blob: 33faae16bfcbcdac50de3cd6354e815dfde10b7b [file] [log] [blame] [edit]
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2009, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat
// Nabeel Mian
//
// Implements management of profile timers and the corresponding signal handler.
#include "config.h"
#include "profile-handler.h"
#if !(defined(__CYGWIN__) || defined(__CYGWIN32__))
#include <stdio.h>
#include <errno.h>
#include <sys/time.h>
#include <list>
#include <string>
#if HAVE_LINUX_SIGEV_THREAD_ID
#include <pthread.h>
// for timer_{create,settime} and associated typedefs & constants
#include <time.h>
// for sigevent
#include <signal.h>
// for SYS_gettid
#include <sys/syscall.h>
#endif
#include "base/dynamic_annotations.h"
#include "base/googleinit.h"
#include "base/logging.h"
#include "base/spinlock.h"
#include "base/threading.h"
// Some Linux systems don't have sigev_notify_thread_id defined in
// signal.h (despite having SIGEV_THREAD_ID defined) and also lack
// working linux/signal.h. So lets workaround. Note, we know that at
// least on Linux sigev_notify_thread_id is macro.
//
// See https://sourceware.org/bugzilla/show_bug.cgi?id=27417 and
// https://bugzilla.kernel.org/show_bug.cgi?id=200081
//
#if __linux__ && HAVE_LINUX_SIGEV_THREAD_ID && !defined(sigev_notify_thread_id)
#define sigev_notify_thread_id _sigev_un._tid
#endif
using std::list;
using std::string;
// This structure is used by ProfileHandlerRegisterCallback and
// ProfileHandlerUnregisterCallback as a handle to a registered callback.
struct ProfileHandlerToken {
// Sets the callback and associated arg.
ProfileHandlerToken(ProfileHandlerCallback cb, void* cb_arg)
: callback(cb),
callback_arg(cb_arg) {
}
// Callback function to be invoked on receiving a profile timer interrupt.
ProfileHandlerCallback callback;
// Argument for the callback function.
void* callback_arg;
};
// Blocks a signal from being delivered to the current thread while the object
// is alive. Unblocks it upon destruction.
class ScopedSignalBlocker {
public:
ScopedSignalBlocker(int signo) {
sigemptyset(&sig_set_);
sigaddset(&sig_set_, signo);
RAW_CHECK(sigprocmask(SIG_BLOCK, &sig_set_, NULL) == 0,
"sigprocmask (block)");
}
~ScopedSignalBlocker() {
RAW_CHECK(sigprocmask(SIG_UNBLOCK, &sig_set_, NULL) == 0,
"sigprocmask (unblock)");
}
private:
sigset_t sig_set_;
};
// This class manages profile timers and associated signal handler. This is a
// a singleton.
class ProfileHandler {
public:
// Registers the current thread with the profile handler.
void RegisterThread();
// Registers a callback routine to receive profile timer ticks. The returned
// token is to be used when unregistering this callback and must not be
// deleted by the caller.
ProfileHandlerToken* RegisterCallback(ProfileHandlerCallback callback,
void* callback_arg);
// Unregisters a previously registered callback. Expects the token returned
// by the corresponding RegisterCallback routine.
void UnregisterCallback(ProfileHandlerToken* token)
NO_THREAD_SAFETY_ANALYSIS;
// Unregisters all the callbacks and stops the timer(s).
void Reset();
// Gets the current state of profile handler.
void GetState(ProfileHandlerState* state);
// Initializes and returns the ProfileHandler singleton.
static ProfileHandler* Instance();
private:
ProfileHandler();
~ProfileHandler();
// Largest allowed frequency.
static const int32_t kMaxFrequency = 4000;
// Default frequency.
static const int32_t kDefaultFrequency = 100;
// ProfileHandler singleton.
static ProfileHandler* instance_;
// Initializes the ProfileHandler singleton via GoogleOnceInit.
static void Init();
// Timer state as configured previously.
bool timer_running_;
// The number of profiling signal interrupts received.
int64_t interrupts_ GUARDED_BY(signal_lock_);
// Profiling signal interrupt frequency, read-only after construction.
int32_t frequency_;
// ITIMER_PROF (which uses SIGPROF), or ITIMER_REAL (which uses SIGALRM).
