blob: fede98e11cd138ed53bf2a87c49ad3190fd56b55 [file] [log] [blame]
use byteorder::ReadBytesExt;
use error::{Error, Result, UnsupportedFeature};
use huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
use marker::Marker;
use parser::{AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos, ScanInfo};
use upsampler::Upsampler;
use std::cmp;
use std::io::{BufRead, BufReader, Read};
use std::mem;
use std::ops::Range;
use std::sync::Arc;
use worker::{RowData, PlatformWorker, Worker};
pub const MAX_COMPONENTS: usize = 4;
static UNZIGZAG: [u8; 64] = [
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
];
/// An enumeration over combinations of color spaces and bit depths a pixel can have.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PixelFormat {
/// Luminance (grayscale), 8 bits
L8,
/// RGB, 8 bits per channel
RGB24,
/// CMYK, 8 bits per channel
CMYK32,
}
impl PixelFormat {
/// Determine the size in bytes of each pixel in this format
pub fn pixel_bytes(&self) -> usize {
match self {
PixelFormat::L8 => 1,
PixelFormat::RGB24 => 3,
PixelFormat::CMYK32 => 4,
}
}
}
/// Represents metadata of an image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ImageInfo {
/// The width of the image, in pixels.
pub width: u16,
/// The height of the image, in pixels.
pub height: u16,
/// The pixel format of the image.
pub pixel_format: PixelFormat,
}
/// JPEG decoder
pub struct Decoder<R> {
reader: BufReader<R>,
frame: Option<FrameInfo>,
dc_huffman_tables: Vec<Option<HuffmanTable>>,
ac_huffman_tables: Vec<Option<HuffmanTable>>,
quantization_tables: [Option<Arc<[u16; 64]>>; 4],
restart_interval: u16,
color_transform: Option<AdobeColorTransform>,
is_jfif: bool,
is_mjpeg: bool,
// Used for progressive JPEGs.
coefficients: Vec<Vec<i16>>,
// Bitmask of which coefficients has been completely decoded.
coefficients_finished: [u64; MAX_COMPONENTS],
}
impl<R: Read> Decoder<R> {
/// Creates a new `Decoder` using the reader `reader`.
pub fn new(reader: R) -> Decoder<R> {
Decoder {
reader: BufReader::new(reader),
frame: None,
dc_huffman_tables: vec![None, None, None, None],
ac_huffman_tables: vec![None, None, None, None],
quantization_tables: [None, None, None, None],
restart_interval: 0,
color_transform: None,
is_jfif: false,
is_mjpeg: false,
coefficients: Vec::new(),
coefficients_finished: [0; MAX_COMPONENTS],
}
}
/// Returns metadata about the image.
///
/// The returned value will be `None` until a call to either `read_info` or `decode` has
/// returned `Ok`.
pub fn info(&self) -> Option<ImageInfo> {
match self.frame {
Some(ref frame) => {
let pixel_format = match frame.components.len() {
1 => PixelFormat::L8,
3 => PixelFormat::RGB24,
4 => PixelFormat::CMYK32,
_ => panic!(),
};
Some(ImageInfo {
width: frame.output_size.width,
height: frame.output_size.height,
pixel_format: pixel_format,
})
},
None => None,
}
}
/// Tries to read metadata from the image without decoding it.
///
/// If successful, the metadata can be obtained using the `info` method.
pub fn read_info(&mut self) -> Result<()> {
self.decode_internal(true).map(|_| ())
}
/// Configure the decoder to scale the image during decoding.
///
/// This efficiently scales the image by the smallest supported scale
/// factor that produces an image larger than or equal to the requested
/// size in at least one axis. The currently implemented scale factors
/// are 1/8, 1/4, 1/2 and 1.
