (heap_must_be_valid || heap != NULL) { |
| heap->Deallocate(ptr, cl); |
| } else { |
| // Delete directly into central cache |
| tcmalloc::SLL_SetNext(ptr, NULL); |
| Static::central_cache()[cl].InsertRange(ptr, ptr, 1); |
| } |
| } else { |
| SpinLockHolder h(Static::pageheap_lock()); |
| ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0); |
| ASSERT(span != NULL && span->start == p); |
| if (span->sample) { |
| StackTrace* st = reinterpret_cast<StackTrace*>(span->objects); |
| tcmalloc::DLL_Remove(span); |
| Static::stacktrace_allocator()->Delete(st); |
| span->objects = NULL; |
| } |
| Static::pageheap()->Delete(span); |
| } |
| } |
| |
| // Helper for the object deletion (free, delete, etc.). Inputs: |
| // ptr is object to be freed |
| // invalid_free_fn is a function that gets invoked on certain "bad frees" |
| // |
| // We can usually detect the case where ptr is not pointing to a page that |
| // tcmalloc is using, and in those cases we invoke invalid_free_fn. |
| inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) { |
| ThreadCache* heap = NULL; |
| if (LIKELY(ThreadCache::IsFastPathAllowed())) { |
| heap = ThreadCache::GetCacheWhichMustBePresent(); |
| do_free_helper(ptr, invalid_free_fn, heap, true); |
| } else { |
| heap = ThreadCache::GetCacheIfPresent(); |
| do_free_helper(ptr, invalid_free_fn, heap, false); |
| } |
| } |
| |
| // The default "do_free" that uses the default callback. |
| inline void do_free(void* ptr) { |
| return do_free_with_callback(ptr, &InvalidFree); |
| } |
| |
| // NOTE: some logic here is duplicated in GetOwnership (above), for |
| // speed. If you change this function, look at that one too. |
| inline size_t GetSizeWithCallback(const void* ptr, |
| size_t (*invalid_getsize_fn)(const void*)) { |
| if (ptr == NULL) |
| return 0; |
| const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
| size_t cl = Static::pageheap()->GetSizeClassIfCached(p); |
| if (cl != 0) { |
| return Static::sizemap()->ByteSizeForClass(cl); |
| } else { |
| const Span *span = Static::pageheap()->GetDescriptor(p); |
| if (UNLIKELY(span == NULL)) { // means we do not own this memory |
| return (*invalid_getsize_fn)(ptr); |
| } else if (span->sizeclass != 0) { |
| Static::pageheap()->CacheSizeClass(p, span->sizeclass); |
| return Static::sizemap()->ByteSizeForClass(span->sizeclass); |
| } else { |
| return span->length << kPageShift; |
| } |
| } |
| } |
| |
| // This lets you call back to a given function pointer if ptr is invalid. |
| // It is used primarily by windows code which wants a specialized callback. |
| inline void* do_realloc_with_callback( |
| void* old_ptr, size_t new_size, |
| void (*invalid_free_fn)(void*), |
| size_t (*invalid_get_size_fn)(const void*)) { |
| // Get the size of the old entry |
| const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn); |
| |
| // Reallocate if the new size is larger than the old size, |
| // or if the new size is significantly smaller than the old size. |
| // We do hysteresis to avoid resizing ping-pongs: |
| // . If we need to grow, grow to max(new_size, old_size * 1.X) |
| // . Don't shrink unless new_size < old_size * 0.Y |
| // X and Y trade-off time for wasted space. For now we do 1.25 and 0.5. |
| const size_t lower_bound_to_grow = old_size + old_size / 4ul; |
| const size_t upper_bound_to_shrink = old_size / 2ul; |
| if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) { |
| // Need to reallocate. |
| void* new_ptr = NULL; |
| |
| if (new_size > old_size && new_size < lower_bound_to_grow) { |
| new_ptr = do_malloc_no_errno_or_cpp_alloc(lower_bound_to_grow); |
| } |
| if (new_ptr == NULL) { |
| // Either new_size is not a tiny increment, or last do_malloc failed. |
| new_ptr = do_malloc_or_cpp_alloc(new_size); |
| } |
| if (UNLIKELY(new_ptr == NULL)) { |
| return NULL; |
| } |
| MallocHook::InvokeNewHook(new_ptr, new_size); |
| memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size)); |
| MallocHook::InvokeDeleteHook(old_ptr); |
| // We could use a variant of do_free() that leverages the fact |
| // that we already know the sizeclass of old_ptr. The benefit |
| // would be small, so don't bother. |
| do_free_with_callback(old_ptr, invalid_free_fn); |
| return new_ptr; |
| } else { |
| // We still need to call hooks to report the updated size: |
| MallocHook::InvokeDeleteHook(old_ptr); |
| MallocHook::InvokeNewHook(old_ptr, new_size); |
| return old_ptr; |
| } |
| } |
| |
| inline void* do_realloc(void* old_ptr, size_t new_size) { |
| return do_realloc_with_callback(old_ptr, new_size, |
| &InvalidFree, &InvalidGetSizeForRealloc); |
| } |
| |
