blob: 3d9546fc2b79d4e2aeb0742e7746f3477f15b3fe [file] [log] [blame]
//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/ReaderWriter.h"
#include "BitcodeReader.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/DataStream.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
enum {
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
};
BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
DiagnosticSeverity Severity,
const Twine &Msg)
: DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
std::error_code EC, const Twine &Message) {
BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
DiagnosticHandler(DI);
return EC;
}
static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
std::error_code EC) {
return Error(DiagnosticHandler, EC, EC.message());
}
std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
return ::Error(DiagnosticHandler, make_error_code(E), Message);
}
std::error_code BitcodeReader::Error(const Twine &Message) {
return ::Error(DiagnosticHandler,
make_error_code(BitcodeError::CorruptedBitcode), Message);
}
std::error_code BitcodeReader::Error(BitcodeError E) {
return ::Error(DiagnosticHandler, make_error_code(E));
}
static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
LLVMContext &C) {
if (F)
return F;
return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
}
BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
DiagnosticHandlerFunction DiagnosticHandler)
: Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
WillMaterializeAllForwardRefs(false) {}
BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C,
DiagnosticHandlerFunction DiagnosticHandler)
: Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer),
NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
WillMaterializeAllForwardRefs(false) {}
std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
if (WillMaterializeAllForwardRefs)
return std::error_code();
// Prevent recursion.
WillMaterializeAllForwardRefs = true;
while (!BasicBlockFwdRefQueue.empty()) {
Function *F = BasicBlockFwdRefQueue.front();
BasicBlockFwdRefQueue.pop_front();
assert(F && "Expected valid function");
if (!BasicBlockFwdRefs.count(F))
// Already materialized.
continue;
// Check for a function that isn't materializable to prevent an infinite
// loop. When parsing a blockaddress stored in a global variable, there
// isn't a trivial way to check if a function will have a body without a
// linear search through FunctionsWithBodies, so just check it here.
if (!F->isMaterializable())
return Error("Never resolved function from blockaddress");
// Try to materialize F.
if (std::error_code EC = materialize(F))
return EC;
}
assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
// Reset state.
WillMaterializeAllForwardRefs = false;
return std::error_code();
}
void BitcodeReader::FreeState() {
Buffer = nullptr;
std::vector<Type*>().swap(TypeList);
ValueList.clear();
MDValueList.clear();
std::vector<Comdat *>().swap(ComdatList);
std::vector<AttributeSet>().swap(MAttributes);
std::vector<BasicBlock*>().swap(FunctionBBs);
std::vector<Function*>().swap(FunctionsWithBodies);
DeferredFunctionInfo.clear();
MDKindMap.clear();
assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
BasicBlockFwdRefQueue.clear();
}
//===----------------------------------------------------------------------===//
// Helper functions to implement forward reference resolution, etc.
//===----------------------------------------------------------------------===//
/// ConvertToString - Convert a string from a record into an std::string, return
/// true on failure.
template<typename StrTy>
static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
StrTy &Result) {
if (Idx > Record.size())
return true;
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
Result += (char)Record[i];
return false;
}
static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
case 0:
return GlobalValue::ExternalLinkage;
case 1:
return GlobalValue::WeakAnyLinkage;
case 2:
return GlobalValue::AppendingLinkage;
case 3:
return GlobalValue::InternalLinkage;
case 4:
return GlobalValue::LinkOnceAnyLinkage;
case 5:
return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
case 6:
return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
case 7:
return GlobalValue::ExternalWeakLinkage;
case 8:
return GlobalValue::CommonLinkage;
case 9:
return GlobalValue::PrivateLinkage;
case 10:
return GlobalValue::WeakODRLinkage;
case 11:
return GlobalValue::LinkOnceODRLinkage;
case 12:
return GlobalValue::AvailableExternallyLinkage;
case 13:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
case 14:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
case 15:
return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
}
}
static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
switch (Val) {
default: // Map unknown visibilities to default.
case 0: return GlobalValue::DefaultVisibility;
case 1: return GlobalValue::HiddenVisibility;
case 2: return GlobalValue::ProtectedVisibility;
}
}
static GlobalValue::DLLStorageClassTypes
GetDecodedDLLStorageClass(unsigned Val) {
switch (Val) {
default: // Map unknown values to default.
case 0: return GlobalValue::DefaultStorageClass;
case 1: return GlobalValue::DLLImportStorageClass;
case 2: return GlobalValue::DLLExportStorageClass;
}
}
static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
switch (Val) {
case 0: return GlobalVariable::NotThreadLocal;
default: // Map unknown non-zero value to general dynamic.
case 1: return GlobalVariable::GeneralDynamicTLSModel;
case 2: return GlobalVariable::LocalDynamicTLSModel;
case 3: return GlobalVariable::InitialExecTLSModel;
case 4: return GlobalVariable::LocalExecTLSModel;
}
}
static int GetDecodedCastOpcode(unsigned Val) {
switch (Val) {
default: return -1;
case bitc::CAST_TRUNC : return Instruction::Trunc;
case bitc::CAST_ZEXT : return Instruction::ZExt;
case bitc::CAST_SEXT : return Instruction::SExt;
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
case bitc::CAST_UITOFP : return Instruction::UIToFP;
case bitc::CAST_SITOFP : return Instruction::SIToFP;
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
case bitc::CAST_FPEXT : return Instruction::FPExt;
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
case bitc::CAST_BITCAST : return Instruction::BitCast;
case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
}
}
static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
switch (Val) {
default: return -1;
case bitc::BINOP_ADD:
return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
case bitc::BINOP_SUB:
return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
case bitc::BINOP_MUL:
return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
case bitc::BINOP_UDIV: return Instruction::UDiv;
case bitc::BINOP_SDIV:
return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
case bitc::BINOP_UREM: return Instruction::URem;
case bitc::BINOP_SREM:
return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
case bitc::BINOP_SHL: return Instruction::Shl;
case bitc::BINOP_LSHR: return Instruction::LShr;
case bitc::BINOP_ASHR: return Instruction::AShr;
case bitc::BINOP_AND: return Instruction::And;
case bitc::BINOP_OR: return Instruction::Or;
case bitc::BINOP_XOR: return Instruction::Xor;
}
}
static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
switch (Val) {
default: return AtomicRMWInst::BAD_BINOP;
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
case bitc::RMW_ADD: return AtomicRMWInst::Add;
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
case bitc::RMW_AND: return AtomicRMWInst::And;
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
case bitc::RMW_OR: return AtomicRMWInst::Or;
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
case bitc::RMW_MAX: return AtomicRMWInst::Max;
case bitc::RMW_MIN: return AtomicRMWInst::Min;
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
}
}
static AtomicOrdering GetDecodedOrdering(unsigned Val) {
switch (Val) {
case bitc::ORDERING_NOTATOMIC: return NotAtomic;
case bitc::ORDERING_UNORDERED: return Unordered;
case bitc::ORDERING_MONOTONIC: return Monotonic;
case bitc::ORDERING_ACQUIRE: return Acquire;
case bitc::ORDERING_RELEASE: return Release;
case bitc::ORDERING_ACQREL: return AcquireRelease;
default: // Map unknown orderings to sequentially-consistent.