///
/// To generate a thumbnail of an exact size, pass the desired size and
/// then scale to the final size using a traditional resampling algorithm.
pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
self.read_info()?;
let frame = self.frame.as_mut().unwrap();
let idct_size = crate::idct::choose_idct_size(frame.image_size, Dimensions{ width: requested_width, height: requested_height });
frame.update_idct_size(idct_size);
Ok((frame.output_size.width, frame.output_size.height))
}
/// Decodes the image and returns the decoded pixels if successful.
pub fn decode(&mut self) -> Result<Vec<u8>> {
self.decode_internal(false)
}
fn decode_internal(&mut self, stop_after_metadata: bool) -> Result<Vec<u8>> {
if stop_after_metadata && self.frame.is_some() {
// The metadata has already been read.
return Ok(Vec::new());
}
else if self.frame.is_none() && (self.reader.read_u8()? != 0xFF || Marker::from_u8(self.reader.read_u8()?) != Some(Marker::SOI)) {
return Err(Error::Format("first two bytes is not a SOI marker".to_owned()));
}
let mut previous_marker = Marker::SOI;
let mut pending_marker = None;
let mut worker = None;
let mut scans_processed = 0;
let mut planes = vec![Vec::new(); self.frame.as_ref().map_or(0, |frame| frame.components.len())];
loop {
let marker = match pending_marker.take() {
Some(m) => m,
None => self.read_marker()?,
};
match marker {
// Frame header
Marker::SOF(..) => {
// Section 4.10
// "An image contains only one frame in the cases of sequential and
// progressive coding processes; an image contains multiple frames for the
// hierarchical mode."
if self.frame.is_some() {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
let frame = parse_sof(&mut self.reader, marker)?;
let component_count = frame.components.len();
if frame.is_differential {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
if frame.coding_process == CodingProcess::Lossless {
return Err(Error::Unsupported(UnsupportedFeature::Lossless));
}
if frame.entropy_coding == EntropyCoding::Arithmetic {
return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding));
}
if frame.precision != 8 {
return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(frame.precision)));
}
if frame.image_size.height == 0 {
return Err(Error::Unsupported(UnsupportedFeature::DNL));
}
if component_count != 1 && component_count != 3 && component_count != 4 {
return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(component_count as u8)));
}
// Make sure we support the subsampling ratios used.
let _ = Upsampler::new(&frame.components, frame.image_size.width, frame.image_size.height)?;
self.frame = Some(frame);
if stop_after_metadata {
return Ok(Vec::new());
}
planes = vec![Vec::new(); component_count];
},
// Scan header
Marker::SOS => {
if self.frame.is_none() {
return Err(Error::Format("scan encountered before frame".to_owned()));
}
if worker.is_none() {
worker = Some(PlatformWorker::new()?);
}
let frame = self.frame.clone().unwrap();
let scan = parse_sos(&mut self.reader, &frame)?;
if frame.coding_process == CodingProcess::DctProgressive && self.coefficients.is_empty() {
self.coefficients = frame.components.iter().map(|c| {
let block_count = c.block_size.width as usize * c.block_size.height as usize;
vec![0; block_count * 64]
}).collect();
}
if scan.successive_approximation_low == 0 {
for &i in scan.component_indices.iter() {
for j in scan.spectral_selection.clone() {
self.coefficients_finished[i] |= 1 << j;
}
}
}
let is_final_scan = scan.component_indices.iter().all(|&i| self.coefficients_finished[i] == !0);
let (marker, data) = self.decode_scan(&frame, &scan, worker.as_mut().unwrap(), is_final_scan)?;
if let Some(data) = data {
for (i, plane) in data.into_iter().enumerate().filter(|&(_, ref plane)| !plane.is_empty()) {
planes[i] = plane;
}
}
pending_marker = marker;
scans_processed += 1;
},
// Table-specification and miscellaneous markers
// Quantization table-specification
Marker::DQT => {
let tables = parse_dqt(&mut self.reader)?;
for (i, &table) in tables.iter().enumerate() {
if let Some(table) = table {
let mut unzigzagged_table = [0u16; 64];
for j in 0 .. 64 {
unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
}
self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
}
}
},
// Huffman table-specification
Marker::DHT => {
let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;
let current_dc_tables = mem::replace(&mut self.dc_huffman_tables, vec![]);
self.dc_huffman_tables = dc_tables.into_iter()
.zip(current_dc_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
let current_ac_tables = mem::replace(&mut self.ac_huffman_tables, vec![]);
self.ac_huffman_tables = ac_tables.into_iter()
.zip(current_ac_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
},
// Arithmetic conditioning table-specification
Marker::DAC => return Err(Error::Unsupported(UnsupportedFeature::ArithmeticEntropyCoding)),
// Restart interval definition
Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
// Comment
Marker::COM => {
let _comment = parse_com(&mut self.reader)?;
},
// Application data
Marker::APP(..) => {
if let Some(data) = parse_app(&mut self.reader, marker)? {
match data {
AppData::Adobe(color_transform) => self.color_transform = Some(color_transform),
AppData::Jfif => {
// From the JFIF spec:
// "The APP0 marker is used to identify a JPEG FIF file.