| // For use by exported routines below that want specific alignments |
| // |
| // Note: this code can be slow for alignments > 16, and can |
| // significantly fragment memory. The expectation is that |
| // memalign/posix_memalign/valloc/pvalloc will not be invoked very |
| // often. This requirement simplifies our implementation and allows |
| // us to tune for expected allocation patterns. |
| void* do_memalign(size_t align, size_t size) { |
| ASSERT((align & (align - 1)) == 0); |
| ASSERT(align > 0); |
| if (size + align < size) return NULL; // Overflow |
| |
| // Fall back to malloc if we would already align this memory access properly. |
| if (align <= AlignmentForSize(size)) { |
| void* p = do_malloc(size); |
| ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0); |
| return p; |
| } |
| |
| if (UNLIKELY(Static::pageheap() == NULL)) ThreadCache::InitModule(); |
| |
| // Allocate at least one byte to avoid boundary conditions below |
| if (size == 0) size = 1; |
| |
| if (size <= kMaxSize && align < kPageSize) { |
| // Search through acceptable size classes looking for one with |
| // enough alignment. This depends on the fact that |
| // InitSizeClasses() currently produces several size classes that |
| // are aligned at powers of two. We will waste time and space if |
| // we miss in the size class array, but that is deemed acceptable |
| // since memalign() should be used rarely. |
| int cl = Static::sizemap()->SizeClass(size); |
| while (cl < kNumClasses && |
| ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) { |
| cl++; |
| } |
| if (cl < kNumClasses) { |
| ThreadCache* heap = ThreadCache::GetCache(); |
| size = Static::sizemap()->class_to_size(cl); |
| return CheckedMallocResult(heap->Allocate(size, cl)); |
| } |
| } |
| |
| // We will allocate directly from the page heap |
| SpinLockHolder h(Static::pageheap_lock()); |
| |
| if (align <= kPageSize) { |
| // Any page-level allocation will be fine |
| // TODO: We could put the rest of this page in the appropriate |
| // TODO: cache but it does not seem worth it. |
| Span* span = Static::pageheap()->New(tcmalloc::pages(size)); |
| return UNLIKELY(span == NULL) ? NULL : SpanToMallocResult(span); |
| } |
| |
| // Allocate extra pages and carve off an aligned portion |
| const Length alloc = tcmalloc::pages(size + align); |
| Span* span = Static::pageheap()->New(alloc); |
| if (UNLIKELY(span == NULL)) return NULL; |
| |
| // Skip starting portion so that we end up aligned |
| Length skip = 0; |
| while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) { |
| skip++; |
| } |
| ASSERT(skip < alloc); |
| if (skip > 0) { |
| Span* rest = Static::pageheap()->Split(span, skip); |
| Static::pageheap()->Delete(span); |
| span = rest; |
| } |
| |
| // Skip trailing portion that we do not need to return |
| const Length needed = tcmalloc::pages(size); |
| ASSERT(span->length >= needed); |
| if (span->length > needed) { |
| Span* trailer = Static::pageheap()->Split(span, needed); |
| Static::pageheap()->Delete(trailer); |
| } |
| return SpanToMallocResult(span); |
| } |
| |
| // Helpers for use by exported routines below: |
| |
| inline void do_malloc_stats() { |
| PrintStats(1); |
| } |
| |
| inline int do_mallopt(int cmd, int value) { |
| return 1; // Indicates error |
| } |
| |
| #ifdef HAVE_STRUCT_MALLINFO |
| inline struct mallinfo do_mallinfo() { |
| TCMallocStats stats; |
| ExtractStats(&stats, NULL, NULL, NULL); |
| |
| // Just some of the fields are filled in. |
| struct mallinfo info; |
| memset(&info, 0, sizeof(info)); |
| |
| // Unfortunately, the struct contains "int" field, so some of the |
| // size values will be truncated. |
| info.arena = static_cast<int>(stats.pageheap.system_bytes); |
| info.fsmblks = static_cast<int>(stats.thread_bytes |
| + stats.central_bytes |
| + stats.transfer_bytes); |
| info.fordblks = static_cast<int>(stats.pageheap.free_bytes + |
| stats.pageheap.unmapped_bytes); |
| info.uordblks = static_cast<int>(stats.pageheap.system_bytes |
| - stats.thread_bytes |
| - stats.central_bytes |
| - stats.transfer_bytes |
| - stats.pageheap.free_bytes |
| - stats.pageheap.unmapped_bytes); |
| |
| return info; |
| } |
| #endif // HAVE_STRUCT_MALLINFO |
| |
| static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED); |
| |
| inline void* cpp_alloc(size_t size, bool nothrow) { |
| #ifdef PREANSINEW |
| return do_malloc(size); |
| #else |
| for (;;) { |
| void* p = do_malloc_no_errno(size); |
| if (UNLIKELY(p == NULL)) { // allocation failed |
| // Get the current new handler. NB: this function is not |
| // thread-safe. We make a feeble stab at making it so here, but |
| // this lock only protects against tcmalloc interfering with |