case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
}
}
static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
switch (Val) {
case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
default: // Map unknown scopes to cross-thread.
case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
}
}
static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
switch (Val) {
default: // Map unknown selection kinds to any.
case bitc::COMDAT_SELECTION_KIND_ANY:
return Comdat::Any;
case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
return Comdat::ExactMatch;
case bitc::COMDAT_SELECTION_KIND_LARGEST:
return Comdat::Largest;
case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
return Comdat::NoDuplicates;
case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
return Comdat::SameSize;
}
}
static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
switch (Val) {
case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
}
}
namespace llvm {
namespace {
/// @brief A class for maintaining the slot number definition
/// as a placeholder for the actual definition for forward constants defs.
class ConstantPlaceHolder : public ConstantExpr {
void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
}
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Value *V) {
return isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
}
// FIXME: can we inherit this from ConstantExpr?
template <>
struct OperandTraits<ConstantPlaceHolder> :
public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
}
void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
if (Idx == size()) {
push_back(V);
return;
}
if (Idx >= size())
resize(Idx+1);
WeakVH &OldV = ValuePtrs[Idx];
if (!OldV) {
OldV = V;
return;
}
// Handle constants and non-constants (e.g. instrs) differently for
// efficiency.
if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
ResolveConstants.push_back(std::make_pair(PHC, Idx));
OldV = V;
} else {
// If there was a forward reference to this value, replace it.
Value *PrevVal = OldV;
OldV->replaceAllUsesWith(V);
delete PrevVal;
}
}
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = ValuePtrs[Idx]) {
assert(Ty == V->getType() && "Type mismatch in constant table!");
return cast<Constant>(V);
}
// Create and return a placeholder, which will later be RAUW'd.
Constant *C = new ConstantPlaceHolder(Ty, Context);
ValuePtrs[Idx] = C;
return C;
}
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = ValuePtrs[Idx]) {
assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
return V;
}
// No type specified, must be invalid reference.
if (!Ty) return nullptr;
// Create and return a placeholder, which will later be RAUW'd.
Value *V = new Argument(Ty);
ValuePtrs[Idx] = V;
return V;
}
/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
/// resolves any forward references. The idea behind this is that we sometimes
/// get constants (such as large arrays) which reference *many* forward ref
/// constants. Replacing each of these causes a lot of thrashing when
/// building/reuniquing the constant. Instead of doing this, we look at all the
/// uses and rewrite all the place holders at once for any constant that uses
/// a placeholder.
void BitcodeReaderValueList::ResolveConstantForwardRefs() {
// Sort the values by-pointer so that they are efficient to look up with a
// binary search.
std::sort(ResolveConstants.begin(), ResolveConstants.end());
SmallVector<Constant*, 64> NewOps;
while (!ResolveConstants.empty()) {
Value *RealVal = operator[](ResolveConstants.back().second);
Constant *Placeholder = ResolveConstants.back().first;
ResolveConstants.pop_back();
// Loop over all users of the placeholder, updating them to reference the
// new value. If they reference more than one placeholder, update them all
// at once.
while (!Placeholder->use_empty()) {
auto UI = Placeholder->user_begin();
User *U = *UI;
// If the using object isn't uniqued, just update the operands. This
// handles instructions and initializers for global variables.
if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
UI.getUse().set(RealVal);
continue;
}
// Otherwise, we have a constant that uses the placeholder. Replace that
// constant with a new constant that has *all* placeholder uses updated.
Constant *UserC = cast<Constant>(U);
for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
I != E; ++I) {
Value *NewOp;
if (!isa<ConstantPlaceHolder>(*I)) {
// Not a placeholder reference.
NewOp = *I;
} else if (*I == Placeholder) {
// Common case is that it just references this one placeholder.
NewOp = RealVal;
} else {
// Otherwise, look up the placeholder in ResolveConstants.
ResolveConstantsTy::iterator It =
std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
std::pair<Constant*, unsigned>(cast<Constant>(*I),
0));
assert(It != ResolveConstants.end() && It->first == *I);
NewOp = operator[](It->second);
}
NewOps.push_back(cast<Constant>(NewOp));
}
// Make the new constant.
Constant *NewC;
if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
NewC = ConstantArray::get(UserCA->getType(), NewOps);
} else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
NewC = ConstantStruct::get(UserCS->getType(), NewOps);
} else if (isa<ConstantVector>(UserC)) {
NewC = ConstantVector::get(NewOps);
} else {
assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
}
UserC->replaceAllUsesWith(NewC);
UserC->destroyConstant();
NewOps.clear();
}
// Update all ValueHandles, they should be the only users at this point.
Placeholder->replaceAllUsesWith(RealVal);
delete Placeholder;
}
}
void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
if (Idx == size()) {
push_back(MD);
return;
}
if (Idx >= size())
resize(Idx+1);
TrackingMDRef &OldMD = MDValuePtrs[Idx];
if (!OldMD) {
OldMD.reset(MD);
return;
}
// If there was a forward reference to this value, replace it.
MDNodeFwdDecl *PrevMD = cast<MDNodeFwdDecl>(OldMD.get());
PrevMD->replaceAllUsesWith(MD);
MDNode::deleteTemporary(PrevMD);
--NumFwdRefs;
}
Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
if (Idx >= size())
resize(Idx + 1);
if (Metadata *MD = MDValuePtrs[Idx])
return MD;
// Track forward refs to be resolved later.
if (AnyFwdRefs) {
MinFwdRef = std::min(MinFwdRef, Idx);
MaxFwdRef = std::max(MaxFwdRef, Idx);
} else {
AnyFwdRefs = true;
MinFwdRef = MaxFwdRef = Idx;
}
++NumFwdRefs;
// Create and return a placeholder, which will later be RAUW'd.
Metadata *MD = MDNode::getTemporary(Context, None);
MDValuePtrs[Idx].reset(MD);
return MD;
}
void BitcodeReaderMDValueList::tryToResolveCycles() {
if (!AnyFwdRefs)
// Nothing to do.
return;
if (NumFwdRefs)
// Still forward references... can't resolve cycles.
return;
// Resolve any cycles.
for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
auto &MD = MDValuePtrs[I];
assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Unexpected forward reference");
if (auto *N = dyn_cast_or_null<UniquableMDNode>(MD))
N->resolveCycles();
}
// Make sure we return early again until there's another forward ref.
