| //===- yaml2elf - Convert YAML to a ELF object file -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief The ELF component of yaml2obj. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "yaml2obj.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/MC/StringTableBuilder.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Object/ELFYAML.h" |
| #include "llvm/Support/ELF.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/YAMLTraits.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| // This class is used to build up a contiguous binary blob while keeping |
| // track of an offset in the output (which notionally begins at |
| // `InitialOffset`). |
| namespace { |
| class ContiguousBlobAccumulator { |
| const uint64_t InitialOffset; |
| SmallVector<char, 128> Buf; |
| raw_svector_ostream OS; |
| |
| /// \returns The new offset. |
| uint64_t padToAlignment(unsigned Align) { |
| uint64_t CurrentOffset = InitialOffset + OS.tell(); |
| uint64_t AlignedOffset = RoundUpToAlignment(CurrentOffset, Align); |
| for (; CurrentOffset != AlignedOffset; ++CurrentOffset) |
| OS.write('\0'); |
| return AlignedOffset; // == CurrentOffset; |
| } |
| |
| public: |
| ContiguousBlobAccumulator(uint64_t InitialOffset_) |
| : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} |
| template <class Integer> |
| raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align = 16) { |
| Offset = padToAlignment(Align); |
| return OS; |
| } |
| void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } |
| }; |
| } // end anonymous namespace |
| |
| // Used to keep track of section and symbol names, so that in the YAML file |
| // sections and symbols can be referenced by name instead of by index. |
| namespace { |
| class NameToIdxMap { |
| StringMap<int> Map; |
| public: |
| /// \returns true if name is already present in the map. |
| bool addName(StringRef Name, unsigned i) { |
| return !Map.insert(std::make_pair(Name, (int)i)).second; |
| } |
| /// \returns true if name is not present in the map |
| bool lookup(StringRef Name, unsigned &Idx) const { |
| StringMap<int>::const_iterator I = Map.find(Name); |
| if (I == Map.end()) |
| return true; |
| Idx = I->getValue(); |
| return false; |
| } |
| }; |
| } // end anonymous namespace |
| |
| template <class T> |
| static size_t arrayDataSize(ArrayRef<T> A) { |
| return A.size() * sizeof(T); |
| } |
| |
| template <class T> |
| static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) { |
| OS.write((const char *)A.data(), arrayDataSize(A)); |
| } |
| |
| template <class T> |
| static void zero(T &Obj) { |
| memset(&Obj, 0, sizeof(Obj)); |
| } |
| |
| namespace { |
| /// \brief "Single point of truth" for the ELF file construction. |
| /// TODO: This class still has a ways to go before it is truly a "single |
| /// point of truth". |
| template <class ELFT> |
| class ELFState { |
| typedef typename object::ELFFile<ELFT>::Elf_Ehdr Elf_Ehdr; |
| typedef typename object::ELFFile<ELFT>::Elf_Shdr Elf_Shdr; |
| typedef typename object::ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| typedef typename object::ELFFile<ELFT>::Elf_Rel Elf_Rel; |
| typedef typename object::ELFFile<ELFT>::Elf_Rela Elf_Rela; |
| |
| /// \brief The future ".strtab" section. |