| // itself, not with other libraries calling set_new_handler. |
| std::new_handler nh; |
| { |
| SpinLockHolder h(&set_new_handler_lock); |
| nh = std::set_new_handler(0); |
| (void) std::set_new_handler(nh); |
| } |
| #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) |
| if (nh) { |
| // Since exceptions are disabled, we don't really know if new_handler |
| // failed. Assume it will abort if it fails. |
| (*nh)(); |
| continue; |
| } |
| goto fail; |
| #else |
| // If no new_handler is established, the allocation failed. |
| if (!nh) { |
| if (nothrow) goto fail; |
| throw std::bad_alloc(); |
| } |
| // Otherwise, try the new_handler. If it returns, retry the |
| // allocation. If it throws std::bad_alloc, fail the allocation. |
| // if it throws something else, don't interfere. |
| try { |
| (*nh)(); |
| } catch (const std::bad_alloc&) { |
| if (!nothrow) throw; |
| goto fail; |
| } |
| #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) |
| } else { // allocation success |
| return p; |
| } |
| #endif // PREANSINEW |
| } |
| fail: |
| errno = ENOMEM; |
| return 0; |
| } |
| |
| void* cpp_memalign(size_t align, size_t size) { |
| for (;;) { |
| void* p = do_memalign(align, size); |
| #ifdef PREANSINEW |
| return p; |
| #else |
| if (UNLIKELY(p == NULL)) { // allocation failed |
| // Get the current new handler. NB: this function is not |
| // thread-safe. We make a feeble stab at making it so here, but |
| // this lock only protects against tcmalloc interfering with |
| // itself, not with other libraries calling set_new_handler. |
| std::new_handler nh; |
| { |
| SpinLockHolder h(&set_new_handler_lock); |
| nh = std::set_new_handler(0); |
| (void) std::set_new_handler(nh); |
| } |
| #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) |
| if (nh) { |
| // Since exceptions are disabled, we don't really know if new_handler |
| // failed. Assume it will abort if it fails. |
| (*nh)(); |
| continue; |
| } |
| return 0; |
| #else |
| // If no new_handler is established, the allocation failed. |
| if (!nh) |
| return 0; |
| |
| // Otherwise, try the new_handler. If it returns, retry the |
| // allocation. If it throws std::bad_alloc, fail the allocation. |
| // if it throws something else, don't interfere. |
| try { |
| (*nh)(); |
| } catch (const std::bad_alloc&) { |
| return p; |
| } |
| #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) |
| } else { // allocation success |
| return p; |
| } |
| #endif // PREANSINEW |
| } |
| } |
| |
| } // end unnamed namespace |
| |
| // As promised, the definition of this function, declared above. |
| size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) { |
| if (ptr == NULL) |
| return 0; |
| ASSERT(TCMallocImplementation::GetOwnership(ptr) |
| != TCMallocImplementation::kNotOwned); |
| return GetSizeWithCallback(ptr, &InvalidGetAllocatedSize); |
| } |
| |
| void TCMallocImplementation::MarkThreadBusy() { |
| // Allocate to force the creation of a thread cache, but avoid |
| // invoking any hooks. |
| do_free(do_malloc(0)); |
| } |
| |
| //------------------------------------------------------------------- |
| // Exported routines |
| //------------------------------------------------------------------- |
| |
| extern "C" PERFTOOLS_DLL_DECL const char* tc_version( |
| int* major, int* minor, const char** patch) __THROW { |
| if (major) *major = TC_VERSION_MAJOR; |
| if (minor) *minor = TC_VERSION_MINOR; |
| if (patch) *patch = TC_VERSION_PATCH; |
| return TC_VERSION_STRING; |
| } |
| |
| // This function behaves similarly to MSVC's _set_new_mode. |
| // If flag is 0 (default), calls to malloc will behave normally. |
| // If flag is 1, calls to malloc will behave like calls to new, |
| // and the std_new_handler will be invoked on failure. |
| // Returns the previous mode. |
| extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW { |
| int old_mode = tc_new_mode; |
| tc_new_mode = flag; |
| return old_mode; |
| } |
| |
| #ifndef TCMALLOC_USING_DEBUGALLOCATION // debugallocation.cc defines its own |
| |
| // CAVEAT: The code structure below ensures that MallocHook methods are always |
| // called from the stack frame of the invoked allocation function. |
| // heap-checker.cc depends on this to start a stack trace from |
| // the call to the (de)allocation function. |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW { |
| void* result = do_malloc_or_cpp_alloc(size); |
| MallocHook::InvokeNewHook(result, size); |
| return result; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW { |
| MallocHook::InvokeDeleteHook(ptr); |
| do_free(ptr); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n, |