AnyFwdRefs = false;
}
Type *BitcodeReader::getTypeByID(unsigned ID) {
// The type table size is always specified correctly.
if (ID >= TypeList.size())
return nullptr;
if (Type *Ty = TypeList[ID])
return Ty;
// If we have a forward reference, the only possible case is when it is to a
// named struct. Just create a placeholder for now.
return TypeList[ID] = createIdentifiedStructType(Context);
}
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
StringRef Name) {
auto *Ret = StructType::create(Context, Name);
IdentifiedStructTypes.push_back(Ret);
return Ret;
}
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
auto *Ret = StructType::create(Context);
IdentifiedStructTypes.push_back(Ret);
return Ret;
}
//===----------------------------------------------------------------------===//
// Functions for parsing blocks from the bitcode file
//===----------------------------------------------------------------------===//
/// \brief This fills an AttrBuilder object with the LLVM attributes that have
/// been decoded from the given integer. This function must stay in sync with
/// 'encodeLLVMAttributesForBitcode'.
static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
uint64_t EncodedAttrs) {
// FIXME: Remove in 4.0.
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
// the bits above 31 down by 11 bits.
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
assert((!Alignment || isPowerOf2_32(Alignment)) &&
"Alignment must be a power of two.");
if (Alignment)
B.addAlignmentAttr(Alignment);
B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
(EncodedAttrs & 0xffff));
}
std::error_code BitcodeReader::ParseAttributeBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Error("Invalid record");
if (!MAttributes.empty())
return Error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
SmallVector<AttributeSet, 8> Attrs;
// Read all the records.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
// FIXME: Remove in 4.0.
if (Record.size() & 1)
return Error("Invalid record");
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
AttrBuilder B;
decodeLLVMAttributesForBitcode(B, Record[i+1]);
Attrs.push_back(AttributeSet::get(Context, Record[i], B));
}
MAttributes.push_back(AttributeSet::get(Context, Attrs));
Attrs.clear();
break;
}
case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
for (unsigned i = 0, e = Record.size(); i != e; ++i)
Attrs.push_back(MAttributeGroups[Record[i]]);
MAttributes.push_back(AttributeSet::get(Context, Attrs));
Attrs.clear();
break;
}
}
}
}
// Returns Attribute::None on unrecognized codes.
static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
switch (Code) {
default:
return Attribute::None;
case bitc::ATTR_KIND_ALIGNMENT:
return Attribute::Alignment;
case bitc::ATTR_KIND_ALWAYS_INLINE:
return Attribute::AlwaysInline;
case bitc::ATTR_KIND_BUILTIN:
return Attribute::Builtin;
case bitc::ATTR_KIND_BY_VAL:
return Attribute::ByVal;
case bitc::ATTR_KIND_IN_ALLOCA:
return Attribute::InAlloca;
case bitc::ATTR_KIND_COLD:
return Attribute::Cold;
case bitc::ATTR_KIND_INLINE_HINT:
return Attribute::InlineHint;
case bitc::ATTR_KIND_IN_REG:
return Attribute::InReg;
case bitc::ATTR_KIND_JUMP_TABLE:
return Attribute::JumpTable;
case bitc::ATTR_KIND_MIN_SIZE:
return Attribute::MinSize;
case bitc::ATTR_KIND_NAKED:
return Attribute::Naked;
case bitc::ATTR_KIND_NEST:
return Attribute::Nest;
case bitc::ATTR_KIND_NO_ALIAS:
return Attribute::NoAlias;
case bitc::ATTR_KIND_NO_BUILTIN:
return Attribute::NoBuiltin;
case bitc::ATTR_KIND_NO_CAPTURE:
return Attribute::NoCapture;
case bitc::ATTR_KIND_NO_DUPLICATE:
return Attribute::NoDuplicate;
case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
return Attribute::NoImplicitFloat;
case bitc::ATTR_KIND_NO_INLINE:
return Attribute::NoInline;
case bitc::ATTR_KIND_NON_LAZY_BIND:
return Attribute::NonLazyBind;
case bitc::ATTR_KIND_NON_NULL:
return Attribute::NonNull;
case bitc::ATTR_KIND_DEREFERENCEABLE:
return Attribute::Dereferenceable;
case bitc::ATTR_KIND_NO_RED_ZONE:
return Attribute::NoRedZone;
case bitc::ATTR_KIND_NO_RETURN:
return Attribute::NoReturn;
case bitc::ATTR_KIND_NO_UNWIND:
return Attribute::NoUnwind;
case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
return Attribute::OptimizeForSize;
case bitc::ATTR_KIND_OPTIMIZE_NONE:
return Attribute::OptimizeNone;
case bitc::ATTR_KIND_READ_NONE:
return Attribute::ReadNone;
case bitc::ATTR_KIND_READ_ONLY:
return Attribute::ReadOnly;
case bitc::ATTR_KIND_RETURNED:
return Attribute::Returned;
case bitc::ATTR_KIND_RETURNS_TWICE:
return Attribute::ReturnsTwice;
case bitc::ATTR_KIND_S_EXT:
return Attribute::SExt;
case bitc::ATTR_KIND_STACK_ALIGNMENT:
return Attribute::StackAlignment;
case bitc::ATTR_KIND_STACK_PROTECT:
return Attribute::StackProtect;
case bitc::ATTR_KIND_STACK_PROTECT_REQ:
return Attribute::StackProtectReq;
case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
return Attribute::StackProtectStrong;
case bitc::ATTR_KIND_STRUCT_RET:
return Attribute::StructRet;
case bitc::ATTR_KIND_SANITIZE_ADDRESS:
return Attribute::SanitizeAddress;
case bitc::ATTR_KIND_SANITIZE_THREAD:
return Attribute::SanitizeThread;
case bitc::ATTR_KIND_SANITIZE_MEMORY:
return Attribute::SanitizeMemory;
case bitc::ATTR_KIND_UW_TABLE:
return Attribute::UWTable;
case bitc::ATTR_KIND_Z_EXT:
return Attribute::ZExt;
}
}
std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
Attribute::AttrKind *Kind) {
*Kind = GetAttrFromCode(Code);
if (*Kind == Attribute::None)
return Error(BitcodeError::CorruptedBitcode,
"Unknown attribute kind (" + Twine(Code) + ")");
return std::error_code();
}
std::error_code BitcodeReader::ParseAttributeGroupBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
return Error("Invalid record");
if (!MAttributeGroups.empty())
return Error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
if (Record.size() < 3)
return Error("Invalid record");
uint64_t GrpID = Record[0];
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
AttrBuilder B;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Record[i] == 0) { // Enum attribute
Attribute::AttrKind Kind;
if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
return EC;
B.addAttribute(Kind);
} else if (Record[i] == 1) { // Integer attribute
Attribute::AttrKind Kind;
if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
return EC;
if (Kind == Attribute::Alignment)
B.addAlignmentAttr(Record[++i]);
else if (Kind == Attribute::StackAlignment)
B.addStackAlignmentAttr(Record[++i]);
else if (Kind == Attribute::Dereferenceable)
B.addDereferenceableAttr(Record[++i]);
} else { // String attribute
assert((Record[i] == 3 || Record[i] == 4) &&
"Invalid attribute group entry");
bool HasValue = (Record[i++] == 4);
SmallString<64> KindStr;
SmallString<64> ValStr;
while (Record[i] != 0 && i != e)
KindStr += Record[i++];
assert(Record[i] == 0 && "Kind string not null terminated");
if (HasValue) {
// Has a value associated with it.