| StringTableBuilder DotStrtab; |
| |
| /// \brief The future ".shstrtab" section. |
| StringTableBuilder DotShStrtab; |
| |
| NameToIdxMap SN2I; |
| NameToIdxMap SymN2I; |
| const ELFYAML::Object &Doc; |
| |
| bool buildSectionIndex(); |
| bool buildSymbolIndex(std::size_t &StartIndex, |
| const std::vector<ELFYAML::Symbol> &Symbols); |
| void initELFHeader(Elf_Ehdr &Header); |
| bool initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, |
| ContiguousBlobAccumulator &CBA); |
| void initSymtabSectionHeader(Elf_Shdr &SHeader, |
| ContiguousBlobAccumulator &CBA); |
| void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, |
| StringTableBuilder &STB, |
| ContiguousBlobAccumulator &CBA); |
| void addSymbols(const std::vector<ELFYAML::Symbol> &Symbols, |
| std::vector<Elf_Sym> &Syms, unsigned SymbolBinding); |
| void writeSectionContent(Elf_Shdr &SHeader, |
| const ELFYAML::RawContentSection &Section, |
| ContiguousBlobAccumulator &CBA); |
| bool writeSectionContent(Elf_Shdr &SHeader, |
| const ELFYAML::RelocationSection &Section, |
| ContiguousBlobAccumulator &CBA); |
| |
| // - SHT_NULL entry (placed first, i.e. 0'th entry) |
| // - symbol table (.symtab) (placed third to last) |
| // - string table (.strtab) (placed second to last) |
| // - section header string table (.shstrtab) (placed last) |
| unsigned getDotSymTabSecNo() const { return Doc.Sections.size() + 1; } |
| unsigned getDotStrTabSecNo() const { return Doc.Sections.size() + 2; } |
| unsigned getDotShStrTabSecNo() const { return Doc.Sections.size() + 3; } |
| unsigned getSectionCount() const { return Doc.Sections.size() + 4; } |
| |
| ELFState(const ELFYAML::Object &D) : Doc(D) {} |
| |
| public: |
| static int writeELF(raw_ostream &OS, const ELFYAML::Object &Doc); |
| }; |
| } // end anonymous namespace |
| |
| template <class ELFT> |
| void ELFState<ELFT>::initELFHeader(Elf_Ehdr &Header) { |
| using namespace llvm::ELF; |
| zero(Header); |
| Header.e_ident[EI_MAG0] = 0x7f; |
| Header.e_ident[EI_MAG1] = 'E'; |
| Header.e_ident[EI_MAG2] = 'L'; |
| Header.e_ident[EI_MAG3] = 'F'; |
| Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
| bool IsLittleEndian = ELFT::TargetEndianness == support::little; |
| Header.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB; |
| Header.e_ident[EI_VERSION] = EV_CURRENT; |
| Header.e_ident[EI_OSABI] = Doc.Header.OSABI; |
| Header.e_ident[EI_ABIVERSION] = 0; |
| Header.e_type = Doc.Header.Type; |
| Header.e_machine = Doc.Header.Machine; |
| Header.e_version = EV_CURRENT; |
| Header.e_entry = Doc.Header.Entry; |
| Header.e_flags = Doc.Header.Flags; |
| Header.e_ehsize = sizeof(Elf_Ehdr); |
| Header.e_shentsize = sizeof(Elf_Shdr); |
| // Immediately following the ELF header. |
| Header.e_shoff = sizeof(Header); |
| Header.e_shnum = getSectionCount(); |
| Header.e_shstrndx = getDotShStrTabSecNo(); |
| } |
| |
| template <class ELFT> |
| bool ELFState<ELFT>::initSectionHeaders(std::vector<Elf_Shdr> &SHeaders, |
| ContiguousBlobAccumulator &CBA) { |
| // Ensure SHN_UNDEF entry is present. An all-zero section header is a |
| // valid SHN_UNDEF entry since SHT_NULL == 0. |
| Elf_Shdr SHeader; |
| zero(SHeader); |
| SHeaders.push_back(SHeader); |
| |
