| //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements all of the non-inline methods for the LLVM instruction |
| // classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Instructions.h" |
| #include "LLVMContextImpl.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // CallSite Class |
| //===----------------------------------------------------------------------===// |
| |
| User::op_iterator CallSite::getCallee() const { |
| Instruction *II(getInstruction()); |
| return isCall() |
| ? cast<CallInst>(II)->op_end() - 1 // Skip Callee |
| : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TerminatorInst Class |
| //===----------------------------------------------------------------------===// |
| |
| // Out of line virtual method, so the vtable, etc has a home. |
| TerminatorInst::~TerminatorInst() { |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // UnaryInstruction Class |
| //===----------------------------------------------------------------------===// |
| |
| // Out of line virtual method, so the vtable, etc has a home. |
| UnaryInstruction::~UnaryInstruction() { |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectInst Class |
| //===----------------------------------------------------------------------===// |
| |
| /// areInvalidOperands - Return a string if the specified operands are invalid |
| /// for a select operation, otherwise return null. |
| const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { |
| if (Op1->getType() != Op2->getType()) |
| return "both values to select must have same type"; |
| |
| if (Op1->getType()->isTokenTy()) |
| return "select values cannot have token type"; |
| |
| if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { |
| // Vector select. |
| if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) |
| return "vector select condition element type must be i1"; |
| VectorType *ET = dyn_cast<VectorType>(Op1->getType()); |
| if (!ET) |
| return "selected values for vector select must be vectors"; |
| if (ET->getNumElements() != VT->getNumElements()) |
| return "vector select requires selected vectors to have " |
| "the same vector length as select condition"; |
| } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { |
| return "select condition must be i1 or <n x i1>"; |
| } |
| return nullptr; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // PHINode Class |
| //===----------------------------------------------------------------------===// |
| |
| void PHINode::anchor() {} |
| |
| PHINode::PHINode(const PHINode &PN) |
| : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), |
| ReservedSpace(PN.getNumOperands()) { |
| allocHungoffUses(PN.getNumOperands()); |
| std::copy(PN.op_begin(), PN.op_end(), op_begin()); |
| std::copy(PN.block_begin(), PN.block_end(), block_begin()); |
| SubclassOptionalData = PN.SubclassOptionalData; |
| } |
| |
| // removeIncomingValue - Remove an incoming value. This is useful if a |
| // predecessor basic block is deleted. |
| Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { |
| Value *Removed = getIncomingValue(Idx); |
| |
| // Move everything after this operand down. |
| // |
| // FIXME: we could just swap with the end of the list, then erase. However, |
| // clients might not expect this to happen. The code as it is thrashes the |
| // use/def lists, which is kinda lame. |
| std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); |
| std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); |
| |
| // Nuke the last value. |
| Op<-1>().set(nullptr); |
| setNumHungOffUseOperands(getNumOperands() - 1); |
| |
| // If the PHI node is dead, because it has zero entries, nuke it now. |
| if (getNumOperands() == 0 && DeletePHIIfEmpty) { |
| // If anyone is using this PHI, make them use a dummy value instead... |
| replaceAllUsesWith(UndefValue::get(getType())); |
| eraseFromParent(); |
| } |
| return Removed; |
| } |
| |
| /// growOperands - grow operands - This grows the operand list in response |
| /// to a push_back style of operation. This grows the number of ops by 1.5 |
| /// times. |
| /// |
| void PHINode::growOperands() { |
| unsigned e = getNumOperands(); |
| unsigned NumOps = e + e / 2; |
| if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. |
| |
| ReservedSpace = NumOps; |
| growHungoffUses(ReservedSpace, /* IsPhi */ true); |
| } |
| |
| /// hasConstantValue - If the specified PHI node always merges together the same |
| /// value, return the value, otherwise return null. |
| Value *PHINode::hasConstantValue() const { |
| // Exploit the fact that phi nodes always have at least one entry. |
| Value *ConstantValue = getIncomingValue(0); |
| for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) |
| if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { |
| if (ConstantValue != this) |
| return nullptr; // Incoming values not all the same. |
| // The case where the first value is this PHI. |
| ConstantValue = getIncomingValue(i); |
| } |
| if (ConstantValue == this) |
| return UndefValue::get(getType()); |
| return ConstantValue; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LandingPadInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| const Twine &NameStr, Instruction *InsertBefore) |
| : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { |
| init(NumReservedValues, NameStr); |
| } |
| |
| LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| const Twine &NameStr, BasicBlock *InsertAtEnd) |
| : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { |
| init(NumReservedValues, NameStr); |
| } |
| |
| LandingPadInst::LandingPadInst(const LandingPadInst &LP) |
| : Instruction(LP.getType(), Instruction::LandingPad, nullptr, |
| LP.getNumOperands()), |
| ReservedSpace(LP.getNumOperands()) { |
| allocHungoffUses(LP.getNumOperands()); |
| Use *OL = getOperandList(); |
| const Use *InOL = LP.getOperandList(); |
| for (unsigned I = 0, E = ReservedSpace; I != E; ++I) |
| OL[I] = InOL[I]; |
| |
| setCleanup(LP.isCleanup()); |
| } |
| |
| LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, |
| const Twine &NameStr, |
| Instruction *InsertBefore) { |
| return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); |
| } |
| |
| LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, |
| const Twine &NameStr, |
| BasicBlock *InsertAtEnd) { |
| return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); |
| } |
| |
| void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { |
| ReservedSpace = NumReservedValues; |
| setNumHungOffUseOperands(0); |
| allocHungoffUses(ReservedSpace); |
| setName(NameStr); |
| setCleanup(false); |
| } |
| |
| /// growOperands - grow operands - This grows the operand list in response to a |
| /// push_back style of operation. This grows the number of ops by 2 times. |
| void LandingPadInst::growOperands(unsigned Size) { |
| unsigned e = getNumOperands(); |
| if (ReservedSpace >= e + Size) return; |
| ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; |
| growHungoffUses(ReservedSpace); |
| } |
| |
| void LandingPadInst::addClause(Constant *Val) { |
| unsigned OpNo = getNumOperands(); |
| growOperands(1); |
| assert(OpNo < ReservedSpace && "Growing didn't work!"); |
| setNumHungOffUseOperands(getNumOperands() + 1); |
| getOperandList()[OpNo] = Val; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CallInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| CallInst::~CallInst() { |
| } |
| |
| void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { |
| this->FTy = FTy; |
| assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && |
| "NumOperands not set up?"); |
| Op<-1>() = Func; |
| |
| #ifndef NDEBUG |
| assert((Args.size() == FTy->getNumParams() || |
| (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && |
| "Calling a function with bad signature!"); |
| |
| for (unsigned i = 0; i != Args.size(); ++i) |
| assert((i >= FTy->getNumParams() || |
| FTy->getParamType(i) == Args[i]->getType()) && |
| "Calling a function with a bad signature!"); |
| #endif |
| |
| std::copy(Args.begin(), Args.end(), op_begin()); |
| |
| auto It = populateBundleOperandInfos(Bundles, Args.size()); |
| (void)It; |
| assert(It + 1 == op_end() && "Should add up!"); |
| |
| setName(NameStr); |
| } |
| |
| void CallInst::init(Value *Func, const Twine &NameStr) { |
| FTy = |
| cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); |
| assert(getNumOperands() == 1 && "NumOperands not set up?"); |
| Op<-1>() = Func; |
| |
| assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); |
| |
| setName(NameStr); |
| } |
| |
| CallInst::CallInst(Value *Func, const Twine &Name, |
| Instruction *InsertBefore) |
| : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) |
| ->getElementType())->getReturnType(), |
| Instruction::Call, |
| OperandTraits<CallInst>::op_end(this) - 1, |
| 1, InsertBefore) { |
| init(Func, Name); |
| } |
| |
| CallInst::CallInst(Value *Func, const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) |
| ->getElementType())->getReturnType(), |
| Instruction::Call, |