++i; // Skip the '0' that terminates the "kind" string.
while (Record[i] != 0 && i != e)
ValStr += Record[i++];
assert(Record[i] == 0 && "Value string not null terminated");
}
B.addAttribute(KindStr.str(), ValStr.str());
}
}
MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
break;
}
}
}
}
std::error_code BitcodeReader::ParseTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
return Error("Invalid record");
return ParseTypeTableBody();
}
std::error_code BitcodeReader::ParseTypeTableBody() {
if (!TypeList.empty())
return Error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
unsigned NumRecords = 0;
SmallString<64> TypeName;
// Read all the records for this type table.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
if (NumRecords != TypeList.size())
return Error("Malformed block");
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Type *ResultTy = nullptr;
switch (Stream.readRecord(Entry.ID, Record)) {
default:
return Error("Invalid value");
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.size() < 1)
return Error("Invalid record");
TypeList.resize(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
ResultTy = Type::getVoidTy(Context);
break;
case bitc::TYPE_CODE_HALF: // HALF
ResultTy = Type::getHalfTy(Context);
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
ResultTy = Type::getFloatTy(Context);
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
ResultTy = Type::getDoubleTy(Context);
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
ResultTy = Type::getX86_FP80Ty(Context);
break;
case bitc::TYPE_CODE_FP128: // FP128
ResultTy = Type::getFP128Ty(Context);
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
ResultTy = Type::getPPC_FP128Ty(Context);
break;
case bitc::TYPE_CODE_LABEL: // LABEL
ResultTy = Type::getLabelTy(Context);
break;
case bitc::TYPE_CODE_METADATA: // METADATA
ResultTy = Type::getMetadataTy(Context);
break;
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
ResultTy = Type::getX86_MMXTy(Context);
break;
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
return Error("Invalid record");
ResultTy = IntegerType::get(Context, Record[0]);
break;
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return Error("Invalid record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
ResultTy = getTypeByID(Record[0]);
if (!ResultTy)
return Error("Invalid type");
ResultTy = PointerType::get(ResultTy, AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION_OLD: {
// FIXME: attrid is dead, remove it in LLVM 4.0
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
return Error("Invalid record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
ArgTys.push_back(T);
else
break;
}
ResultTy = getTypeByID(Record[2]);
if (!ResultTy || ArgTys.size() < Record.size()-3)
return Error("Invalid type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
// FUNCTION: [vararg, retty, paramty x N]
if (Record.size() < 2)
return Error("Invalid record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
ArgTys.push_back(T);
else
break;
}
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || ArgTys.size() < Record.size()-2)
return Error("Invalid type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return Error("Invalid record");
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return Error("Invalid type");
ResultTy = StructType::get(Context, EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
if (ConvertToString(Record, 0, TypeName))
return Error("Invalid record");
continue;
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return Error("Invalid record");
if (NumRecords >= TypeList.size())
return Error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct.
Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return Error("Invalid record");
Res->setBody(EltTys, Record[0]);
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
if (Record.size() != 1)
return Error("Invalid record");
if (NumRecords >= TypeList.size())
return Error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct with no body.
Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = ArrayType::get(ResultTy, Record[0]);
else
return Error("Invalid type");
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = VectorType::get(ResultTy, Record[0]);
else
return Error("Invalid type");
break;
}
if (NumRecords >= TypeList.size())
return Error("Invalid TYPE table");
assert(ResultTy && "Didn't read a type?");
assert(!TypeList[NumRecords] && "Already read type?");
TypeList[NumRecords++] = ResultTy;
}
}
std::error_code BitcodeReader::ParseValueSymbolTable() {
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
SmallString<128> ValueName;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size() || !ValueList[ValueID])
return Error("Invalid record");
Value *V = ValueList[ValueID];
V->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
case bitc::VST_CODE_BBENTRY: {
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid record");
BasicBlock *BB = getBasicBlock(Record[0]);
if (!BB)
return Error("Invalid record");
BB->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
}
}
}
std::error_code BitcodeReader::ParseMetadata() {
unsigned NextMDValueNo = MDValueList.size();
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
MDValueList.tryToResolveCycles();
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
unsigned Code = Stream.readRecord(Entry.ID, Record);
bool IsDistinct = false;
switch (Code) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_NAME: {
// Read name of the named metadata.
SmallString<8> Name(Record.begin(), Record.end());
Record.clear();
Code = Stream.ReadCode();
// METADATA_NAME is always followed by METADATA_NAMED_NODE.
unsigned NextBitCode = Stream.readRecord(Code, Record);
assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
// Read named metadata elements.
unsigned Size = Record.size();
NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
for (unsigned i = 0; i != Size; ++i) {
MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
if (!MD)
return Error("Invalid record");
NMD->addOperand(MD);
}
break;
}
case bitc::METADATA_OLD_FN_NODE: {
// FIXME: Remove in 4.0.