// The JPEG FIF APP0 marker is mandatory right after the SOI marker."
// Some JPEGs in the wild does not follow this though, so we allow
// JFIF headers anywhere APP0 markers are allowed.
/*
if previous_marker != Marker::SOI {
return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
}
*/
self.is_jfif = true;
},
AppData::Avi1 => self.is_mjpeg = true,
}
}
},
// Restart
Marker::RST(..) => {
// Some encoders emit a final RST marker after entropy-coded data, which
// decode_scan does not take care of. So if we encounter one, we ignore it.
if previous_marker != Marker::SOS {
return Err(Error::Format("RST found outside of entropy-coded data".to_owned()));
}
},
// Define number of lines
Marker::DNL => {
// Section B.2.1
// "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
if previous_marker != Marker::SOS || scans_processed != 1 {
return Err(Error::Format("DNL is only allowed immediately after the first scan".to_owned()));
}
return Err(Error::Unsupported(UnsupportedFeature::DNL));
},
// Hierarchical mode markers
Marker::DHP | Marker::EXP => return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)),
// End of image
Marker::EOI => break,
_ => return Err(Error::Format(format!("{:?} marker found where not allowed", marker))),
}
previous_marker = marker;
}
if planes.is_empty() || planes.iter().any(|plane| plane.is_empty()) {
return Err(Error::Format("no data found".to_owned()));
}
let frame = self.frame.as_ref().unwrap();
compute_image(&frame.components, planes, frame.output_size, self.is_jfif, self.color_transform)
}
fn read_marker(&mut self) -> Result<Marker> {
loop {
// This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
// libjpeg allows this though and there are images in the wild utilising it, so we are
// forced to support this behavior.
// Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
loop {
let buf = self.reader.fill_buf()?;
if let Some(pos) = buf.iter().position(|&b| b == 0xFF) {
self.reader.consume(pos);
break;
}
// Woah, a full page of not-0xFF. Let's try the next page.
let consumed = buf.len();
self.reader.consume(consumed);
};
// Section B.1.1.2
// All markers are assigned two-byte codes: an X’FF’ byte followed by a
// byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may
// optionally be preceded by any number of fill bytes, which are bytes
// assigned code X’FF’.
// So, let's find the byte after 0xFF.
let byte = loop {
let buf = self.reader.fill_buf()?;
if let Some(pos) = buf.iter().position(|&b| b != 0xFF) {
let byte = buf[pos];
self.reader.consume(pos + 1);
break byte;
}
let consumed = buf.len();
self.reader.consume(consumed);
};
if byte != 0x00 && byte != 0xFF {
return Ok(Marker::from_u8(byte).unwrap());
}
}
}
fn decode_scan(&mut self,
frame: &FrameInfo,
scan: &ScanInfo,
worker: &mut PlatformWorker,
produce_data: bool)
-> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
assert!(scan.component_indices.len() <= MAX_COMPONENTS);
let components: Vec<Component> = scan.component_indices.iter()
.map(|&i| frame.components[i].clone())
.collect();
// Verify that all required quantization tables has been set.
if components.iter().any(|component| self.quantization_tables[component.quantization_table_index].is_none()) {
return Err(Error::Format("use of unset quantization table".to_owned()));
}
if self.is_mjpeg {
fill_default_mjpeg_tables(scan, &mut self.dc_huffman_tables, &mut self.ac_huffman_tables);
}
// Verify that all required huffman tables has been set.
if scan.spectral_selection.start == 0 &&
scan.dc_table_indices.iter().any(|&i| self.dc_huffman_tables[i].is_none()) {
return Err(Error::Format("scan makes use of unset dc huffman table".to_owned()));
}
if scan.spectral_selection.end > 1 &&
scan.ac_table_indices.iter().any(|&i| self.ac_huffman_tables[i].is_none()) {
return Err(Error::Format("scan makes use of unset ac huffman table".to_owned()));
}
if produce_data {
// Prepare the worker thread for the work to come.