| for (const auto &Sec : Doc.Sections) |
| DotShStrtab.add(Sec->Name); |
| DotShStrtab.finalize(StringTableBuilder::ELF); |
| |
| for (const auto &Sec : Doc.Sections) { |
| zero(SHeader); |
| SHeader.sh_name = DotShStrtab.getOffset(Sec->Name); |
| SHeader.sh_type = Sec->Type; |
| SHeader.sh_flags = Sec->Flags; |
| SHeader.sh_addr = Sec->Address; |
| SHeader.sh_addralign = Sec->AddressAlign; |
| |
| if (!Sec->Link.empty()) { |
| unsigned Index; |
| if (SN2I.lookup(Sec->Link, Index)) { |
| errs() << "error: Unknown section referenced: '" << Sec->Link |
| << "' at YAML section '" << Sec->Name << "'.\n"; |
| return false; |
| } |
| SHeader.sh_link = Index; |
| } |
| |
| if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec.get())) |
| writeSectionContent(SHeader, *S, CBA); |
| else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec.get())) { |
| if (S->Link.empty()) |
| // For relocation section set link to .symtab by default. |
| SHeader.sh_link = getDotSymTabSecNo(); |
| |
| unsigned Index; |
| if (SN2I.lookup(S->Info, Index)) { |
| errs() << "error: Unknown section referenced: '" << S->Info |
| << "' at YAML section '" << S->Name << "'.\n"; |
| return false; |
| } |
| SHeader.sh_info = Index; |
| |
| if (!writeSectionContent(SHeader, *S, CBA)) |
| return false; |
| } else |
| llvm_unreachable("Unknown section type"); |
| |
| SHeaders.push_back(SHeader); |
| } |
| return true; |
| } |
| |
| template <class ELFT> |
| void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader, |
| ContiguousBlobAccumulator &CBA) { |
| zero(SHeader); |
| SHeader.sh_name = DotShStrtab.getOffset(".symtab"); |
| SHeader.sh_type = ELF::SHT_SYMTAB; |
| SHeader.sh_link = getDotStrTabSecNo(); |
| // One greater than symbol table index of the last local symbol. |
| SHeader.sh_info = Doc.Symbols.Local.size() + 1; |
| SHeader.sh_entsize = sizeof(Elf_Sym); |
| |
| std::vector<Elf_Sym> Syms; |
| { |
| // Ensure STN_UNDEF is present |
| Elf_Sym Sym; |
| zero(Sym); |
| Syms.push_back(Sym); |
| } |
| |
| // Add symbol names to .strtab. |
| for (const auto &Sym : Doc.Symbols.Local) |
| DotStrtab.add(Sym.Name); |
| for (const auto &Sym : Doc.Symbols.Global) |
| DotStrtab.add(Sym.Name); |
| for (const auto &Sym : Doc.Symbols.Weak) |
| DotStrtab.add(Sym.Name); |
| DotStrtab.finalize(StringTableBuilder::ELF); |
| |
| addSymbols(Doc.Symbols.Local, Syms, ELF::STB_LOCAL); |
| addSymbols(Doc.Symbols.Global, Syms, ELF::STB_GLOBAL); |
| addSymbols(Doc.Symbols.Weak, Syms, ELF::STB_WEAK); |
| |
| writeArrayData(CBA.getOSAndAlignedOffset(SHeader.sh_offset), |
| makeArrayRef(Syms)); |
| SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); |
| } |
| |
| template <class ELFT> |
| void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, |
| StringTableBuilder &STB, |
| ContiguousBlobAccumulator &CBA) { |
| zero(SHeader); |
| SHeader.sh_name = DotShStrtab.getOffset(Name); |
| SHeader.sh_type = ELF::SHT_STRTAB; |
| CBA.getOSAndAlignedOffset(SHeader.sh_offset) << STB.data(); |
| SHeader.sh_size = STB.data().size(); |
| SHeader.sh_addralign = 1; |
| } |
| |
| template <class ELFT> |
| void ELFState<ELFT>::addSymbols(const std::vector<ELFYAML::Symbol> &Symbols, |
| std::vector<Elf_Sym> &Syms, |
| unsigned SymbolBinding) { |