// This is a LocalAsMetadata record, the only type of function-local
// metadata.
if (Record.size() % 2 == 1)
return Error("Invalid record");
// If this isn't a LocalAsMetadata record, we're dropping it. This used
// to be legal, but there's no upgrade path.
auto dropRecord = [&] {
MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++);
};
if (Record.size() != 2) {
dropRecord();
break;
}
Type *Ty = getTypeByID(Record[0]);
if (Ty->isMetadataTy() || Ty->isVoidTy()) {
dropRecord();
break;
}
MDValueList.AssignValue(
LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
NextMDValueNo++);
break;
}
case bitc::METADATA_OLD_NODE: {
// FIXME: Remove in 4.0.
if (Record.size() % 2 == 1)
return Error("Invalid record");
unsigned Size = Record.size();
SmallVector<Metadata *, 8> Elts;
for (unsigned i = 0; i != Size; i += 2) {
Type *Ty = getTypeByID(Record[i]);
if (!Ty)
return Error("Invalid record");
if (Ty->isMetadataTy())
Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
else if (!Ty->isVoidTy()) {
auto *MD =
ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
assert(isa<ConstantAsMetadata>(MD) &&
"Expected non-function-local metadata");
Elts.push_back(MD);
} else
Elts.push_back(nullptr);
}
MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
break;
}
case bitc::METADATA_VALUE: {
if (Record.size() != 2)
return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (Ty->isMetadataTy() || Ty->isVoidTy())
return Error("Invalid record");
MDValueList.AssignValue(
ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
NextMDValueNo++);
break;
}
case bitc::METADATA_DISTINCT_NODE:
IsDistinct = true;
// fallthrough...
case bitc::METADATA_NODE: {
SmallVector<Metadata *, 8> Elts;
Elts.reserve(Record.size());
for (unsigned ID : Record)
Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
: MDNode::get(Context, Elts),
NextMDValueNo++);
break;
}
case bitc::METADATA_LOCATION: {
if (Record.size() != 5)
return Error("Invalid record");
auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get;
unsigned Line = Record[1];
unsigned Column = Record[2];
MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
Metadata *InlinedAt =
Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt),
NextMDValueNo++);
break;
}
case bitc::METADATA_STRING: {
std::string String(Record.begin(), Record.end());
llvm::UpgradeMDStringConstant(String);
Metadata *MD = MDString::get(Context, String);
MDValueList.AssignValue(MD, NextMDValueNo++);
break;
}
case bitc::METADATA_KIND: {
if (Record.size() < 2)
return Error("Invalid record");
unsigned Kind = Record[0];
SmallString<8> Name(Record.begin()+1, Record.end());
unsigned NewKind = TheModule->getMDKindID(Name.str());
if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
return Error("Conflicting METADATA_KIND records");
break;
}
}
}
}
/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
/// the LSB for dense VBR encoding.
uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
}
/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
/// values and aliases that we can.
std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
GlobalInitWorklist.swap(GlobalInits);
AliasInitWorklist.swap(AliasInits);
FunctionPrefixWorklist.swap(FunctionPrefixes);
FunctionPrologueWorklist.swap(FunctionPrologues);
while (!GlobalInitWorklist.empty()) {
unsigned ValID = GlobalInitWorklist.back().second;
if (ValID >= ValueList.size()) {
// Not ready to resolve this yet, it requires something later in the file.
GlobalInits.push_back(GlobalInitWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
GlobalInitWorklist.back().first->setInitializer(C);
else
return Error("Expected a constant");
}
GlobalInitWorklist.pop_back();
}
while (!AliasInitWorklist.empty()) {
unsigned ValID = AliasInitWorklist.back().second;
if (ValID >= ValueList.size()) {
AliasInits.push_back(AliasInitWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
AliasInitWorklist.back().first->setAliasee(C);
else
return Error("Expected a constant");
}
AliasInitWorklist.pop_back();
}
while (!FunctionPrefixWorklist.empty()) {
unsigned ValID = FunctionPrefixWorklist.back().second;
if (ValID >= ValueList.size()) {
FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
FunctionPrefixWorklist.back().first->setPrefixData(C);
else
return Error("Expected a constant");
}
FunctionPrefixWorklist.pop_back();
}
while (!FunctionPrologueWorklist.empty()) {
unsigned ValID = FunctionPrologueWorklist.back().second;
if (ValID >= ValueList.size()) {
FunctionPrologues.push_back(FunctionPrologueWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
FunctionPrologueWorklist.back().first->setPrologueData(C);
else
return Error("Expected a constant");
}
FunctionPrologueWorklist.pop_back();
}
return std::error_code();
}
static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
SmallVector<uint64_t, 8> Words(Vals.size());
std::transform(Vals.begin(), Vals.end(), Words.begin(),
BitcodeReader::decodeSignRotatedValue);
return APInt(TypeBits, Words);
}
std::error_code BitcodeReader::ParseConstants() {
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
Type *CurTy = Type::getInt32Ty(Context);
unsigned NextCstNo = ValueList.size();
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
if (NextCstNo != ValueList.size())
return Error("Invalid ronstant reference");
// Once all the constants have been read, go through and resolve forward
// references.
ValueList.ResolveConstantForwardRefs();
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Value *V = nullptr;
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
switch (BitCode) {
default: // Default behavior: unknown constant
case bitc::CST_CODE_UNDEF: // UNDEF
V = UndefValue::get(CurTy);
break;
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
if (Record.empty())
return Error("Invalid record");
if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
return Error("Invalid record");
CurTy = TypeList[Record[0]];
continue; // Skip the ValueList manipulation.
case bitc::CST_CODE_NULL: // NULL
V = Constant::getNullValue(CurTy);
break;
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
if (!CurTy->isIntegerTy() || Record.empty())
return Error("Invalid record");
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
break;
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!CurTy->isIntegerTy() || Record.empty())
return Error("Invalid record");
APInt VInt = ReadWideAPInt(Record,
cast<IntegerType>(CurTy)->getBitWidth());
V = ConstantInt::get(Context, VInt);
break;
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
return Error("Invalid record");
if (CurTy->isHalfTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
APInt(16, (uint16_t)Record[0])));
else if (CurTy->isFloatTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
APInt(32, (uint32_t)Record[0])));
else if (CurTy->isDoubleTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
APInt(64, Record[0])));
else if (CurTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
APInt(80, Rearrange)));
} else if (CurTy->isFP128Ty())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
APInt(128, Record)));
else if (CurTy->isPPC_FP128Ty())
V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
APInt(128, Record)));
else
V = UndefValue::get(CurTy);
break;
}
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return Error("Invalid record");
unsigned Size = Record.size();
SmallVector<Constant*, 16> Elts;
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
STy->getElementType(i)));
V = ConstantStruct::get(STy, Elts);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
Type *EltTy = ATy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantArray::get(ATy, Elts);
} else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
Type *EltTy = VTy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantVector::get(Elts);
} else {
V = UndefValue::get(CurTy);
}
break;
}
case bitc::CST_CODE_STRING: // STRING: [values]
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return Error("Invalid record");
SmallString<16> Elts(Record.begin(), Record.end());
V = ConstantDataArray::getString(Context, Elts,
BitCode == bitc::CST_CODE_CSTRING);
break;
}
case bitc::CST_CODE_DATA: {// DATA: [n x value]
if (Record.empty())
return Error("Invalid record");
Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
unsigned Size = Record.size();
if (EltTy->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(64)) {
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isFloatTy()) {
SmallVector<float, 16> Elts(Size);
std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isDoubleTy()) {
SmallVector<double, 16> Elts(Size);
std::transform(Record.begin(), Record.end(), Elts.begin(),
BitsToDouble);
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else {
return Error("Invalid type for value");
}
break;
}
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
if (Record.size() < 3)
return Error("Invalid record");
int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown binop.