| size_t elem_size) __THROW { |
| void* result = do_calloc(n, elem_size); |
| MallocHook::InvokeNewHook(result, n * elem_size); |
| return result; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW { |
| MallocHook::InvokeDeleteHook(ptr); |
| do_free(ptr); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr, |
| size_t new_size) __THROW { |
| if (old_ptr == NULL) { |
| void* result = do_malloc_or_cpp_alloc(new_size); |
| MallocHook::InvokeNewHook(result, new_size); |
| return result; |
| } |
| if (new_size == 0) { |
| MallocHook::InvokeDeleteHook(old_ptr); |
| do_free(old_ptr); |
| return NULL; |
| } |
| return do_realloc(old_ptr, new_size); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) { |
| void* p = cpp_alloc(size, false); |
| // We keep this next instruction out of cpp_alloc for a reason: when |
| // it's in, and new just calls cpp_alloc, the optimizer may fold the |
| // new call into cpp_alloc, which messes up our whole section-based |
| // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc |
| // isn't the last thing this fn calls, and prevents the folding. |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW { |
| void* p = cpp_alloc(size, true); |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW { |
| MallocHook::InvokeDeleteHook(p); |
| do_free(p); |
| } |
| |
| // Standard C++ library implementations define and use this |
| // (via ::operator delete(ptr, nothrow)). |
| // But it's really the same as normal delete, so we just do the same thing. |
| extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW { |
| MallocHook::InvokeDeleteHook(p); |
| do_free(p); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) { |
| void* p = cpp_alloc(size, false); |
| // We keep this next instruction out of cpp_alloc for a reason: when |
| // it's in, and new just calls cpp_alloc, the optimizer may fold the |
| // new call into cpp_alloc, which messes up our whole section-based |
| // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc |
| // isn't the last thing this fn calls, and prevents the folding. |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) |
| __THROW { |
| void* p = cpp_alloc(size, true); |
| MallocHook::InvokeNewHook(p, size); |
| return p; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW { |
| MallocHook::InvokeDeleteHook(p); |
| do_free(p); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW { |
| MallocHook::InvokeDeleteHook(p); |
| do_free(p); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, |
| size_t size) __THROW { |
| void* result = do_memalign_or_cpp_memalign(align, size); |
| MallocHook::InvokeNewHook(result, size); |
| return result; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign( |
| void** result_ptr, size_t align, size_t size) __THROW { |
| if (((align % sizeof(void*)) != 0) || |
| ((align & (align - 1)) != 0) || |
| (align == 0)) { |
| return EINVAL; |
| } |
| |
| void* result = do_memalign_or_cpp_memalign(align, size); |
| MallocHook::InvokeNewHook(result, size); |
| if (UNLIKELY(result == NULL)) { |
| return ENOMEM; |
| } else { |
| *result_ptr = result; |
| return 0; |
| } |
| } |
| |
| static size_t pagesize = 0; |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW { |
| // Allocate page-aligned object of length >= size bytes |
| if (pagesize == 0) pagesize = getpagesize(); |
| void* result = do_memalign_or_cpp_memalign(pagesize, size); |
| MallocHook::InvokeNewHook(result, size); |
| return result; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW { |
| // Round up size to a multiple of pagesize |
| if (pagesize == 0) pagesize = getpagesize(); |
| if (size == 0) { // pvalloc(0) should allocate one page, according to |
| size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html |
| } |
| size = (size + pagesize - 1) & ~(pagesize - 1); |
| void* result = do_memalign_or_cpp_memalign(pagesize, size); |
| MallocHook::InvokeNewHook(result, size); |
| return result; |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW { |
| do_malloc_stats(); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW { |
| return do_mallopt(cmd, value); |
| } |
| |
| #ifdef HAVE_STRUCT_MALLINFO |
| extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW { |
| return do_mallinfo(); |
| } |
| #endif |
| |
| extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW { |
| return MallocExtension::instance()->GetAllocatedSize(ptr); |
| } |
| |
| extern "C" PERFTOOLS_DLL_DECL void* tc_malloc_skip_new_handler(size_t size) __THROW { |
| void* result = do_malloc(size); |
| MallocHook::InvokeNewHook(result, size); |
| return result; |
| } |
| |
| #endif // TCMALLOC_USING_DEBUGALLOCATION |