| OperandTraits<CallInst>::op_end(this) - 1, |
| 1, InsertAtEnd) { |
| init(Func, Name); |
| } |
| |
| CallInst::CallInst(const CallInst &CI) |
| : Instruction(CI.getType(), Instruction::Call, |
| OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), |
| CI.getNumOperands()), |
| AttributeList(CI.AttributeList), FTy(CI.FTy) { |
| setTailCallKind(CI.getTailCallKind()); |
| setCallingConv(CI.getCallingConv()); |
| |
| std::copy(CI.op_begin(), CI.op_end(), op_begin()); |
| std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), |
| bundle_op_info_begin()); |
| SubclassOptionalData = CI.SubclassOptionalData; |
| } |
| |
| CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, |
| Instruction *InsertPt) { |
| std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); |
| |
| auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(), |
| InsertPt); |
| NewCI->setTailCallKind(CI->getTailCallKind()); |
| NewCI->setCallingConv(CI->getCallingConv()); |
| NewCI->SubclassOptionalData = CI->SubclassOptionalData; |
| NewCI->setAttributes(CI->getAttributes()); |
| return NewCI; |
| } |
| |
| void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addAttribute(getContext(), i, attr); |
| setAttributes(PAL); |
| } |
| |
| void CallInst::addAttribute(unsigned i, StringRef Kind, StringRef Value) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addAttribute(getContext(), i, Kind, Value); |
| setAttributes(PAL); |
| } |
| |
| void CallInst::removeAttribute(unsigned i, Attribute attr) { |
| AttributeSet PAL = getAttributes(); |
| AttrBuilder B(attr); |
| LLVMContext &Context = getContext(); |
| PAL = PAL.removeAttributes(Context, i, |
| AttributeSet::get(Context, i, B)); |
| setAttributes(PAL); |
| } |
| |
| void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); |
| setAttributes(PAL); |
| } |
| |
| void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); |
| setAttributes(PAL); |
| } |
| |
| bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { |
| assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); |
| |
| if (AttributeList.hasAttribute(i, A)) |
| return true; |
| if (const Function *F = getCalledFunction()) |
| return F->getAttributes().hasAttribute(i, A); |
| return false; |
| } |
| |
| bool CallInst::dataOperandHasImpliedAttr(unsigned i, |
| Attribute::AttrKind A) const { |
| |
| // There are getNumOperands() - 1 data operands. The last operand is the |
| // callee. |
| assert(i < getNumOperands() && "Data operand index out of bounds!"); |
| |
| // The attribute A can either be directly specified, if the operand in |
| // question is a call argument; or be indirectly implied by the kind of its |
| // containing operand bundle, if the operand is a bundle operand. |
| |
| if (i < (getNumArgOperands() + 1)) |
| return paramHasAttr(i, A); |
| |
| assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && |
| "Must be either a call argument or an operand bundle!"); |
| return bundleOperandHasAttr(i - 1, A); |
| } |
| |
| /// IsConstantOne - Return true only if val is constant int 1 |
| static bool IsConstantOne(Value *val) { |
| assert(val && "IsConstantOne does not work with nullptr val"); |
| const ConstantInt *CVal = dyn_cast<ConstantInt>(val); |
| return CVal && CVal->isOne(); |
| } |
| |
| static Instruction *createMalloc(Instruction *InsertBefore, |
| BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| Type *AllocTy, Value *AllocSize, |
| Value *ArraySize, Function *MallocF, |
| const Twine &Name) { |
| assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && |
| "createMalloc needs either InsertBefore or InsertAtEnd"); |
| |
| // malloc(type) becomes: |
| // bitcast (i8* malloc(typeSize)) to type* |
| // malloc(type, arraySize) becomes: |
| // bitcast (i8 *malloc(typeSize*arraySize)) to type* |
| if (!ArraySize) |
| ArraySize = ConstantInt::get(IntPtrTy, 1); |
| else if (ArraySize->getType() != IntPtrTy) { |
| if (InsertBefore) |
| ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, |
| "", InsertBefore); |
| else |
| ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, |
| "", InsertAtEnd); |
| } |
| |
| if (!IsConstantOne(ArraySize)) { |
| if (IsConstantOne(AllocSize)) { |
| AllocSize = ArraySize; // Operand * 1 = Operand |
| } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { |
| Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, |
| false /*ZExt*/); |
| // Malloc arg is constant product of type size and array size |
| AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); |
| } else { |
| // Multiply type size by the array size... |
| if (InsertBefore) |
| AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, |
| "mallocsize", InsertBefore); |
| else |
| AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, |
| "mallocsize", InsertAtEnd); |
| } |
| } |
| |
| assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); |
| // Create the call to Malloc. |
| BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; |
| Module* M = BB->getParent()->getParent(); |
| Type *BPTy = Type::getInt8PtrTy(BB->getContext()); |
| Value *MallocFunc = MallocF; |
| if (!MallocFunc) |
| // prototype malloc as "void *malloc(size_t)" |
| MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr); |
| PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); |
| CallInst *MCall = nullptr; |
| Instruction *Result = nullptr; |
| if (InsertBefore) { |
| MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); |
| Result = MCall; |
| if (Result->getType() != AllocPtrType) |
| // Create a cast instruction to convert to the right type... |
| Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); |
| } else { |
| MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); |
| Result = MCall; |
| if (Result->getType() != AllocPtrType) { |
| InsertAtEnd->getInstList().push_back(MCall); |
| // Create a cast instruction to convert to the right type... |
| Result = new BitCastInst(MCall, AllocPtrType, Name); |
| } |
| } |
| MCall->setTailCall(); |
| if (Function *F = dyn_cast<Function>(MallocFunc)) { |
| MCall->setCallingConv(F->getCallingConv()); |
| if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); |
| } |
| assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); |
| |
| return Result; |
| } |
| |
| /// CreateMalloc - Generate the IR for a call to malloc: |
| /// 1. Compute the malloc call's argument as the specified type's size, |
| /// possibly multiplied by the array size if the array size is not |
| /// constant 1. |
| /// 2. Call malloc with that argument. |
| /// 3. Bitcast the result of the malloc call to the specified type. |
| Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, |
| Type *IntPtrTy, Type *AllocTy, |
| Value *AllocSize, Value *ArraySize, |
| Function * MallocF, |
| const Twine &Name) { |
| return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, |
| ArraySize, MallocF, Name); |
| } |
| |
| /// CreateMalloc - Generate the IR for a call to malloc: |
| /// 1. Compute the malloc call's argument as the specified type's size, |
| /// possibly multiplied by the array size if the array size is not |
| /// constant 1. |
| /// 2. Call malloc with that argument. |
| /// 3. Bitcast the result of the malloc call to the specified type. |
| /// Note: This function does not add the bitcast to the basic block, that is the |
| /// responsibility of the caller. |
| Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, |
| Type *IntPtrTy, Type *AllocTy, |
| Value *AllocSize, Value *ArraySize, |
| Function *MallocF, const Twine &Name) { |
| return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, |
| ArraySize, MallocF, Name); |
| } |
| |
| static Instruction* createFree(Value* Source, Instruction *InsertBefore, |
| BasicBlock *InsertAtEnd) { |
| assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && |
| "createFree needs either InsertBefore or InsertAtEnd"); |
| assert(Source->getType()->isPointerTy() && |
| "Can not free something of nonpointer type!"); |
| |
| BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; |
| Module* M = BB->getParent()->getParent(); |
| |
| Type *VoidTy = Type::getVoidTy(M->getContext()); |
| Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); |
| // prototype free as "void free(void*)" |
| Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr); |
| CallInst* Result = nullptr; |
| Value *PtrCast = Source; |
| if (InsertBefore) { |
| if (Source->getType() != IntPtrTy) |
| PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); |
| Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); |
| } else { |
| if (Source->getType() != IntPtrTy) |
| PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); |
| Result = CallInst::Create(FreeFunc, PtrCast, ""); |
| } |
| Result->setTailCall(); |
| if (Function *F = dyn_cast<Function>(FreeFunc)) |
| Result->setCallingConv(F->getCallingConv()); |
| |
| return Result; |
| } |
| |
| /// CreateFree - Generate the IR for a call to the builtin free function. |
| Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { |
| return createFree(Source, InsertBefore, nullptr); |