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
unsigned Flags = 0;
if (Record.size() >= 4) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[3] & (1 << bitc::PEO_EXACT))
Flags |= SDivOperator::IsExact;
}
}
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
}
break;
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3)
return Error("Invalid record");
int Opc = GetDecodedCastOpcode(Record[0]);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown cast.
} else {
Type *OpTy = getTypeByID(Record[1]);
if (!OpTy)
return Error("Invalid record");
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
V = UpgradeBitCastExpr(Opc, Op, CurTy);
if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
}
break;
}
case bitc::CST_CODE_CE_INBOUNDS_GEP:
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
if (Record.size() & 1)
return Error("Invalid record");
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
Type *ElTy = getTypeByID(Record[i]);
if (!ElTy)
return Error("Invalid record");
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
}
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
BitCode ==
bitc::CST_CODE_CE_INBOUNDS_GEP);
break;
}
case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3)
return Error("Invalid record");
Type *SelectorTy = Type::getInt1Ty(Context);
// If CurTy is a vector of length n, then Record[0] must be a <n x i1>
// vector. Otherwise, it must be a single bit.
if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
SelectorTy = VectorType::get(Type::getInt1Ty(Context),
VTy->getNumElements());
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
SelectorTy),
ValueList.getConstantFwdRef(Record[1],CurTy),
ValueList.getConstantFwdRef(Record[2],CurTy));
break;
}
case bitc::CST_CODE_CE_EXTRACTELT
: { // CE_EXTRACTELT: [opty, opval, opty, opval]
if (Record.size() < 3)
return Error("Invalid record");
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (!OpTy)
return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = nullptr;
if (Record.size() == 4) {
Type *IdxTy = getTypeByID(Record[2]);
if (!IdxTy)
return Error("Invalid record");
Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
} else // TODO: Remove with llvm 4.0
Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
if (!Op1)
return Error("Invalid record");
V = ConstantExpr::getExtractElement(Op0, Op1);
break;
}
case bitc::CST_CODE_CE_INSERTELT
: { // CE_INSERTELT: [opval, opval, opty, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
OpTy->getElementType());
Constant *Op2 = nullptr;
if (Record.size() == 4) {
Type *IdxTy = getTypeByID(Record[2]);
if (!IdxTy)
return Error("Invalid record");
Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
} else // TODO: Remove with llvm 4.0
Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
if (!Op2)
return Error("Invalid record");
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
OpTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
VectorType *RTy = dyn_cast<VectorType>(CurTy);
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (Record.size() < 4 || !RTy || !OpTy)
return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
RTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
if (Record.size() < 4)
return Error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
if (!OpTy)
return Error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
if (OpTy->isFPOrFPVectorTy())
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
else
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
break;
}
// This maintains backward compatibility, pre-asm dialect keywords.
// FIXME: Remove with the 4.0 release.
case bitc::CST_CODE_INLINEASM_OLD: {
if (Record.size() < 2)
return Error("Invalid record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = Record[0] >> 1;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return Error("Invalid record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
PointerType *PTy = cast<PointerType>(CurTy);
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
break;
}
// This version adds support for the asm dialect keywords (e.g.,
// inteldialect).
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 2)
return Error("Invalid record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = (Record[0] >> 1) & 1;
unsigned AsmDialect = Record[0] >> 2;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return Error("Invalid record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
PointerType *PTy = cast<PointerType>(CurTy);
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
InlineAsm::AsmDialect(AsmDialect));
break;
}
case bitc::CST_CODE_BLOCKADDRESS:{
if (Record.size() < 3)
return Error("Invalid record");
Type *FnTy = getTypeByID(Record[0]);
if (!FnTy)
return Error("Invalid record");
Function *Fn =
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
if (!Fn)
return Error("Invalid record");
// Don't let Fn get dematerialized.
BlockAddressesTaken.insert(Fn);
// If the function is already parsed we can insert the block address right
// away.
BasicBlock *BB;
unsigned BBID = Record[2];
if (!BBID)
// Invalid reference to entry block.
return Error("Invalid ID");
if (!Fn->empty()) {
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
for (size_t I = 0, E = BBID; I != E; ++I) {
if (BBI == BBE)
return Error("Invalid ID");
++BBI;
}
BB = BBI;
} else {
// Otherwise insert a placeholder and remember it so it can be inserted
// when the function is parsed.
auto &FwdBBs = BasicBlockFwdRefs[Fn];
if (FwdBBs.empty())
BasicBlockFwdRefQueue.push_back(Fn);
if (FwdBBs.size() < BBID + 1)
FwdBBs.resize(BBID + 1);
if (!FwdBBs[BBID])
FwdBBs[BBID] = BasicBlock::Create(Context);
BB = FwdBBs[BBID];
}
V = BlockAddress::get(Fn, BB);
break;
}
}
ValueList.AssignValue(V, NextCstNo);
++NextCstNo;
}
}
std::error_code BitcodeReader::ParseUseLists() {
if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
return Error("Invalid record");
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a use list record.
Record.clear();
bool IsBB = false;
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::USELIST_CODE_BB:
IsBB = true;
// fallthrough
case bitc::USELIST_CODE_DEFAULT: {
unsigned RecordLength = Record.size();
if (RecordLength < 3)
// Records should have at least an ID and two indexes.
return Error("Invalid record");
unsigned ID = Record.back();
Record.pop_back();
Value *V;
if (IsBB) {
assert(ID < FunctionBBs.size() && "Basic block not found");
V = FunctionBBs[ID];
} else
V = ValueList[ID];
unsigned NumUses = 0;
SmallDenseMap<const Use *, unsigned, 16> Order;
for (const Use &U : V->uses()) {
if (++NumUses > Record.size())
break;
Order[&U] = Record[NumUses - 1];
}
if (Order.size() != Record.size() || NumUses > Record.size())
// Mismatches can happen if the functions are being materialized lazily
// (out-of-order), or a value has been upgraded.
break;
V->sortUseList([&](const Use &L, const Use &R) {
return Order.lookup(&L) < Order.lookup(&R);
});
break;
}
}
}
}
/// RememberAndSkipFunctionBody - When we see the block for a function body,
/// remember where it is and then skip it. This lets us lazily deserialize the
/// functions.
std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return Error("Insufficient function protos");
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredFunctionInfo[Fn] = CurBit;
// Skip over the function block for now.
if (Stream.SkipBlock())
return Error("Invalid record");
return std::error_code();
}
std::error_code BitcodeReader::GlobalCleanup() {
// Patch the initializers for globals and aliases up.
