| // -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- |
| // Copyright (c) 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // --- |
| // Author: Geoff Pike |
| // |
| // This file provides a minimal cache that can hold a <key, value> pair |
| // with little if any wasted space. The types of the key and value |
| // must be unsigned integral types or at least have unsigned semantics |
| // for >>, casting, and similar operations. |
| // |
| // Synchronization is not provided. However, the cache is implemented |
| // as an array of cache entries whose type is chosen at compile time. |
| // If a[i] is atomic on your hardware for the chosen array type then |
| // raciness will not necessarily lead to bugginess. The cache entries |
| // must be large enough to hold a partial key and a value packed |
| // together. The partial keys are bit strings of length |
| // kKeybits - kHashbits, and the values are bit strings of length kValuebits. |
| // |
| // In an effort to use minimal space, every cache entry represents |
| // some <key, value> pair; the class provides no way to mark a cache |
| // entry as empty or uninitialized. In practice, you may want to have |
| // reserved keys or values to get around this limitation. For example, in |
| // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as |
| // "unknown sizeclass." |
| // |
| // Usage Considerations |
| // -------------------- |
| // |
| // kHashbits controls the size of the cache. The best value for |
| // kHashbits will of course depend on the application. Perhaps try |
| // tuning the value of kHashbits by measuring different values on your |
| // favorite benchmark. Also remember not to be a pig; other |
| // programs that need resources may suffer if you are. |
| // |
| // The main uses for this class will be when performance is |
| // critical and there's a convenient type to hold the cache's |
| // entries. As described above, the number of bits required |
| // for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose |
| // kKeybits + kValuebits is 43. Then it probably makes sense to |
| // chose kHashbits >= 11 so that cache entries fit in a uint32. |
| // |
| // On the other hand, suppose kKeybits = kValuebits = 64. Then |
| // using this class may be less worthwhile. You'll probably |
| // be using 128 bits for each entry anyway, so maybe just pick |
| // a hash function, H, and use an array indexed by H(key): |
| // void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); } |
| // V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... } |
| // etc. |
| // |
| // Further Details |
| // --------------- |
| // |
| // For caches used only by one thread, the following is true: |
| // 1. For a cache c, |
| // (c.Put(key, value), c.GetOrDefault(key, 0)) == value |
| // and |
| // (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value |
| // if the elided code contains no c.Put calls. |
| // |
| // 2. Has(key) will return false if no <key, value> pair with that key |
| // has ever been Put. However, a newly initialized cache will have |
| // some <key, value> pairs already present. When you create a new |
| // cache, you must specify an "initial value." The initialization |
| // procedure is equivalent to Clear(initial_value), which is |
| // equivalent to Put(k, initial_value) for all keys k from 0 to |
| // 2^kHashbits - 1. |
| // |
| // 3. If key and key' differ then the only way Put(key, value) may |
| // cause Has(key') to change is that Has(key') may change from true to |
| // false. Furthermore, a Put() call that doesn't change Has(key') |
| // doesn't change GetOrDefault(key', ...) either. |
| // |
| // Implementation details: |
| // |
| // This is a direct-mapped cache with 2^kHashbits entries; the hash |
| // function simply takes the low bits of the key. We store whole keys |
| // if a whole key plus a whole value fits in an entry. Otherwise, an |
| // entry is the high bits of a key and a value, packed together. |
| // E.g., a 20 bit key and a 7 bit value only require a uint16 for each |
| // entry if kHashbits >= 11. |
| // |
| // Alternatives to this scheme will be added as needed. |
| |
| #ifndef TCMALLOC_PACKED_CACHE_INL_H_ |
| #define TCMALLOC_PACKED_CACHE_INL_H_ |
| |
| #include "config.h" |
| #include <stddef.h> // for size_t |
| #include <stdint.h> // for uintptr_t |
| #include "base/basictypes.h" |
| #include "common.h" |
| #include "internal_logging.h" |
| |
| // A safe way of doing "(1 << n) - 1" -- without worrying about overflow |
| // Note this will all be resolved to a constant expression at compile-time |
| #define N_ONES_(IntType, N) \ |
| ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \ |
| (static_cast<IntType>(1) << ((N)-1))) ) |
| |
| // The types K and V provide upper bounds on the number of valid keys |
| // and values, but we explicitly require the keys to be less than |
| // 2^kKeybits and the values to be less than 2^kValuebits. The size |
| // of the table is controlled by kHashbits, and the type of each entry |
| // in the cache is uintptr_t (native machine word). See also the big |
| // comment at the top of the file. |
| template <int kKeybits> |
| class PackedCache { |
| public: |
| typedef uintptr_t T; |
| typedef uintptr_t K; |
| typedef uint32_t V; |
| #ifdef TCMALLOC_SMALL_BUT_SLOW |
| // Decrease the size map cache if running in the small memory mode. |
| static const int kHashbits = 12; |
| #else |
| static const int kHashbits = 16; |
| #endif |
| static const int kValuebits = 7; |
| // one bit after value bits |
| static const int kInvalidMask = 0x80; |
| |
| explicit PackedCache() { |
| static_assert(kKeybits + kValuebits + 1 <= 8 * sizeof(T)); |
| static_assert(kHashbits <= kKeybits); |
| static_assert(kHashbits >= kValuebits + 1); |
| Clear(); |
| } |
| |
| bool TryGet(K key, V* out) const { |
| // As with other code in this class, we touch array_ as few times |
| // as we can. Assuming entries are read atomically then certain |
| // races are harmless. |
| ASSERT(key == (key & kKeyMask)); |
| T hash = Hash(key); |
| T expected_entry = key; |
| expected_entry &= ~N_ONES_(T, kHashbits); |
| T entry = array_[hash]; |
| entry ^= expected_entry; |
| if (PREDICT_FALSE(entry >= (1 << kValuebits))) { |
| return false; |
| } |
| *out = static_cast<V>(entry); |
| return true; |
| } |
| |
| void Clear() { |
| // sets 'invalid' bit in every byte, include value byte |
| memset(const_cast<T* >(array_), kInvalidMask, sizeof(array_)); |
| } |
| |
| void Put(K key, V value) { |
| ASSERT(key == (key & kKeyMask)); |
| ASSERT(value == (value & kValueMask)); |
| array_[Hash(key)] = KeyToUpper(key) | value; |
| } |
| |
| void Invalidate(K key) { |
| ASSERT(key == (key & kKeyMask)); |
| array_[Hash(key)] = KeyToUpper(key) | kInvalidMask; |
| } |
| |
| private: |
| // we just wipe all hash bits out of key. I.e. clear lower |
| // kHashbits. We rely on compiler knowing value of Hash(k). |
| static T KeyToUpper(K k) { |
| return static_cast<T>(k) ^ Hash(k); |
| } |
| |
| static T Hash(K key) { |
| return static_cast<T>(key) & N_ONES_(size_t, kHashbits); |
| } |
| |
| // For masking a K. |
| static const K kKeyMask = N_ONES_(K, kKeybits); |
| |
| // For masking a V or a T. |
| static const V kValueMask = N_ONES_(V, kValuebits); |
| |
| // array_ is the cache. Its elements are volatile because any |
| // thread can write any array element at any time. |
| volatile T array_[1 << kHashbits]; |
| }; |
| |
| #undef N_ONES_ |
| |
| #endif // TCMALLOC_PACKED_CACHE_INL_H_ |