| for (const auto &Sym : Symbols) { |
| Elf_Sym Symbol; |
| zero(Symbol); |
| if (!Sym.Name.empty()) |
| Symbol.st_name = DotStrtab.getOffset(Sym.Name); |
| Symbol.setBindingAndType(SymbolBinding, Sym.Type); |
| if (!Sym.Section.empty()) { |
| unsigned Index; |
| if (SN2I.lookup(Sym.Section, Index)) { |
| errs() << "error: Unknown section referenced: '" << Sym.Section |
| << "' by YAML symbol " << Sym.Name << ".\n"; |
| exit(1); |
| } |
| Symbol.st_shndx = Index; |
| } // else Symbol.st_shndex == SHN_UNDEF (== 0), since it was zero'd earlier. |
| Symbol.st_value = Sym.Value; |
| Symbol.st_other = Sym.Other; |
| Symbol.st_size = Sym.Size; |
| Syms.push_back(Symbol); |
| } |
| } |
| |
| template <class ELFT> |
| void |
| ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, |
| const ELFYAML::RawContentSection &Section, |
| ContiguousBlobAccumulator &CBA) { |
| assert(Section.Size >= Section.Content.binary_size() && |
| "Section size and section content are inconsistent"); |
| raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset); |
| Section.Content.writeAsBinary(OS); |
| for (auto i = Section.Content.binary_size(); i < Section.Size; ++i) |
| OS.write(0); |
| SHeader.sh_entsize = 0; |
| SHeader.sh_size = Section.Size; |
| } |
| |
| template <class ELFT> |
| bool |
| ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader, |
| const ELFYAML::RelocationSection &Section, |
| ContiguousBlobAccumulator &CBA) { |
| if (Section.Type != llvm::ELF::SHT_REL && |
| Section.Type != llvm::ELF::SHT_RELA) { |
| errs() << "error: Invalid relocation section type.\n"; |
| return false; |
| } |
| |
| bool IsRela = Section.Type == llvm::ELF::SHT_RELA; |
| SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size(); |
| |
| auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset); |
| |
| for (const auto &Rel : Section.Relocations) { |
| unsigned SymIdx; |
| if (SymN2I.lookup(Rel.Symbol, SymIdx)) { |
| errs() << "error: Unknown symbol referenced: '" << Rel.Symbol |
| << "' at YAML relocation.\n"; |
| return false; |
| } |
| |
| if (IsRela) { |
| Elf_Rela REntry; |
| zero(REntry); |
| REntry.r_offset = Rel.Offset; |
| REntry.r_addend = Rel.Addend; |
| REntry.setSymbolAndType(SymIdx, Rel.Type); |
| OS.write((const char *)&REntry, sizeof(REntry)); |
| } else { |
| Elf_Rel REntry; |
| zero(REntry); |
| REntry.r_offset = Rel.Offset; |
| REntry.setSymbolAndType(SymIdx, Rel.Type); |
| OS.write((const char *)&REntry, sizeof(REntry)); |
| } |
| } |
| return true; |
| } |
| |
| template <class ELFT> bool ELFState<ELFT>::buildSectionIndex() { |
| SN2I.addName(".symtab", getDotSymTabSecNo()); |
| SN2I.addName(".strtab", getDotStrTabSecNo()); |
| SN2I.addName(".shstrtab", getDotShStrTabSecNo()); |
| |
| for (unsigned i = 0, e = Doc.Sections.size(); i != e; ++i) { |
| StringRef Name = Doc.Sections[i]->Name; |
| if (Name.empty()) |
| continue; |
| // "+ 1" to take into account the SHT_NULL entry. |
| if (SN2I.addName(Name, i + 1)) { |
| errs() << "error: Repeated section name: '" << Name |
| << "' at YAML section number " << i << ".\n"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <class ELFT> |
| bool |
| ELFState<ELFT>::buildSymbolIndex(std::size_t &StartIndex, |