ResolveGlobalAndAliasInits();
if (!GlobalInits.empty() || !AliasInits.empty())
return Error("Malformed global initializer set");
// Look for intrinsic functions which need to be upgraded at some point
for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
Function *NewFn;
if (UpgradeIntrinsicFunction(FI, NewFn))
UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
}
// Look for global variables which need to be renamed.
for (Module::global_iterator
GI = TheModule->global_begin(), GE = TheModule->global_end();
GI != GE;) {
GlobalVariable *GV = GI++;
UpgradeGlobalVariable(GV);
}
// Force deallocation of memory for these vectors to favor the client that
// want lazy deserialization.
std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
return std::error_code();
}
std::error_code BitcodeReader::ParseModule(bool Resume) {
if (Resume)
Stream.JumpToBit(NextUnreadBit);
else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
// Read all the records for this module.
while (1) {
BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return GlobalCleanup();
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Invalid record");
break;
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed block");
break;
case bitc::PARAMATTR_BLOCK_ID:
if (std::error_code EC = ParseAttributeBlock())
return EC;
break;
case bitc::PARAMATTR_GROUP_BLOCK_ID:
if (std::error_code EC = ParseAttributeGroupBlock())
return EC;
break;
case bitc::TYPE_BLOCK_ID_NEW:
if (std::error_code EC = ParseTypeTable())
return EC;
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (std::error_code EC = ParseValueSymbolTable())
return EC;
SeenValueSymbolTable = true;
break;
case bitc::CONSTANTS_BLOCK_ID:
if (std::error_code EC = ParseConstants())
return EC;
if (std::error_code EC = ResolveGlobalAndAliasInits())
return EC;
break;
case bitc::METADATA_BLOCK_ID:
if (std::error_code EC = ParseMetadata())
return EC;
break;
case bitc::FUNCTION_BLOCK_ID:
// If this is the first function body we've seen, reverse the
// FunctionsWithBodies list.
if (!SeenFirstFunctionBody) {
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
if (std::error_code EC = GlobalCleanup())
return EC;
SeenFirstFunctionBody = true;
}
if (std::error_code EC = RememberAndSkipFunctionBody())
return EC;
// For streaming bitcode, suspend parsing when we reach the function
// bodies. Subsequent materialization calls will resume it when
// necessary. For streaming, the function bodies must be at the end of
// the bitcode. If the bitcode file is old, the symbol table will be
// at the end instead and will not have been seen yet. In this case,
// just finish the parse now.
if (LazyStreamer && SeenValueSymbolTable) {
NextUnreadBit = Stream.GetCurrentBitNo();
return std::error_code();
}
break;
case bitc::USELIST_BLOCK_ID:
if (std::error_code EC = ParseUseLists())
return EC;
break;
}
continue;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
switch (Stream.readRecord(Entry.ID, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
if (Record.size() < 1)
return Error("Invalid record");
// Only version #0 and #1 are supported so far.
unsigned module_version = Record[0];
switch (module_version) {
default:
return Error("Invalid value");
case 0:
UseRelativeIDs = false;
break;
case 1:
UseRelativeIDs = true;
break;
}
break;
}
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid record");
TheModule->setTargetTriple(S);
break;
}
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid record");
TheModule->setDataLayout(S);
break;
}
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid record");
TheModule->setModuleInlineAsm(S);
break;
}
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
// FIXME: Remove in 4.0.
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid record");
// Ignore value.
break;
}
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid record");
SectionTable.push_back(S);
break;
}
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid record");
GCTable.push_back(S);
break;
}
case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
if (Record.size() < 2)
return Error("Invalid record");
Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
unsigned ComdatNameSize = Record[1];
std::string ComdatName;
ComdatName.reserve(ComdatNameSize);
for (unsigned i = 0; i != ComdatNameSize; ++i)
ComdatName += (char)Record[2 + i];
Comdat *C = TheModule->getOrInsertComdat(ComdatName);
C->setSelectionKind(SK);
ComdatList.push_back(C);
break;
}
// GLOBALVAR: [pointer type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal,
// unnamed_addr, dllstorageclass]
case bitc::MODULE_CODE_GLOBALVAR: {
if (Record.size() < 6)
return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty)
return Error("Invalid record");
if (!Ty->isPointerTy())
return Error("Invalid type for value");
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
Ty = cast<PointerType>(Ty)->getElementType();
bool isConstant = Record[1];
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Record[3]);
unsigned Alignment = (1 << Record[4]) >> 1;
std::string Section;
if (Record[5]) {
if (Record[5]-1 >= SectionTable.size())
return Error("Invalid ID");
Section = SectionTable[Record[5]-1];
}
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
// Local linkage must have default visibility.
if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
// FIXME: Change to an error if non-default in 4.0.
Visibility = GetDecodedVisibility(Record[6]);
GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
if (Record.size() > 7)
TLM = GetDecodedThreadLocalMode(Record[7]);
bool UnnamedAddr = false;
if (Record.size() > 8)
UnnamedAddr = Record[8];
bool ExternallyInitialized = false;
if (Record.size() > 9)
ExternallyInitialized = Record[9];
GlobalVariable *NewGV =
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
TLM, AddressSpace, ExternallyInitialized);
NewGV->setAlignment(Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setUnnamedAddr(UnnamedAddr);
if (Record.size() > 10)
NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10]));
else
UpgradeDLLImportExportLinkage(NewGV, Record[3]);
ValueList.push_back(NewGV);
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
if (Record.size() > 11)
if (unsigned ComdatID = Record[11]) {
assert(ComdatID <= ComdatList.size());
NewGV->setComdat(ComdatList[ComdatID - 1]);
}
break;
}
// FUNCTION: [type, callingconv, isproto, linkage, paramattr,
// alignment, section, visibility, gc, unnamed_addr,
// prologuedata, dllstorageclass, comdat, prefixdata]
case bitc::MODULE_CODE_FUNCTION: {
if (Record.size() < 8)
return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty)
return Error("Invalid record");
if (!Ty->isPointerTy())
return Error("Invalid type for value");
FunctionType *FTy =
dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
if (!FTy)
return Error("Invalid type for value");
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
"", TheModule);
Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
bool isProto = Record[2];
Func->setLinkage(getDecodedLinkage(Record[3]));
Func->setAttributes(getAttributes(Record[4]));
Func->setAlignment((1 << Record[5]) >> 1);
if (Record[6]) {
if (Record[6]-1 >= SectionTable.size())
return Error("Invalid ID");
Func->setSection(SectionTable[Record[6]-1]);
}
// Local linkage must have default visibility.
if (!Func->hasLocalLinkage())
// FIXME: Change to an error if non-default in 4.0.