for (i, component) in components.iter().enumerate() {
let row_data = RowData {
index: i,
component: component.clone(),
quantization_table: self.quantization_tables[component.quantization_table_index].clone().unwrap(),
};
worker.start(row_data)?;
}
}
let blocks_per_mcu: Vec<u16> = components.iter()
.map(|c| c.horizontal_sampling_factor as u16 * c.vertical_sampling_factor as u16)
.collect();
let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
let is_interleaved = components.len() > 1;
let mut dummy_block = [0i16; 64];
let mut huffman = HuffmanDecoder::new();
let mut dc_predictors = [0i16; MAX_COMPONENTS];
let mut mcus_left_until_restart = self.restart_interval;
let mut expected_rst_num = 0;
let mut eob_run = 0;
let mut mcu_row_coefficients = Vec::with_capacity(components.len());
if produce_data && !is_progressive {
for component in &components {
let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
mcu_row_coefficients.push(vec![0i16; coefficients_per_mcu_row]);
}
}
for mcu_y in 0 .. frame.mcu_size.height {
for mcu_x in 0 .. frame.mcu_size.width {
for (i, component) in components.iter().enumerate() {
for j in 0 .. blocks_per_mcu[i] {
let (block_x, block_y) = if is_interleaved {
// Section A.2.3
(mcu_x * component.horizontal_sampling_factor as u16 + j % component.horizontal_sampling_factor as u16,
mcu_y * component.vertical_sampling_factor as u16 + j / component.horizontal_sampling_factor as u16)
}
else {
// Section A.2.2
let blocks_per_row = component.block_size.width as usize;
let block_num = (mcu_y as usize * frame.mcu_size.width as usize +
mcu_x as usize) * blocks_per_mcu[i] as usize + j as usize;
let x = (block_num % blocks_per_row) as u16;
let y = (block_num / blocks_per_row) as u16;
if x * component.dct_scale as u16 >= component.size.width || y * component.dct_scale as u16 >= component.size.height {
continue;
}
(x, y)
};
let block_offset = (block_y as usize * component.block_size.width as usize + block_x as usize) * 64;
let mcu_row_offset = mcu_y as usize * component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
let coefficients = if is_progressive {
&mut self.coefficients[scan.component_indices[i]][block_offset .. block_offset + 64]
} else if produce_data {
&mut mcu_row_coefficients[i][block_offset - mcu_row_offset .. block_offset - mcu_row_offset + 64]
} else {
&mut dummy_block[..]
};
if scan.successive_approximation_high == 0 {
decode_block(&mut self.reader,
coefficients,
&mut huffman,
self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run,
&mut dc_predictors[i])?;
}
else {
decode_block_successive_approximation(&mut self.reader,
coefficients,
&mut huffman,
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run)?;
}
}
}
if self.restart_interval > 0 {
let is_last_mcu = mcu_x == frame.mcu_size.width - 1 && mcu_y == frame.mcu_size.height - 1;
mcus_left_until_restart -= 1;
if mcus_left_until_restart == 0 && !is_last_mcu {
match huffman.take_marker(&mut self.reader)? {
Some(Marker::RST(n)) => {
if n != expected_rst_num {
return Err(Error::Format(format!("found RST{} where RST{} was expected", n, expected_rst_num)));
}
huffman.reset();
// Section F.2.1.3.1
dc_predictors = [0i16; MAX_COMPONENTS];
// Section G.1.2.2
eob_run = 0;
expected_rst_num = (expected_rst_num + 1) % 8;
mcus_left_until_restart = self.restart_interval;
},
Some(marker) => return Err(Error::Format(format!("found marker {:?} inside scan where RST{} was expected", marker, expected_rst_num))),
None => return Err(Error::Format(format!("no marker found where RST{} was expected", expected_rst_num))),
}
}
}
}
if produce_data {
// Send the coefficients from this MCU row to the worker thread for dequantization and idct.
for (i, component) in components.iter().enumerate() {
let coefficients_per_mcu_row = component.block_size.width as usize * component.vertical_sampling_factor as usize * 64;
let row_coefficients = if is_progressive {
let offset = mcu_y as usize * coefficients_per_mcu_row;
self.coefficients[scan.component_indices[i]][offset .. offset + coefficients_per_mcu_row].to_vec()
} else {
mem::replace(&mut mcu_row_coefficients[i], vec![0i16; coefficients_per_mcu_row])
};
worker.append_row((i, row_coefficients))?;
}
}
}
let mut marker = huffman.take_marker(&mut self.reader)?;
while let Some(Marker::RST(_)) = marker {
marker = self.read_marker().ok();
}
if produce_data {
// Retrieve all the data from the worker thread.