| } |
| |
| /// CreateFree - Generate the IR for a call to the builtin free function. |
| /// Note: This function does not add the call to the basic block, that is the |
| /// responsibility of the caller. |
| Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { |
| Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd); |
| assert(FreeCall && "CreateFree did not create a CallInst"); |
| return FreeCall; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // InvokeInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, |
| BasicBlock *IfException, ArrayRef<Value *> Args, |
| ArrayRef<OperandBundleDef> Bundles, |
| const Twine &NameStr) { |
| this->FTy = FTy; |
| |
| assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) && |
| "NumOperands not set up?"); |
| Op<-3>() = Fn; |
| Op<-2>() = IfNormal; |
| Op<-1>() = IfException; |
| |
| #ifndef NDEBUG |
| assert(((Args.size() == FTy->getNumParams()) || |
| (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && |
| "Invoking a function with bad signature"); |
| |
| for (unsigned i = 0, e = Args.size(); i != e; i++) |
| assert((i >= FTy->getNumParams() || |
| FTy->getParamType(i) == Args[i]->getType()) && |
| "Invoking a function with a bad signature!"); |
| #endif |
| |
| std::copy(Args.begin(), Args.end(), op_begin()); |
| |
| auto It = populateBundleOperandInfos(Bundles, Args.size()); |
| (void)It; |
| assert(It + 3 == op_end() && "Should add up!"); |
| |
| setName(NameStr); |
| } |
| |
| InvokeInst::InvokeInst(const InvokeInst &II) |
| : TerminatorInst(II.getType(), Instruction::Invoke, |
| OperandTraits<InvokeInst>::op_end(this) - |
| II.getNumOperands(), |
| II.getNumOperands()), |
| AttributeList(II.AttributeList), FTy(II.FTy) { |
| setCallingConv(II.getCallingConv()); |
| std::copy(II.op_begin(), II.op_end(), op_begin()); |
| std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), |
| bundle_op_info_begin()); |
| SubclassOptionalData = II.SubclassOptionalData; |
| } |
| |
| InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, |
| Instruction *InsertPt) { |
| std::vector<Value *> Args(II->arg_begin(), II->arg_end()); |
| |
| auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(), |
| II->getUnwindDest(), Args, OpB, |
| II->getName(), InsertPt); |
| NewII->setCallingConv(II->getCallingConv()); |
| NewII->SubclassOptionalData = II->SubclassOptionalData; |
| NewII->setAttributes(II->getAttributes()); |
| return NewII; |
| } |
| |
| BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { |
| return getSuccessor(idx); |
| } |
| unsigned InvokeInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { |
| return setSuccessor(idx, B); |
| } |
| |
| bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { |
| assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!"); |
| |
| if (AttributeList.hasAttribute(i, A)) |
| return true; |
| if (const Function *F = getCalledFunction()) |
| return F->getAttributes().hasAttribute(i, A); |
| return false; |
| } |
| |
| bool InvokeInst::dataOperandHasImpliedAttr(unsigned i, |
| Attribute::AttrKind A) const { |
| // There are getNumOperands() - 3 data operands. The last three operands are |
| // the callee and the two successor basic blocks. |
| assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!"); |
| |
| // The attribute A can either be directly specified, if the operand in |
| // question is an invoke argument; or be indirectly implied by the kind of its |
| // containing operand bundle, if the operand is a bundle operand. |
| |
| if (i < (getNumArgOperands() + 1)) |
| return paramHasAttr(i, A); |
| |
| assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && |
| "Must be either an invoke argument or an operand bundle!"); |
| return bundleOperandHasAttr(i - 1, A); |
| } |
| |
| void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addAttribute(getContext(), i, attr); |
| setAttributes(PAL); |
| } |
| |
| void InvokeInst::removeAttribute(unsigned i, Attribute attr) { |
| AttributeSet PAL = getAttributes(); |
| AttrBuilder B(attr); |
| PAL = PAL.removeAttributes(getContext(), i, |
| AttributeSet::get(getContext(), i, B)); |
| setAttributes(PAL); |
| } |
| |
| void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); |
| setAttributes(PAL); |
| } |
| |
| void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { |
| AttributeSet PAL = getAttributes(); |
| PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); |
| setAttributes(PAL); |
| } |
| |
| LandingPadInst *InvokeInst::getLandingPadInst() const { |
| return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReturnInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ReturnInst::ReturnInst(const ReturnInst &RI) |
| : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this) - |
| RI.getNumOperands(), |
| RI.getNumOperands()) { |
| if (RI.getNumOperands()) |
| Op<0>() = RI.Op<0>(); |
| SubclassOptionalData = RI.SubclassOptionalData; |
| } |
| |
| ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, |
| InsertBefore) { |
| if (retVal) |
| Op<0>() = retVal; |
| } |
| ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, |
| InsertAtEnd) { |
| if (retVal) |
| Op<0>() = retVal; |
| } |
| ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, |
| OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { |
| } |
| |
| unsigned ReturnInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| |
| /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to |
| /// emit the vtable for the class in this translation unit. |
| void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { |
| llvm_unreachable("ReturnInst has no successors!"); |
| } |
| |
| BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { |
| llvm_unreachable("ReturnInst has no successors!"); |
| } |
| |
| ReturnInst::~ReturnInst() { |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ResumeInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ResumeInst::ResumeInst(const ResumeInst &RI) |
| : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, |
| OperandTraits<ResumeInst>::op_begin(this), 1) { |
| Op<0>() = RI.Op<0>(); |
| } |
| |
| ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, |
| OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { |
| Op<0>() = Exn; |
| } |
| |
| ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, |
| OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { |
| Op<0>() = Exn; |
| } |
| |
| unsigned ResumeInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| |
| void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { |
| llvm_unreachable("ResumeInst has no successors!"); |
| } |
| |
| BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { |
| llvm_unreachable("ResumeInst has no successors!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CleanupReturnInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) |
| : TerminatorInst(CRI.getType(), Instruction::CleanupRet, |
| OperandTraits<CleanupReturnInst>::op_end(this) - |
| CRI.getNumOperands(), |
| CRI.getNumOperands()) { |
| setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); |
| Op<0>() = CRI.Op<0>(); |
| if (CRI.hasUnwindDest()) |
| Op<1>() = CRI.Op<1>(); |
| } |
| |
| void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { |
| if (UnwindBB) |
| setInstructionSubclassData(getSubclassDataFromInstruction() | 1); |
| |
| Op<0>() = CleanupPad; |
| if (UnwindBB) |
| Op<1>() = UnwindBB; |
| } |
| |
| CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, |
| unsigned Values, Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), |
| Instruction::CleanupRet, |
| OperandTraits<CleanupReturnInst>::op_end(this) - Values, |
| Values, InsertBefore) { |
| init(CleanupPad, UnwindBB); |
| } |
| |
| CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, |
| unsigned Values, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()), |
| Instruction::CleanupRet, |
| OperandTraits<CleanupReturnInst>::op_end(this) - Values, |
| Values, InsertAtEnd) { |
| init(CleanupPad, UnwindBB); |
| } |
| |
| BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const { |
| assert(Idx == 0); |
| return getUnwindDest(); |
| } |
| unsigned CleanupReturnInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { |
| assert(Idx == 0); |
| setUnwindDest(B); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CatchReturnInst Implementation |
| //===----------------------------------------------------------------------===// |
| void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { |
| Op<0>() = CatchPad; |
| Op<1>() = BB; |
| } |
| |
| CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) |
| : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, |
| OperandTraits<CatchReturnInst>::op_begin(this), 2) { |
| Op<0>() = CRI.Op<0>(); |
| Op<1>() = CRI.Op<1>(); |
| } |
| |
| CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, |
| Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, |
| OperandTraits<CatchReturnInst>::op_begin(this), 2, |
| InsertBefore) { |
| init(CatchPad, BB); |
| } |
| |
| CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, |
| BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, |
| OperandTraits<CatchReturnInst>::op_begin(this), 2, |
| InsertAtEnd) { |
| init(CatchPad, BB); |
| } |
| |
| BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const { |
| assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); |
| return getSuccessor(); |
| } |
| unsigned CatchReturnInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) { |
| assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); |
| setSuccessor(B); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CatchSwitchInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| unsigned NumReservedValues, |
| const Twine &NameStr, |
| Instruction *InsertBefore) |
| : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, |
| InsertBefore) { |
| if (UnwindDest) |
| ++NumReservedValues; |
| init(ParentPad, UnwindDest, NumReservedValues + 1); |
| setName(NameStr); |
| } |
| |
| CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| unsigned NumReservedValues, |
| const Twine &NameStr, BasicBlock *InsertAtEnd) |
| : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, |
| InsertAtEnd) { |
| if (UnwindDest) |
| ++NumReservedValues; |
| init(ParentPad, UnwindDest, NumReservedValues + 1); |
| setName(NameStr); |
| } |
| |
| CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) |
| : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr, |
| CSI.getNumOperands()) { |
| init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); |
| setNumHungOffUseOperands(ReservedSpace); |
| Use *OL = getOperandList(); |
| const Use *InOL = CSI.getOperandList(); |
| for (unsigned I = 1, E = ReservedSpace; I != E; ++I) |
| OL[I] = InOL[I]; |
| } |
| |
| void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, |
| unsigned NumReservedValues) { |
| assert(ParentPad && NumReservedValues); |
| |
| ReservedSpace = NumReservedValues; |
| setNumHungOffUseOperands(UnwindDest ? 2 : 1); |
| allocHungoffUses(ReservedSpace); |
| |
| Op<0>() = ParentPad; |
| if (UnwindDest) { |
| setInstructionSubclassData(getSubclassDataFromInstruction() | 1); |
| setUnwindDest(UnwindDest); |
| } |
| } |
| |
| /// growOperands - grow operands - This grows the operand list in response to a |
| /// push_back style of operation. This grows the number of ops by 2 times. |
| void CatchSwitchInst::growOperands(unsigned Size) { |
| unsigned NumOperands = getNumOperands(); |
| assert(NumOperands >= 1); |
| if (ReservedSpace >= NumOperands + Size) |
| return; |
| ReservedSpace = (NumOperands + Size / 2) * 2; |
| growHungoffUses(ReservedSpace); |
| } |
| |
| void CatchSwitchInst::addHandler(BasicBlock *Handler) { |
| unsigned OpNo = getNumOperands(); |
| growOperands(1); |
| assert(OpNo < ReservedSpace && "Growing didn't work!"); |
| setNumHungOffUseOperands(getNumOperands() + 1); |
| getOperandList()[OpNo] = Handler; |
| } |
| |
| void CatchSwitchInst::removeHandler(handler_iterator HI) { |
| // Move all subsequent handlers up one. |
| Use *EndDst = op_end() - 1; |
| for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) |
| *CurDst = *(CurDst + 1); |
| // Null out the last handler use. |
| *EndDst = nullptr; |
| |
| setNumHungOffUseOperands(getNumOperands() - 1); |
| } |
| |
| BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const { |
| return getSuccessor(idx); |
| } |
| unsigned CatchSwitchInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { |
| setSuccessor(idx, B); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FuncletPadInst Implementation |
| //===----------------------------------------------------------------------===// |
| void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, |
| const Twine &NameStr) { |
| assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); |
| std::copy(Args.begin(), Args.end(), op_begin()); |
| setParentPad(ParentPad); |
| setName(NameStr); |
| } |
| |
| FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) |
| : Instruction(FPI.getType(), FPI.getOpcode(), |
| OperandTraits<FuncletPadInst>::op_end(this) - |
| FPI.getNumOperands(), |
| FPI.getNumOperands()) { |
| std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); |
| setParentPad(FPI.getParentPad()); |
| } |
| |
| FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, |
| ArrayRef<Value *> Args, unsigned Values, |
| const Twine &NameStr, Instruction *InsertBefore) |
| : Instruction(ParentPad->getType(), Op, |
| OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, |
| InsertBefore) { |
| init(ParentPad, Args, NameStr); |
| } |
| |
| FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, |
| ArrayRef<Value *> Args, unsigned Values, |
| const Twine &NameStr, BasicBlock *InsertAtEnd) |
| : Instruction(ParentPad->getType(), Op, |
| OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, |
| InsertAtEnd) { |
| init(ParentPad, Args, NameStr); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // UnreachableInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| UnreachableInst::UnreachableInst(LLVMContext &Context, |
| Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, |
| nullptr, 0, InsertBefore) { |
| } |
| UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, |
| nullptr, 0, InsertAtEnd) { |
| } |
| |
| unsigned UnreachableInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| |
| void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { |
| llvm_unreachable("UnreachableInst has no successors!"); |
| } |
| |
| BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { |
| llvm_unreachable("UnreachableInst has no successors!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BranchInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void BranchInst::AssertOK() { |
| if (isConditional()) |
| assert(getCondition()->getType()->isIntegerTy(1) && |
| "May only branch on boolean predicates!"); |
| } |
| |
| BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 1, |
| 1, InsertBefore) { |
| assert(IfTrue && "Branch destination may not be null!"); |
| Op<-1>() = IfTrue; |
| } |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| Instruction *InsertBefore) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 3, |
| 3, InsertBefore) { |
| Op<-1>() = IfTrue; |
| Op<-2>() = IfFalse; |
| Op<-3>() = Cond; |
| #ifndef NDEBUG |
| AssertOK(); |
| #endif |
| } |
| |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 1, |
| 1, InsertAtEnd) { |
| assert(IfTrue && "Branch destination may not be null!"); |
| Op<-1>() = IfTrue; |
| } |
| |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| BasicBlock *InsertAtEnd) |
| : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - 3, |
| 3, InsertAtEnd) { |
| Op<-1>() = IfTrue; |
| Op<-2>() = IfFalse; |
| Op<-3>() = Cond; |
| #ifndef NDEBUG |
| AssertOK(); |
| #endif |
| } |
| |
| |
| BranchInst::BranchInst(const BranchInst &BI) : |
| TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, |
| OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), |
| BI.getNumOperands()) { |
| Op<-1>() = BI.Op<-1>(); |
| if (BI.getNumOperands() != 1) { |
| assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); |
| Op<-3>() = BI.Op<-3>(); |
| Op<-2>() = BI.Op<-2>(); |
| } |
| SubclassOptionalData = BI.SubclassOptionalData; |
| } |
| |
| void BranchInst::swapSuccessors() { |
| assert(isConditional() && |
| "Cannot swap successors of an unconditional branch"); |
| Op<-1>().swap(Op<-2>()); |
| |
| // Update profile metadata if present and it matches our structural |
| // expectations. |
| MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); |
| if (!ProfileData || ProfileData->getNumOperands() != 3) |
| return; |
| |
| // The first operand is the name. Fetch them backwards and build a new one. |
| Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2), |
| ProfileData->getOperand(1)}; |
| setMetadata(LLVMContext::MD_prof, |
| MDNode::get(ProfileData->getContext(), Ops)); |
| } |
| |
| BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { |
| return getSuccessor(idx); |
| } |
| unsigned BranchInst::getNumSuccessorsV() const { |
| return getNumSuccessors(); |
| } |
| void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { |
| setSuccessor(idx, B); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // AllocaInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| static Value *getAISize(LLVMContext &Context, Value *Amt) { |
| if (!Amt) |
| Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); |
| else { |
| assert(!isa<BasicBlock>(Amt) && |
| "Passed basic block into allocation size parameter! Use other ctor"); |
| assert(Amt->getType()->isIntegerTy() && |
| "Allocation array size is not an integer!"); |
| } |
| return Amt; |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore) |
| : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {} |
| |
| AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) |
| : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, |
| Instruction *InsertBefore) |
| : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {} |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, |