Func->setVisibility(GetDecodedVisibility(Record[7]));
if (Record.size() > 8 && Record[8]) {
if (Record[8]-1 > GCTable.size())
return Error("Invalid ID");
Func->setGC(GCTable[Record[8]-1].c_str());
}
bool UnnamedAddr = false;
if (Record.size() > 9)
UnnamedAddr = Record[9];
Func->setUnnamedAddr(UnnamedAddr);
if (Record.size() > 10 && Record[10] != 0)
FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
if (Record.size() > 11)
Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
else
UpgradeDLLImportExportLinkage(Func, Record[3]);
if (Record.size() > 12)
if (unsigned ComdatID = Record[12]) {
assert(ComdatID <= ComdatList.size());
Func->setComdat(ComdatList[ComdatID - 1]);
}
if (Record.size() > 13 && Record[13] != 0)
FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
ValueList.push_back(Func);
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto) {
Func->setIsMaterializable(true);
FunctionsWithBodies.push_back(Func);
if (LazyStreamer)
DeferredFunctionInfo[Func] = 0;
}
break;
}
// ALIAS: [alias type, aliasee val#, linkage]
// ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
case bitc::MODULE_CODE_ALIAS: {
if (Record.size() < 3)
return Error("Invalid record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty)
return Error("Invalid record");
auto *PTy = dyn_cast<PointerType>(Ty);
if (!PTy)
return Error("Invalid type for value");
auto *NewGA =
GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
getDecodedLinkage(Record[2]), "", TheModule);
// Old bitcode files didn't have visibility field.
// Local linkage must have default visibility.
if (Record.size() > 3 && !NewGA->hasLocalLinkage())
// FIXME: Change to an error if non-default in 4.0.
NewGA->setVisibility(GetDecodedVisibility(Record[3]));
if (Record.size() > 4)
NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4]));
else
UpgradeDLLImportExportLinkage(NewGA, Record[2]);
if (Record.size() > 5)
NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
if (Record.size() > 6)
NewGA->setUnnamedAddr(Record[6]);
ValueList.push_back(NewGA);
AliasInits.push_back(std::make_pair(NewGA, Record[1]));
break;
}
/// MODULE_CODE_PURGEVALS: [numvals]
case bitc::MODULE_CODE_PURGEVALS:
// Trim down the value list to the specified size.
if (Record.size() < 1 || Record[0] > ValueList.size())
return Error("Invalid record");
ValueList.shrinkTo(Record[0]);
break;
}
Record.clear();
}
}
std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
TheModule = nullptr;
if (std::error_code EC = InitStream())
return EC;
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (1) {
if (Stream.AtEndOfStream())
return std::error_code();
BitstreamEntry Entry =
Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
switch (Entry.Kind) {
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed block");
break;
case bitc::MODULE_BLOCK_ID:
// Reject multiple MODULE_BLOCK's in a single bitstream.
if (TheModule)
return Error("Invalid multiple blocks");
TheModule = M;
if (std::error_code EC = ParseModule(false))
return EC;
if (LazyStreamer)
return std::error_code();
break;
default:
if (Stream.SkipBlock())
return Error("Invalid record");
break;
}
continue;
case BitstreamEntry::Record:
// There should be no records in the top-level of blocks.
// The ranlib in Xcode 4 will align archive members by appending newlines
// to the end of them. If this file size is a multiple of 4 but not 8, we
// have to read and ignore these final 4 bytes :-(
if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
Stream.AtEndOfStream())
return std::error_code();
return Error("Invalid record");
}
}
}
ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
std::string Triple;
// Read all the records for this module.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return Triple;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
switch (Stream.readRecord(Entry.ID, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid record");
Triple = S;
break;
}
}
Record.clear();
}
llvm_unreachable("Exit infinite loop");
}
ErrorOr<std::string> BitcodeReader::parseTriple() {
if (std::error_code EC = InitStream())
return EC;
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (1) {
BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::MODULE_BLOCK_ID)
return parseModuleTriple();
// Ignore other sub-blocks.
if (Stream.SkipBlock())
return Error("Malformed block");
continue;
case BitstreamEntry::Record:
Stream.skipRecord(Entry.ID);
continue;
}
}
}
/// ParseMetadataAttachment - Parse metadata attachments.
std::error_code BitcodeReader::ParseMetadataAttachment() {
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
return Error("Invalid record");
SmallVector<uint64_t, 64> Record;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
return std::error_code();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a metadata attachment record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_ATTACHMENT: {
unsigned RecordLength = Record.size();
if (Record.empty() || (RecordLength - 1) % 2 == 1)
return Error("Invalid record");
Instruction *Inst = InstructionList[Record[0]];
for (unsigned i = 1; i != RecordLength; i = i+2) {
unsigned Kind = Record[i];
DenseMap<unsigned, unsigned>::iterator I =
MDKindMap.find(Kind);
if (I == MDKindMap.end())
return Error("Invalid ID");
Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
if (isa<LocalAsMetadata>(Node))
// Drop the attachment. This used to be legal, but there's no
// upgrade path.
break;
Inst->setMetadata(I->second, cast<MDNode>(Node));
if (I->second == LLVMContext::MD_tbaa)
InstsWithTBAATag.push_back(Inst);
}
break;
}
}
}
}
/// ParseFunctionBody - Lazily parse the specified function body block.
std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Error("Invalid record");
InstructionList.clear();
unsigned ModuleValueListSize = ValueList.size();
unsigned ModuleMDValueListSize = MDValueList.size();
// Add all the function arguments to the value table.
for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
ValueList.push_back(I);
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = nullptr;
unsigned CurBBNo = 0;
DebugLoc LastLoc;
auto getLastInstruction = [&]() -> Instruction * {
if (CurBB && !CurBB->empty())
return &CurBB->back();
else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
!FunctionBBs[CurBBNo - 1]->empty())
return &FunctionBBs[CurBBNo - 1]->back();
return nullptr;
};
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (1) {
BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return Error("Malformed block");
case BitstreamEntry::EndBlock:
goto OutOfRecordLoop;
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Invalid record");
break;
case bitc::CONSTANTS_BLOCK_ID:
if (std::error_code EC = ParseConstants())
return EC;
NextValueNo = ValueList.size();
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (std::error_code EC = ParseValueSymbolTable())
return EC;
break;
case bitc::METADATA_ATTACHMENT_ID:
if (std::error_code EC = ParseMetadataAttachment())
return EC;
break;
case bitc::METADATA_BLOCK_ID:
if (std::error_code EC = ParseMetadata())