let mut data = vec![Vec::new(); frame.components.len()];
for (i, &component_index) in scan.component_indices.iter().enumerate() {
data[component_index] = worker.get_result(i)?;
}
Ok((marker, Some(data)))
}
else {
Ok((marker, None))
}
}
}
fn decode_block<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
dc_table: Option<&HuffmanTable>,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16,
dc_predictor: &mut i16) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
if spectral_selection.start == 0 {
// Section F.2.2.1
// Figure F.12
let value = huffman.decode(reader, dc_table.unwrap())?;
let diff = match value {
0 => 0,
_ => {
// Section F.1.2.1.1
// Table F.1
if value > 11 {
return Err(Error::Format("invalid DC difference magnitude category".to_owned()));
}
huffman.receive_extend(reader, value)?
},
};
// Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
// One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
*dc_predictor = dc_predictor.wrapping_add(diff);
coefficients[0] = *dc_predictor << successive_approximation_low;
}
let mut index = cmp::max(spectral_selection.start, 1);
if index < spectral_selection.end && *eob_run > 0 {
*eob_run -= 1;
return Ok(());
}
// Section F.1.2.2.1
while index < spectral_selection.end {
if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
index += run;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
index += 1;
}
else {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
if s == 0 {
match r {
15 => index += 16, // Run length of 16 zero coefficients.
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
break;
},
}
}
else {
index += r;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] = huffman.receive_extend(reader, s)? << successive_approximation_low;
index += 1;
}
}
}
Ok(())
}
fn decode_block_successive_approximation<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
let bit = 1 << successive_approximation_low;
if spectral_selection.start == 0 {
// Section G.1.2.1
if huffman.get_bits(reader, 1)? == 1 {
coefficients[0] |= bit;
}
}
else {
// Section G.1.2.3
if *eob_run > 0 {
*eob_run -= 1;
refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
return Ok(());
}
let mut index = spectral_selection.start;
while index < spectral_selection.end {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
let mut zero_run_length = r;
let mut value = 0;
match s {
0 => {
match r {
15 => {
// Run length of 16 zero coefficients.
// We don't need to do anything special here, zero_run_length is 15
// and then value (which is zero) gets written, resulting in 16
// zero coefficients.
},
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
// Force end of block.
zero_run_length = 64;
},
}
},
1 => {
if huffman.get_bits(reader, 1)? == 1 {
value = bit;
}
else {
value = -bit;
}
},
_ => return Err(Error::Format("unexpected huffman code".to_owned())),
}
let range = Range {
start: index,
end: spectral_selection.end,
};
index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;
if value != 0 {
coefficients[UNZIGZAG[index as usize] as usize] = value;
}
index += 1;
}
}
Ok(())
}
fn refine_non_zeroes<R: Read>(reader: &mut R,
coefficients: &mut [i16],
huffman: &mut HuffmanDecoder,
range: Range<u8>,
zrl: u8,
bit: i16) -> Result<u8> {
debug_assert_eq!(coefficients.len(), 64);
let last = range.end - 1;
let mut zero_run_length = zrl;
for i in range {
let index = UNZIGZAG[i as usize] as usize;
if coefficients[index] == 0 {
if zero_run_length == 0 {
return Ok(i);
}
zero_run_length -= 1;
}
else if huffman.get_bits(reader, 1)? == 1 && coefficients[index] & bit == 0 {
if coefficients[index] > 0 {
coefficients[index] += bit;
}
else {
coefficients[index] -= bit;
}
}
}
Ok(last)
}
fn compute_image(components: &[Component],
mut data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
if data.iter().any(|data| data.is_empty()) {
return Err(Error::Format("not all components has data".to_owned()));
}
if components.len() == 1 {
let component = &components[0];
let mut decoded: Vec<u8> = data.remove(0);
let width = component.size.width as usize;
let height = component.size.height as usize;
let size = width * height;