// Translated into an equivalent choice of clock if per_thread_timer_enabled_
// is true.
int timer_type_;
// Signal number for timer signal.
int signal_number_;
// Counts the number of callbacks registered.
int32_t callback_count_ GUARDED_BY(control_lock_);
// Is profiling allowed at all?
bool allowed_;
// Must be false if HAVE_LINUX_SIGEV_THREAD_ID is not defined.
bool per_thread_timer_enabled_;
#if HAVE_LINUX_SIGEV_THREAD_ID
// this is used to destroy per-thread profiling timers on thread
// termination
tcmalloc::TlsKey thread_timer_key;
#endif
// This lock serializes the registration of threads and protects the
// callbacks_ list below.
// Locking order:
// In the context of a signal handler, acquire signal_lock_ to walk the
// callback list. Otherwise, acquire control_lock_, disable the signal
// handler and then acquire signal_lock_.
SpinLock control_lock_ ACQUIRED_BEFORE(signal_lock_);
SpinLock signal_lock_;
// Holds the list of registered callbacks. We expect the list to be pretty
// small. Currently, the cpu profiler (base/profiler) and thread module
// (base/thread.h) are the only two components registering callbacks.
// Following are the locking requirements for callbacks_:
// For read-write access outside the SIGPROF handler:
// - Acquire control_lock_
// - Disable SIGPROF handler.
// - Acquire signal_lock_
// - Nothing that takes ~any other lock can be nested
// here. E.g. including malloc. Otherwise deadlock is possible.
// For read-only access in the context of SIGPROF handler
// (Read-write access is *not allowed* in the SIGPROF handler)
// - Acquire signal_lock_
// For read-only access outside SIGPROF handler:
// - Acquire control_lock_
typedef list<ProfileHandlerToken*> CallbackList;
typedef CallbackList::iterator CallbackIterator;
CallbackList callbacks_ GUARDED_BY(signal_lock_);
// Starts or stops the interval timer.
// Will ignore any requests to enable or disable when
// per_thread_timer_enabled_ is true.
void UpdateTimer(bool enable) EXCLUSIVE_LOCKS_REQUIRED(control_lock_);
// Returns true if the handler is not being used by something else.
// This checks the kernel's signal handler table.
bool IsSignalHandlerAvailable();
// Signal handler. Iterates over and calls all the registered callbacks.
static void SignalHandler(int sig, siginfo_t* sinfo, void* ucontext);
DISALLOW_COPY_AND_ASSIGN(ProfileHandler);
};
ProfileHandler* ProfileHandler::instance_ = NULL;
const int32_t ProfileHandler::kMaxFrequency;
const int32_t ProfileHandler::kDefaultFrequency;
// If we are LD_PRELOAD-ed against a non-pthreads app, then these functions
// won't be defined. We declare them here, for that case (with weak linkage)
// which will cause the non-definition to resolve to NULL. We can then check
// for NULL or not in Instance.
extern "C" {
#if HAVE_LINUX_SIGEV_THREAD_ID
int timer_create(clockid_t clockid, struct sigevent* evp,
timer_t* timerid) ATTRIBUTE_WEAK;
int timer_delete(timer_t timerid) ATTRIBUTE_WEAK;
int timer_settime(timer_t timerid, int flags, const struct itimerspec* value,
struct itimerspec* ovalue) ATTRIBUTE_WEAK;
#endif
}
#if HAVE_LINUX_SIGEV_THREAD_ID
struct timer_id_holder {
timer_t timerid;
timer_id_holder(timer_t _timerid) : timerid(_timerid) {}
};
extern "C" {
static void ThreadTimerDestructor(void *arg) {
if (!arg) {
return;
}
timer_id_holder *holder = static_cast<timer_id_holder *>(arg);
timer_delete(holder->timerid);
delete holder;
}
}
static void CreateThreadTimerKey(tcmalloc::TlsKey *pkey) {
int rv = tcmalloc::CreateTlsKey(pkey, ThreadTimerDestructor);
if (rv) {
RAW_LOG(FATAL, "aborting due to tcmalloc::CreateTlsKey error: %s", strerror(rv));
}
}
static void StartLinuxThreadTimer(int timer_type, int signal_number,
int32_t frequency, tcmalloc::TlsKey timer_key) {
int rv;
struct sigevent sevp;
timer_t timerid;
struct itimerspec its;
memset(&sevp, 0, sizeof(sevp));
sevp.sigev_notify = SIGEV_THREAD_ID;
sevp.sigev_notify_thread_id = syscall(SYS_gettid);
sevp.sigev_signo = signal_number;
clockid_t clock = CLOCK_THREAD_CPUTIME_ID;
if (timer_type == ITIMER_REAL) {
clock = CLOCK_MONOTONIC;
}
rv = timer_create(clock, &sevp, &timerid);