| const Twine &Name, Instruction *InsertBefore) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), ArraySize), InsertBefore), |
| AllocatedType(Ty) { |
| setAlignment(Align); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, |
| const Twine &Name, BasicBlock *InsertAtEnd) |
| : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, |
| getAISize(Ty->getContext(), ArraySize), InsertAtEnd), |
| AllocatedType(Ty) { |
| setAlignment(Align); |
| assert(!Ty->isVoidTy() && "Cannot allocate void!"); |
| setName(Name); |
| } |
| |
| // Out of line virtual method, so the vtable, etc has a home. |
| AllocaInst::~AllocaInst() { |
| } |
| |
| void AllocaInst::setAlignment(unsigned Align) { |
| assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); |
| assert(Align <= MaximumAlignment && |
| "Alignment is greater than MaximumAlignment!"); |
| setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | |
| (Log2_32(Align) + 1)); |
| assert(getAlignment() == Align && "Alignment representation error!"); |
| } |
| |
| bool AllocaInst::isArrayAllocation() const { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) |
| return !CI->isOne(); |
| return true; |
| } |
| |
| /// isStaticAlloca - Return true if this alloca is in the entry block of the |
| /// function and is a constant size. If so, the code generator will fold it |
| /// into the prolog/epilog code, so it is basically free. |
| bool AllocaInst::isStaticAlloca() const { |
| // Must be constant size. |
| if (!isa<ConstantInt>(getArraySize())) return false; |
| |
| // Must be in the entry block. |
| const BasicBlock *Parent = getParent(); |
| return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoadInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void LoadInst::AssertOK() { |
| assert(getOperand(0)->getType()->isPointerTy() && |
| "Ptr must have pointer type."); |
| assert(!(isAtomic() && getAlignment() == 0) && |
| "Alignment required for atomic load"); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) |
| : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {} |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) |
| : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {} |
| |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, |
| Instruction *InsertBef) |
| : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {} |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| BasicBlock *InsertAE) |
| : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {} |
| |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, Instruction *InsertBef) |
| : LoadInst(Ty, Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, |
| InsertBef) {} |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, BasicBlock *InsertAE) |
| : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, InsertAE) { |
| } |
| |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, Instruction *InsertBef) |
| : UnaryInstruction(Ty, Load, Ptr, InsertBef) { |
| assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertBef) { |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(false); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile, |
| Instruction *InsertBef) |
| : UnaryInstruction(Ty, Load, Ptr, InsertBef) { |
| assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, |
| BasicBlock *InsertAE) |
| : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), |
| Load, Ptr, InsertAE) { |
| setVolatile(isVolatile); |
| setAlignment(0); |
| setAtomic(NotAtomic); |
| AssertOK(); |
| if (Name && Name[0]) setName(Name); |
| } |
| |
| void LoadInst::setAlignment(unsigned Align) { |
| assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); |
| assert(Align <= MaximumAlignment && |
| "Alignment is greater than MaximumAlignment!"); |
| setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | |
| ((Log2_32(Align)+1)<<1)); |
| assert(getAlignment() == Align && "Alignment representation error!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // StoreInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void StoreInst::AssertOK() { |
| assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); |
| assert(getOperand(1)->getType()->isPointerTy() && |
| "Ptr must have pointer type!"); |
| assert(getOperand(0)->getType() == |
| cast<PointerType>(getOperand(1)->getType())->getElementType() |
| && "Ptr must be a pointer to Val type!"); |
| assert(!(isAtomic() && getAlignment() == 0) && |
| "Alignment required for atomic store"); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) |
| : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} |
| |
| StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) |
| : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| Instruction *InsertBefore) |
| : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {} |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| BasicBlock *InsertAtEnd) |
| : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {} |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, |
| Instruction *InsertBefore) |
| : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread, |
| InsertBefore) {} |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, |
| BasicBlock *InsertAtEnd) |
| : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread, |
| InsertAtEnd) {} |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertBefore) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| } |
| |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, |
| unsigned Align, AtomicOrdering Order, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Type::getVoidTy(val->getContext()), Store, |
| OperandTraits<StoreInst>::op_begin(this), |
| OperandTraits<StoreInst>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = val; |
| Op<1>() = addr; |
| setVolatile(isVolatile); |
| setAlignment(Align); |
| setAtomic(Order, SynchScope); |
| AssertOK(); |
| } |
| |
| void StoreInst::setAlignment(unsigned Align) { |
| assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); |
| assert(Align <= MaximumAlignment && |
| "Alignment is greater than MaximumAlignment!"); |
| setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | |
| ((Log2_32(Align)+1) << 1)); |
| assert(getAlignment() == Align && "Alignment representation error!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicCmpXchgInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, |
| AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SynchronizationScope SynchScope) { |
| Op<0>() = Ptr; |
| Op<1>() = Cmp; |
| Op<2>() = NewVal; |
| setSuccessOrdering(SuccessOrdering); |
| setFailureOrdering(FailureOrdering); |
| setSynchScope(SynchScope); |
| |
| assert(getOperand(0) && getOperand(1) && getOperand(2) && |
| "All operands must be non-null!"); |
| assert(getOperand(0)->getType()->isPointerTy() && |
| "Ptr must have pointer type!"); |
| assert(getOperand(1)->getType() == |
| cast<PointerType>(getOperand(0)->getType())->getElementType() |
| && "Ptr must be a pointer to Cmp type!"); |
| assert(getOperand(2)->getType() == |
| cast<PointerType>(getOperand(0)->getType())->getElementType() |
| && "Ptr must be a pointer to NewVal type!"); |
| assert(SuccessOrdering != NotAtomic && |
| "AtomicCmpXchg instructions must be atomic!"); |
| assert(FailureOrdering != NotAtomic && |
| "AtomicCmpXchg instructions must be atomic!"); |
| assert(SuccessOrdering >= FailureOrdering && |
| "AtomicCmpXchg success ordering must be at least as strong as fail"); |
| assert(FailureOrdering != Release && FailureOrdering != AcquireRelease && |
| "AtomicCmpXchg failure ordering cannot include release semantics"); |
| } |
| |
| AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, |
| AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction( |
| StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), |
| nullptr), |
| AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), |
| OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { |
| Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); |
| } |
| |
| AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, |
| AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction( |
| StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), |
| nullptr), |
| AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), |
| OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { |
| Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AtomicRMWInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope) { |
| Op<0>() = Ptr; |
| Op<1>() = Val; |
| setOperation(Operation); |
| setOrdering(Ordering); |
| setSynchScope(SynchScope); |
| |
| assert(getOperand(0) && getOperand(1) && |
| "All operands must be non-null!"); |
| assert(getOperand(0)->getType()->isPointerTy() && |
| "Ptr must have pointer type!"); |
| assert(getOperand(1)->getType() == |
| cast<PointerType>(getOperand(0)->getType())->getElementType() |
| && "Ptr must be a pointer to Val type!"); |
| assert(Ordering != NotAtomic && |
| "AtomicRMW instructions must be atomic!"); |
| } |
| |
| AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction(Val->getType(), AtomicRMW, |