let line_stride = component.block_size.width as usize * component.dct_scale;
// if the image width is a multiple of the block size,
// then we don't have to move bytes in the decoded data
if usize::from(output_size.width) != line_stride {
let mut buffer = vec![0u8; width];
// The first line already starts at index 0, so we need to move only lines 1..height
for y in 1..height {
let destination_idx = y * width;
let source_idx = y * line_stride;
// We could use copy_within, but we need to support old rust versions
buffer.copy_from_slice(&decoded[source_idx..][..width]);
let destination = &mut decoded[destination_idx..][..width];
destination.copy_from_slice(&buffer);
}
}
decoded.resize(size, 0);
Ok(decoded)
}
else {
compute_image_parallel(components, data, output_size, is_jfif, color_transform)
}
}
#[cfg(feature="rayon")]
fn compute_image_parallel(components: &[Component],
data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
use rayon::prelude::*;
let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
let line_size = output_size.width as usize * components.len();
let mut image = vec![0u8; line_size * output_size.height as usize];
image.par_chunks_mut(line_size)
.with_max_len(1)
.enumerate()
.for_each(|(row, line)| {
upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
color_convert_func(line, output_size.width as usize);
});
Ok(image)
}
#[cfg(not(feature="rayon"))]
fn compute_image_parallel(components: &[Component],
data: Vec<Vec<u8>>,
output_size: Dimensions,
is_jfif: bool,
color_transform: Option<AdobeColorTransform>) -> Result<Vec<u8>> {
let color_convert_func = choose_color_convert_func(components.len(), is_jfif, color_transform)?;
let upsampler = Upsampler::new(components, output_size.width, output_size.height)?;
let line_size = output_size.width as usize * components.len();
let mut image = vec![0u8; line_size * output_size.height as usize];
for (row, line) in image.chunks_mut(line_size)
.enumerate() {
upsampler.upsample_and_interleave_row(&data, row, output_size.width as usize, line);
color_convert_func(line, output_size.width as usize);
}
Ok(image)
}
fn choose_color_convert_func(component_count: usize,
_is_jfif: bool,
color_transform: Option<AdobeColorTransform>)
-> Result<fn(&mut [u8], usize)> {
match component_count {
3 => {
// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
// Unknown means the data is RGB, so we don't need to perform any color conversion on it.
if color_transform == Some(AdobeColorTransform::Unknown) {
Ok(color_convert_line_null)
}
else {
Ok(color_convert_line_ycbcr)
}
},
4 => {
// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
match color_transform {
Some(AdobeColorTransform::Unknown) => Ok(color_convert_line_cmyk),
Some(_) => Ok(color_convert_line_ycck),
None => Err(Error::Format("4 components without Adobe APP14 metadata to tell color space".to_owned())),
}
},
_ => panic!(),
}
}
fn color_convert_line_null(_data: &mut [u8], _width: usize) {
}
fn color_convert_line_ycbcr(data: &mut [u8], width: usize) {
for i in 0 .. width {
let (r, g, b) = ycbcr_to_rgb(data[i * 3], data[i * 3 + 1], data[i * 3 + 2]);
data[i * 3] = r;
data[i * 3 + 1] = g;
data[i * 3 + 2] = b;
}
}
fn color_convert_line_ycck(data: &mut [u8], width: usize) {
for i in 0 .. width {
let (r, g, b) = ycbcr_to_rgb(data[i * 4], data[i * 4 + 1], data[i * 4 + 2]);
let k = data[i * 4 + 3];
data[i * 4] = r;
data[i * 4 + 1] = g;
data[i * 4 + 2] = b;
data[i * 4 + 3] = 255 - k;
}
}
fn color_convert_line_cmyk(data: &mut [u8], width: usize) {
for i in 0 .. width {
data[i * 4] = 255 - data[i * 4];
data[i * 4 + 1] = 255 - data[i * 4 + 1];
data[i * 4 + 2] = 255 - data[i * 4 + 2];
data[i * 4 + 3] = 255 - data[i * 4 + 3];
}
}
// ITU-R BT.601
fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
let y = y as f32;
let cb = cb as f32 - 128.0;
let cr = cr as f32 - 128.0;
let r = y + 1.40200 * cr;
let g = y - 0.34414 * cb - 0.71414 * cr;
let b = y + 1.77200 * cb;
(clamp((r + 0.5) as i32, 0, 255) as u8,
clamp((g + 0.5) as i32, 0, 255) as u8,
clamp((b + 0.5) as i32, 0, 255) as u8)
}
fn clamp<T: PartialOrd>(value: T, min: T, max: T) -> T {
if value < min { return min; }
if value > max { return max; }
value
}