| const std::vector<ELFYAML::Symbol> &Symbols) { |
| for (const auto &Sym : Symbols) { |
| ++StartIndex; |
| if (Sym.Name.empty()) |
| continue; |
| if (SymN2I.addName(Sym.Name, StartIndex)) { |
| errs() << "error: Repeated symbol name: '" << Sym.Name << "'.\n"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <class ELFT> |
| int ELFState<ELFT>::writeELF(raw_ostream &OS, const ELFYAML::Object &Doc) { |
| ELFState<ELFT> State(Doc); |
| if (!State.buildSectionIndex()) |
| return 1; |
| |
| std::size_t StartSymIndex = 0; |
| if (!State.buildSymbolIndex(StartSymIndex, Doc.Symbols.Local) || |
| !State.buildSymbolIndex(StartSymIndex, Doc.Symbols.Global) || |
| !State.buildSymbolIndex(StartSymIndex, Doc.Symbols.Weak)) |
| return 1; |
| |
| Elf_Ehdr Header; |
| State.initELFHeader(Header); |
| |
| // TODO: Flesh out section header support. |
| // TODO: Program headers. |
| |
| // XXX: This offset is tightly coupled with the order that we write |
| // things to `OS`. |
| const size_t SectionContentBeginOffset = |
| Header.e_ehsize + Header.e_shentsize * Header.e_shnum; |
| ContiguousBlobAccumulator CBA(SectionContentBeginOffset); |
| |
| // Doc might not contain .symtab, .strtab and .shstrtab sections, |
| // but we will emit them, so make sure to add them to ShStrTabSHeader. |
| State.DotShStrtab.add(".symtab"); |
| State.DotShStrtab.add(".strtab"); |
| State.DotShStrtab.add(".shstrtab"); |
| |
| std::vector<Elf_Shdr> SHeaders; |
| if(!State.initSectionHeaders(SHeaders, CBA)) |
| return 1; |
| |
| // .symtab section. |
| Elf_Shdr SymtabSHeader; |
| State.initSymtabSectionHeader(SymtabSHeader, CBA); |
| SHeaders.push_back(SymtabSHeader); |
| |
| // .strtab string table header. |
| Elf_Shdr DotStrTabSHeader; |
| State.initStrtabSectionHeader(DotStrTabSHeader, ".strtab", State.DotStrtab, |
| CBA); |
| SHeaders.push_back(DotStrTabSHeader); |
| |
| // .shstrtab string table header. |
| Elf_Shdr ShStrTabSHeader; |
| State.initStrtabSectionHeader(ShStrTabSHeader, ".shstrtab", State.DotShStrtab, |
| CBA); |
| SHeaders.push_back(ShStrTabSHeader); |
| |
| OS.write((const char *)&Header, sizeof(Header)); |
| writeArrayData(OS, makeArrayRef(SHeaders)); |
| CBA.writeBlobToStream(OS); |
| return 0; |
| } |
| |
| static bool is64Bit(const ELFYAML::Object &Doc) { |
| return Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); |
| } |
| |
| static bool isLittleEndian(const ELFYAML::Object &Doc) { |
| return Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); |
| } |
| |
| int yaml2elf(yaml::Input &YIn, raw_ostream &Out) { |
| ELFYAML::Object Doc; |
| YIn >> Doc; |
| if (YIn.error()) { |
| errs() << "yaml2obj: Failed to parse YAML file!\n"; |
| return 1; |
| } |
| using object::ELFType; |
| typedef ELFType<support::little, 8, true> LE64; |
| typedef ELFType<support::big, 8, true> BE64; |
| typedef ELFType<support::little, 4, false> LE32; |
| typedef ELFType<support::big, 4, false> BE32; |
| if (is64Bit(Doc)) { |
| if (isLittleEndian(Doc)) |
| return ELFState<LE64>::writeELF(Out, Doc); |
| else |
| return ELFState<BE64>::writeELF(Out, Doc); |
| } else { |
| if (isLittleEndian(Doc)) |
| return ELFState<LE32>::writeELF(Out, Doc); |
| else |
| return ELFState<BE32>::writeELF(Out, Doc); |
| } |
| } |