| OperandTraits<AtomicRMWInst>::op_begin(this), |
| OperandTraits<AtomicRMWInst>::operands(this), |
| InsertBefore) { |
| Init(Operation, Ptr, Val, Ordering, SynchScope); |
| } |
| |
| AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, |
| AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Val->getType(), AtomicRMW, |
| OperandTraits<AtomicRMWInst>::op_begin(this), |
| OperandTraits<AtomicRMWInst>::operands(this), |
| InsertAtEnd) { |
| Init(Operation, Ptr, Val, Ordering, SynchScope); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FenceInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| Instruction *InsertBefore) |
| : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { |
| setOrdering(Ordering); |
| setSynchScope(SynchScope); |
| } |
| |
| FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| SynchronizationScope SynchScope, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { |
| setOrdering(Ordering); |
| setSynchScope(SynchScope); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GetElementPtrInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void GetElementPtrInst::anchor() {} |
| |
| void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, |
| const Twine &Name) { |
| assert(getNumOperands() == 1 + IdxList.size() && |
| "NumOperands not initialized?"); |
| Op<0>() = Ptr; |
| std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); |
| setName(Name); |
| } |
| |
| GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) |
| : Instruction(GEPI.getType(), GetElementPtr, |
| OperandTraits<GetElementPtrInst>::op_end(this) - |
| GEPI.getNumOperands(), |
| GEPI.getNumOperands()), |
| SourceElementType(GEPI.SourceElementType), |
| ResultElementType(GEPI.ResultElementType) { |
| std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); |
| SubclassOptionalData = GEPI.SubclassOptionalData; |
| } |
| |
| /// getIndexedType - Returns the type of the element that would be accessed with |
| /// a gep instruction with the specified parameters. |
| /// |
| /// The Idxs pointer should point to a continuous piece of memory containing the |
| /// indices, either as Value* or uint64_t. |
| /// |
| /// A null type is returned if the indices are invalid for the specified |
| /// pointer type. |
| /// |
| template <typename IndexTy> |
| static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { |
| // Handle the special case of the empty set index set, which is always valid. |
| if (IdxList.empty()) |
| return Agg; |
| |
| // If there is at least one index, the top level type must be sized, otherwise |
| // it cannot be 'stepped over'. |
| if (!Agg->isSized()) |
| return nullptr; |
| |
| unsigned CurIdx = 1; |
| for (; CurIdx != IdxList.size(); ++CurIdx) { |
| CompositeType *CT = dyn_cast<CompositeType>(Agg); |
| if (!CT || CT->isPointerTy()) return nullptr; |
| IndexTy Index = IdxList[CurIdx]; |
| if (!CT->indexValid(Index)) return nullptr; |
| Agg = CT->getTypeAtIndex(Index); |
| } |
| return CurIdx == IdxList.size() ? Agg : nullptr; |
| } |
| |
| Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { |
| return getIndexedTypeInternal(Ty, IdxList); |
| } |
| |
| Type *GetElementPtrInst::getIndexedType(Type *Ty, |
| ArrayRef<Constant *> IdxList) { |
| return getIndexedTypeInternal(Ty, IdxList); |
| } |
| |
| Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { |
| return getIndexedTypeInternal(Ty, IdxList); |
| } |
| |
| /// hasAllZeroIndices - Return true if all of the indices of this GEP are |
| /// zeros. If so, the result pointer and the first operand have the same |
| /// value, just potentially different types. |
| bool GetElementPtrInst::hasAllZeroIndices() const { |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { |
| if (!CI->isZero()) return false; |
| } else { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// hasAllConstantIndices - Return true if all of the indices of this GEP are |
| /// constant integers. If so, the result pointer and the first operand have |
| /// a constant offset between them. |
| bool GetElementPtrInst::hasAllConstantIndices() const { |
| for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { |
| if (!isa<ConstantInt>(getOperand(i))) |
| return false; |
| } |
| return true; |
| } |
| |
| void GetElementPtrInst::setIsInBounds(bool B) { |
| cast<GEPOperator>(this)->setIsInBounds(B); |
| } |
| |
| bool GetElementPtrInst::isInBounds() const { |
| return cast<GEPOperator>(this)->isInBounds(); |
| } |
| |
| bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, |
| APInt &Offset) const { |
| // Delegate to the generic GEPOperator implementation. |
| return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExtractElementInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, |
| const Twine &Name, |
| Instruction *InsertBef) |
| : Instruction(cast<VectorType>(Val->getType())->getElementType(), |
| ExtractElement, |
| OperandTraits<ExtractElementInst>::op_begin(this), |
| 2, InsertBef) { |
| assert(isValidOperands(Val, Index) && |
| "Invalid extractelement instruction operands!"); |
| Op<0>() = Val; |
| Op<1>() = Index; |
| setName(Name); |
| } |
| |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, |
| const Twine &Name, |
| BasicBlock *InsertAE) |
| : Instruction(cast<VectorType>(Val->getType())->getElementType(), |
| ExtractElement, |
| OperandTraits<ExtractElementInst>::op_begin(this), |
| 2, InsertAE) { |
| assert(isValidOperands(Val, Index) && |
| "Invalid extractelement instruction operands!"); |
| |
| Op<0>() = Val; |
| Op<1>() = Index; |
| setName(Name); |
| } |
| |
| |
| bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { |
| if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) |
| return false; |
| return true; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // InsertElementInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, |
| const Twine &Name, |
| Instruction *InsertBef) |
| : Instruction(Vec->getType(), InsertElement, |
| OperandTraits<InsertElementInst>::op_begin(this), |
| 3, InsertBef) { |
| assert(isValidOperands(Vec, Elt, Index) && |
| "Invalid insertelement instruction operands!"); |
| Op<0>() = Vec; |
| Op<1>() = Elt; |
| Op<2>() = Index; |
| setName(Name); |
| } |
| |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, |
| const Twine &Name, |
| BasicBlock *InsertAE) |
| : Instruction(Vec->getType(), InsertElement, |
| OperandTraits<InsertElementInst>::op_begin(this), |
| 3, InsertAE) { |
| assert(isValidOperands(Vec, Elt, Index) && |
| "Invalid insertelement instruction operands!"); |
| |
| Op<0>() = Vec; |
| Op<1>() = Elt; |
| Op<2>() = Index; |
| setName(Name); |
| } |
| |
| bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, |
| const Value *Index) { |
| if (!Vec->getType()->isVectorTy()) |
| return false; // First operand of insertelement must be vector type. |
| |
| if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) |
| return false;// Second operand of insertelement must be vector element type. |
| |
| if (!Index->getType()->isIntegerTy()) |
| return false; // Third operand of insertelement must be i32. |
| return true; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ShuffleVectorInst Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| const Twine &Name, |
| Instruction *InsertBefore) |
| : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), |
| cast<VectorType>(Mask->getType())->getNumElements()), |
| ShuffleVector, |
| OperandTraits<ShuffleVectorInst>::op_begin(this), |
| OperandTraits<ShuffleVectorInst>::operands(this), |
| InsertBefore) { |
| assert(isValidOperands(V1, V2, Mask) && |
| "Invalid shuffle vector instruction operands!"); |
| Op<0>() = V1; |
| Op<1>() = V2; |
| Op<2>() = Mask; |
| setName(Name); |
| } |
| |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), |
| cast<VectorType>(Mask->getType())->getNumElements()), |
| ShuffleVector, |
| OperandTraits<ShuffleVectorInst>::op_begin(this), |
| OperandTraits<ShuffleVectorInst>::operands(this), |
| InsertAtEnd) { |
| assert(isValidOperands(V1, V2, Mask) && |
| "Invalid shuffle vector instruction operands!"); |
| |
| Op<0>() = V1; |
| Op<1>() = V2; |
| Op<2>() = Mask; |
| setName(Name); |
| } |
| |
| bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, |
| const Value *Mask) { |
| // V1 and V2 must be vectors of the same type. |
| if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) |
| return false; |
| |
| // Mask must be vector of i32. |
| VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); |
| if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) |
| return false; |
| |
| // Check to see if Mask is valid. |
| if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) |
| return true; |
| |
| if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { |
| unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); |
| for (Value *Op : MV->operands()) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| if (CI->uge(V1Size*2)) |
| return false; |
| } else if (!isa<UndefValue>(Op)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(Mask)) { |
| unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); |
| for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) |
| if (CDS->getElementAsInteger(i) >= V1Size*2) |
| return false; |
| return true; |
| } |
| |
| // The bitcode reader can create a place holder for a forward reference |
| // used as the shuffle mask. When this occurs, the shuffle mask will |
| // fall into this case and fail. To avoid this error, do this bit of |
| // ugliness to allow such a mask pass. |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) |
| if (CE->getOpcode() == Instruction::UserOp1) |
| return true; |
| |
| return false; |
| } |
| |
| /// getMaskValue - Return the index from the shuffle mask for the specified |
| /// output result. This is either -1 if the element is undef or a number less |
| /// than 2*numelements. |
| int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { |
| assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); |
| if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) |
| return CDS->getElementAsInteger(i); |
| Constant *C = Mask->getAggregateElement(i); |
| if (isa<UndefValue>(C)) |
| return -1; |
| return cast<ConstantInt>(C)->getZExtValue(); |
| } |
| |
| /// getShuffleMask - Return the full mask for this instruction, where each |
| /// element is the element number and undef's are returned as -1. |
| void ShuffleVectorInst::getShuffleMask(Constant *Mask, |
| SmallVectorImpl<int> &Result) { |
| unsigned NumElts = Mask->getType()->getVectorNumElements(); |
| |
| if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { |
| for (unsigned i = 0; i != NumElts; ++i) |
| Result.push_back(CDS->getElementAsInteger(i)); |
| return; |
| } |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *C = Mask->getAggregateElement(i); |
| Result.push_back(isa<UndefValue>(C) ? -1 : |
| cast<ConstantInt>(C)->getZExtValue()); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // InsertValueInst Class |
| //===----------------------------------------------------------------------===// |
| |
| void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| const Twine &Name) { |
| assert(getNumOperands() == 2 && "NumOperands not initialized?"); |
| |
| // There's no fundamental reason why we require at least one index |
| // (other than weirdness with &*IdxBegin being invalid; see |
| // getelementptr's init routine for example). But there's no |
| // present need to support it. |
| assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); |
| |
| assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == |
| Val->getType() && "Inserted value must match indexed type!"); |
| Op<0>() = Agg; |
| Op<1>() = Val; |
| |
| Indices.append(Idxs.begin(), Idxs.end()); |
| setName(Name); |
| } |
| |
| InsertValueInst::InsertValueInst(const InsertValueInst &IVI) |
| : Instruction(IVI.getType(), InsertValue, |
| OperandTraits<InsertValueInst>::op_begin(this), 2), |
| Indices(IVI.Indices) { |
| Op<0>() = IVI.getOperand(0); |
| Op<1>() = IVI.getOperand(1); |
| SubclassOptionalData = IVI.SubclassOptionalData; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ExtractValueInst Class |
| //===----------------------------------------------------------------------===// |
| |
| void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { |
| assert(getNumOperands() == 1 && "NumOperands not initialized?"); |
| |
| // There's no fundamental reason why we require at least one index. |
| // But there's no present need to support it. |
| assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); |
| |
| Indices.append(Idxs.begin(), Idxs.end()); |
| setName(Name); |
| } |
| |
| ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) |
| : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), |
| Indices(EVI.Indices) { |
| SubclassOptionalData = EVI.SubclassOptionalData; |
| } |
| |
| // getIndexedType - Returns the type of the element that would be extracted |
| // with an extractvalue instruction with the specified parameters. |
| // |
| // A null type is returned if the indices are invalid for the specified |
| // pointer type. |
| // |
| Type *ExtractValueInst::getIndexedType(Type *Agg, |
| ArrayRef<unsigned> Idxs) { |
| for (unsigned Index : Idxs) { |
| // We can't use CompositeType::indexValid(Index) here. |
| // indexValid() always returns true for arrays because getelementptr allows |
| // out-of-bounds indices. Since we don't allow those for extractvalue and |
| // insertvalue we need to check array indexing manually. |
| // Since the only other types we can index into are struct types it's just |
| // as easy to check those manually as well. |
| if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { |
| if (Index >= AT->getNumElements()) |
| return nullptr; |
| } else if (StructType *ST = dyn_cast<StructType>(Agg)) { |
| if (Index >= ST->getNumElements()) |
| return nullptr; |
| } else { |
| // Not a valid type to index into. |
| return nullptr; |
| } |
| |
| Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); |
| } |
| return const_cast<Type*>(Agg); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BinaryOperator Class |
| //===----------------------------------------------------------------------===// |
| |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, |
| Type *Ty, const Twine &Name, |
| Instruction *InsertBefore) |
| : Instruction(Ty, iType, |
| OperandTraits<BinaryOperator>::op_begin(this), |
| OperandTraits<BinaryOperator>::operands(this), |
| InsertBefore) { |
| Op<0>() = S1; |
| Op<1>() = S2; |
| init(iType); |
| setName(Name); |
| } |
| |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, |
| Type *Ty, const Twine &Name, |
| BasicBlock *InsertAtEnd) |
| : Instruction(Ty, iType, |
| OperandTraits<BinaryOperator>::op_begin(this), |
| OperandTraits<BinaryOperator>::operands(this), |
| InsertAtEnd) { |
| Op<0>() = S1; |
| Op<1>() = S2; |
| init(iType); |
| setName(Name); |
| } |
| |
| |
| void BinaryOperator::init(BinaryOps iType) { |
| Value *LHS = getOperand(0), *RHS = getOperand(1); |
| (void)LHS; (void)RHS; // Silence warnings. |
| assert(LHS->getType() == RHS->getType() && |
| "Binary operator operand types must match!"); |
| #ifndef NDEBUG |
| switch (iType) { |
| case Add: case Sub: |
| case Mul: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isIntOrIntVectorTy() && |
| "Tried to create an integer operation on a non-integer type!"); |
| break; |
| case FAdd: case FSub: |
| case FMul: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isFPOrFPVectorTy() && |
| "Tried to create a floating-point operation on a " |
| "non-floating-point type!"); |
| break; |
| case UDiv: |
| case SDiv: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Incorrect operand type (not integer) for S/UDIV"); |
| break; |
| case FDiv: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isFPOrFPVectorTy() && |
| "Incorrect operand type (not floating point) for FDIV"); |
| break; |
| case URem: |
| case SRem: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Incorrect operand type (not integer) for S/UREM"); |
| break; |
| case FRem: |
| assert(getType() == LHS->getType() && |
| "Arithmetic operation should return same type as operands!"); |
| assert(getType()->isFPOrFPVectorTy() && |
| "Incorrect operand type (not floating point) for FREM"); |
| break; |
| case Shl: |
| case LShr: |
| case AShr: |
| assert(getType() == LHS->getType() && |
| "Shift operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || |
| (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Tried to create a shift operation on a non-integral type!"); |
| break; |
| case And: case Or: |
| case Xor: |
| assert(getType() == LHS->getType() && |
| "Logical operation should return same type as operands!"); |
| assert((getType()->isIntegerTy() || |
| (getType()->isVectorTy() && |
| cast<VectorType>(getType())->getElementType()->isIntegerTy())) && |
| "Tried to create a logical operation on a non-integral type!"); |
| break; |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, |
| const Twine &Name, |
| Instruction *InsertBefore) { |
| assert(S1->getType() == S2->getType() && |
| "Cannot create binary operator with two operands of differing type!"); |
| return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, |
| const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| BinaryOperator *Res = Create(Op, S1, S2, Name); |
| InsertAtEnd->getInstList().push_back(Res); |
| return Res; |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::Sub, |
| zero, Op, |
| Op->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::Sub, |
| zero, Op, |
| Op->getType(), Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::FSub, zero, Op, |
| Op->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); |
| return new BinaryOperator(Instruction::FSub, zero, Op, |
| Op->getType(), Name, InsertAtEnd); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, |
| Instruction *InsertBefore) { |
| Constant *C = Constant::getAllOnesValue(Op->getType()); |
| return new BinaryOperator(Instruction::Xor, Op, C, |