if (rv) {
RAW_LOG(FATAL, "aborting due to timer_create error: %s", strerror(errno));
}
timer_id_holder *holder = new timer_id_holder(timerid);
rv = tcmalloc::SetTlsValue(timer_key, holder);
if (rv) {
RAW_LOG(FATAL, "aborting due to tcmalloc::SetTlsValue error: %s", strerror(rv));
}
its.it_interval.tv_sec = 0;
its.it_interval.tv_nsec = 1000000000 / frequency;
its.it_value = its.it_interval;
rv = timer_settime(timerid, 0, &its, 0);
if (rv) {
RAW_LOG(FATAL, "aborting due to timer_settime error: %s", strerror(errno));
}
}
#endif
void ProfileHandler::Init() {
instance_ = new ProfileHandler();
}
ProfileHandler* ProfileHandler::Instance() {
static tcmalloc::TrivialOnce once;
once.RunOnce(&Init);
assert(instance_ != nullptr);
return instance_;
}
ProfileHandler::ProfileHandler()
: timer_running_(false),
interrupts_(0),
callback_count_(0),
allowed_(true),
per_thread_timer_enabled_(false) {
SpinLockHolder cl(&control_lock_);
timer_type_ = (getenv("CPUPROFILE_REALTIME") ? ITIMER_REAL : ITIMER_PROF);
signal_number_ = (timer_type_ == ITIMER_PROF ? SIGPROF : SIGALRM);
// Get frequency of interrupts (if specified)
char junk;
const char* fr = getenv("CPUPROFILE_FREQUENCY");
if (fr != NULL && (sscanf(fr, "%u%c", &frequency_, &junk) == 1) &&
(frequency_ > 0)) {
// Limit to kMaxFrequency
frequency_ = (frequency_ > kMaxFrequency) ? kMaxFrequency : frequency_;
} else {
frequency_ = kDefaultFrequency;
}
if (!allowed_) {
return;
}
#if HAVE_LINUX_SIGEV_THREAD_ID
// Do this early because we might be overriding signal number.
const char *per_thread = getenv("CPUPROFILE_PER_THREAD_TIMERS");
const char *signal_number = getenv("CPUPROFILE_TIMER_SIGNAL");
if (per_thread || signal_number) {
if (timer_create) {
CreateThreadTimerKey(&thread_timer_key);
per_thread_timer_enabled_ = true;
// Override signal number if requested.
if (signal_number) {
signal_number_ = strtol(signal_number, NULL, 0);
}
} else {
RAW_LOG(INFO,
"Ignoring CPUPROFILE_PER_THREAD_TIMERS and\n"
" CPUPROFILE_TIMER_SIGNAL due to lack of timer_create().\n"
" Preload or link to librt.so for this to work");
}
}
#endif
// If something else is using the signal handler,
// assume it has priority over us and stop.
if (!IsSignalHandlerAvailable()) {
RAW_LOG(INFO, "Disabling profiler because signal %d handler is already in use.",
signal_number_);
allowed_ = false;
return;
}
// Install the signal handler.
struct sigaction sa;
sa.sa_sigaction = SignalHandler;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset(&sa.sa_mask);
RAW_CHECK(sigaction(signal_number_, &sa, NULL) == 0, "sigprof (enable)");
}
ProfileHandler::~ProfileHandler() {
Reset();
#if HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) {
pthread_key_delete(thread_timer_key);
}
#endif
}
void ProfileHandler::RegisterThread() {
SpinLockHolder cl(&control_lock_);
if (!allowed_) {
return;
}
// Record the thread identifier and start the timer if profiling is on.
#if HAVE_LINUX_SIGEV_THREAD_ID
if (per_thread_timer_enabled_) {
StartLinuxThreadTimer(timer_type_, signal_number_, frequency_,
thread_timer_key);
return;
}
#endif
UpdateTimer(callback_count_ > 0);
}
ProfileHandlerToken* ProfileHandler::RegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
ProfileHandlerToken* token = new ProfileHandlerToken(callback, callback_arg);
CallbackList copy;
copy.push_back(token);
SpinLockHolder cl(&control_lock_);
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
callbacks_.splice(callbacks_.end(), copy);
}
++callback_count_;
UpdateTimer(true);
return token;
}
void ProfileHandler::UnregisterCallback(ProfileHandlerToken* token) {
SpinLockHolder cl(&control_lock_);
RAW_CHECK(callback_count_ > 0, "Invalid callback count");
CallbackList copy;
bool found = false;
for (ProfileHandlerToken* callback_token : callbacks_) {
if (callback_token == token) {
found = true;
} else {
copy.push_back(callback_token);
}
}
if (!found) {
RAW_LOG(FATAL, "Invalid token");
}
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
// Replace callback list holding signal lock. We cannot call
// pretty much anything that takes locks. Including malloc
// locks. So we only swap here and cleanup later.
using std::swap;
swap(copy, callbacks_);
}
// copy gets deleted after signal_lock_ is dropped
--callback_count_;
if (callback_count_ == 0) {
UpdateTimer(false);
}
delete token;
}
void ProfileHandler::Reset() {
SpinLockHolder cl(&control_lock_);
CallbackList copy;
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_);
// Only do swap under this critical lock.
using std::swap;
swap(copy, callbacks_);
}
for (ProfileHandlerToken* token : copy) {
delete token;
}
callback_count_ = 0;
UpdateTimer(false);
// copy gets deleted here
}
void ProfileHandler::GetState(ProfileHandlerState* state) {
SpinLockHolder cl(&control_lock_);
{
ScopedSignalBlocker block(signal_number_);
SpinLockHolder sl(&signal_lock_); // Protects interrupts_.
state->interrupts = interrupts_;
}
state->frequency = frequency_;
state->callback_count = callback_count_;
state->allowed = allowed_;
}
void ProfileHandler::UpdateTimer(bool enable) {
if (per_thread_timer_enabled_) {
// Ignore any attempts to disable it because that's not supported, and it's
// always enabled so enabling is always a NOP.
return;
}
if (enable == timer_running_) {
return;
}
timer_running_ = enable;
struct itimerval timer;
static const int kMillion = 1000000;
int interval_usec = enable ? kMillion / frequency_ : 0;
timer.it_interval.tv_sec = interval_usec / kMillion;
timer.it_interval.tv_usec = interval_usec % kMillion;
timer.it_value = timer.it_interval;
setitimer(timer_type_, &timer, 0);
}
bool ProfileHandler::IsSignalHandlerAvailable() {
struct sigaction sa;
RAW_CHECK(sigaction(signal_number_, NULL, &sa) == 0, "is-signal-handler avail");
// We only take over the handler if the current one is unset.
// It must be SIG_IGN or SIG_DFL, not some other function.
// SIG_IGN must be allowed because when profiling is allowed but
// not actively in use, this code keeps the handler set to SIG_IGN.
// That setting will be inherited across fork+exec. In order for
// any child to be able to use profiling, SIG_IGN must be treated
// as available.
return sa.sa_handler == SIG_IGN || sa.sa_handler == SIG_DFL;
}
void ProfileHandler::SignalHandler(int sig, siginfo_t* sinfo, void* ucontext) {
int saved_errno = errno;
// At this moment, instance_ must be initialized because the handler is
// enabled in RegisterThread or RegisterCallback only after
// ProfileHandler::Instance runs.
ProfileHandler* instance = instance_;
RAW_CHECK(instance != NULL, "ProfileHandler is not initialized");
{
SpinLockHolder sl(&instance->signal_lock_);
++instance->interrupts_;
for (CallbackIterator it = instance->callbacks_.begin();
it != instance->callbacks_.end();
++it) {
(*it)->callback(sig, sinfo, ucontext, (*it)->callback_arg);
}
}
errno = saved_errno;
}
// This module initializer registers the main thread, so it must be
// executed in the context of the main thread.
REGISTER_MODULE_INITIALIZER(profile_main, ProfileHandlerRegisterThread());
void ProfileHandlerRegisterThread() {
ProfileHandler::Instance()->RegisterThread();
}
ProfileHandlerToken* ProfileHandlerRegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
return ProfileHandler::Instance()->RegisterCallback(callback, callback_arg);
}
void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) {
ProfileHandler::Instance()->UnregisterCallback(token);
}
void ProfileHandlerReset() {
return ProfileHandler::Instance()->Reset();
}
void ProfileHandlerGetState(ProfileHandlerState* state) {
ProfileHandler::Instance()->GetState(state);
}
#else // OS_CYGWIN
// ITIMER_PROF doesn't work under cygwin. ITIMER_REAL is available, but doesn't
// work as well for profiling, and also interferes with alarm(). Because of
// these issues, unless a specific need is identified, profiler support is
// disabled under Cygwin.
void ProfileHandlerRegisterThread() {
}
ProfileHandlerToken* ProfileHandlerRegisterCallback(
ProfileHandlerCallback callback, void* callback_arg) {
return NULL;
}
void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) {
}
void ProfileHandlerReset() {
}
void ProfileHandlerGetState(ProfileHandlerState* state) {
}
#endif // OS_CYGWIN