| Op->getType(), Name, InsertBefore); |
| } |
| |
| BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, |
| BasicBlock *InsertAtEnd) { |
| Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); |
| return new BinaryOperator(Instruction::Xor, Op, AllOnes, |
| Op->getType(), Name, InsertAtEnd); |
| } |
| |
| |
| // isConstantAllOnes - Helper function for several functions below |
| static inline bool isConstantAllOnes(const Value *V) { |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| return C->isAllOnesValue(); |
| return false; |
| } |
| |
| bool BinaryOperator::isNeg(const Value *V) { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) |
| if (Bop->getOpcode() == Instruction::Sub) |
| if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) |
| return C->isNegativeZeroValue(); |
| return false; |
| } |
| |
| bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) |
| if (Bop->getOpcode() == Instruction::FSub) |
| if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) { |
| if (!IgnoreZeroSign) |
| IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); |
| return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); |
| } |
| return false; |
| } |
| |
| bool BinaryOperator::isNot(const Value *V) { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) |
| return (Bop->getOpcode() == Instruction::Xor && |
| (isConstantAllOnes(Bop->getOperand(1)) || |
| isConstantAllOnes(Bop->getOperand(0)))); |
| return false; |
| } |
| |
| Value *BinaryOperator::getNegArgument(Value *BinOp) { |
| return cast<BinaryOperator>(BinOp)->getOperand(1); |
| } |
| |
| const Value *BinaryOperator::getNegArgument(const Value *BinOp) { |
| return getNegArgument(const_cast<Value*>(BinOp)); |
| } |
| |
| Value *BinaryOperator::getFNegArgument(Value *BinOp) { |
| return cast<BinaryOperator>(BinOp)->getOperand(1); |
| } |
| |
| const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { |
| return getFNegArgument(const_cast<Value*>(BinOp)); |
| } |
| |
| Value *BinaryOperator::getNotArgument(Value *BinOp) { |
| assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); |
| BinaryOperator *BO = cast<BinaryOperator>(BinOp); |
| Value *Op0 = BO->getOperand(0); |
| Value *Op1 = BO->getOperand(1); |
| if (isConstantAllOnes(Op0)) return Op1; |
| |
| assert(isConstantAllOnes(Op1)); |
| return Op0; |
| } |
| |
| const Value *BinaryOperator::getNotArgument(const Value *BinOp) { |
| return getNotArgument(const_cast<Value*>(BinOp)); |
| } |
| |
| |
| // swapOperands - Exchange the two operands to this instruction. This |
| // instruction is safe to use on any binary instruction and does not |
| // modify the semantics of the instruction. If the instruction is |
| // order dependent (SetLT f.e.) the opcode is changed. |
| // |
| bool BinaryOperator::swapOperands() { |
| if (!isCommutative()) |
| return true; // Can't commute operands |
| Op<0>().swap(Op<1>()); |
| return false; |
| } |
| |
| void BinaryOperator::setHasNoUnsignedWrap(bool b) { |
| cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); |
| } |
| |
| void BinaryOperator::setHasNoSignedWrap(bool b) { |
| cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); |
| } |
| |
| void BinaryOperator::setIsExact(bool b) { |
| cast<PossiblyExactOperator>(this)->setIsExact(b); |
| } |
| |
| bool BinaryOperator::hasNoUnsignedWrap() const { |
| return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); |
| } |
| |
| bool BinaryOperator::hasNoSignedWrap() const { |
| return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); |
| } |
| |
| bool BinaryOperator::isExact() const { |
| return cast<PossiblyExactOperator>(this)->isExact(); |
| } |
| |
| void BinaryOperator::copyIRFlags(const Value *V) { |
| // Copy the wrapping flags. |
| if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) { |
| setHasNoSignedWrap(OB->hasNoSignedWrap()); |
| setHasNoUnsignedWrap(OB->hasNoUnsignedWrap()); |
| } |
| |
| // Copy the exact flag. |
| if (auto *PE = dyn_cast<PossiblyExactOperator>(V)) |
| setIsExact(PE->isExact()); |
| |
| // Copy the fast-math flags. |
| if (auto *FP = dyn_cast<FPMathOperator>(V)) |
| copyFastMathFlags(FP->getFastMathFlags()); |
| } |
| |
| void BinaryOperator::andIRFlags(const Value *V) { |
| if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) { |
| setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap()); |
| setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap()); |
| } |
| |
| if (auto *PE = dyn_cast<PossiblyExactOperator>(V)) |
| setIsExact(isExact() & PE->isExact()); |
| |
| if (auto *FP = dyn_cast<FPMathOperator>(V)) { |
| FastMathFlags FM = getFastMathFlags(); |
| FM &= FP->getFastMathFlags(); |
| copyFastMathFlags(FM); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // FPMathOperator Class |
| //===----------------------------------------------------------------------===// |
| |
| /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. |
| /// An accuracy of 0.0 means that the operation should be performed with the |
| /// default precision. |
| float FPMathOperator::getFPAccuracy() const { |
| const MDNode *MD = |
| cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); |
| if (!MD) |
| return 0.0; |
| ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); |
| return Accuracy->getValueAPF().convertToFloat(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // CastInst Class |
| //===----------------------------------------------------------------------===// |
| |
| void CastInst::anchor() {} |
| |
| // Just determine if this cast only deals with integral->integral conversion. |
| bool CastInst::isIntegerCast() const { |
| switch (getOpcode()) { |
| default: return false; |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::Trunc: |
| return true; |
| case Instruction::BitCast: |
| return getOperand(0)->getType()->isIntegerTy() && |
| getType()->isIntegerTy(); |
| } |
| } |
| |
| bool CastInst::isLosslessCast() const { |
| // Only BitCast can be lossless, exit fast if we're not BitCast |
| if (getOpcode() != Instruction::BitCast) |
| return false; |
| |
| // Identity cast is always lossless |
| Type* SrcTy = getOperand(0)->getType(); |
| Type* DstTy = getType(); |
| if (SrcTy == DstTy) |
| return true; |
| |
| // Pointer to pointer is always lossless. |
| if (SrcTy->isPointerTy()) |
| return DstTy->isPointerTy(); |
| return false; // Other types have no identity values |
| } |
| |
| /// This function determines if the CastInst does not require any bits to be |
| /// changed in order to effect the cast. Essentially, it identifies cases where |
| /// no code gen is necessary for the cast, hence the name no-op cast. For |
| /// example, the following are all no-op casts: |
| /// # bitcast i32* %x to i8* |
| /// # bitcast <2 x i32> %x to <4 x i16> |
| /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only |
| /// @brief Determine if the described cast is a no-op. |
| bool CastInst::isNoopCast(Instruction::CastOps Opcode, |
| Type *SrcTy, |
| Type *DestTy, |
| Type *IntPtrTy) { |
| switch (Opcode) { |
| default: llvm_unreachable("Invalid CastOp"); |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::AddrSpaceCast: |
| // TODO: Target informations may give a more accurate answer here. |
| return false; |
| case Instruction::BitCast: |
| return true; // BitCast never modifies bits. |
| case Instruction::PtrToInt: |
| return IntPtrTy->getScalarSizeInBits() == |
| DestTy->getScalarSizeInBits(); |
| case Instruction::IntToPtr: |
| return IntPtrTy->getScalarSizeInBits() == |
| SrcTy->getScalarSizeInBits(); |
| } |
| } |
| |
| /// @brief Determine if a cast is a no-op. |
| bool CastInst::isNoopCast(Type *IntPtrTy) const { |
| return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); |
| } |
| |
| bool CastInst::isNoopCast(const DataLayout &DL) const { |
| Type *PtrOpTy = nullptr; |
| if (getOpcode() == Instruction::PtrToInt) |
| PtrOpTy = getOperand(0)->getType(); |
| else if (getOpcode() == Instruction::IntToPtr) |
| PtrOpTy = getType(); |
| |
| Type *IntPtrTy = |
| PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0); |
| |
| return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); |
| } |
| |
| /// This function determines if a pair of casts can be eliminated and what |
| /// opcode should be used in the elimination. This assumes that there are two |
| /// instructions like this: |
| /// * %F = firstOpcode SrcTy %x to MidTy |
| /// * %S = secondOpcode MidTy %F to DstTy |
| /// The function returns a resultOpcode so these two casts can be replaced with: |
| /// * %Replacement = resultOpcode %SrcTy %x to DstTy |
| /// If no such cast is permitted, the function returns 0. |
| unsigned CastInst::isEliminableCastPair( |
| Instruction::CastOps firstOp, Instruction::CastOps secondOp, |
| Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, |
| Type *DstIntPtrTy) { |
| // Define the 144 possibilities for these two cast instructions. The values |
| // in this matrix determine what to do in a given situation and select the |
| // case in the switch below. The rows correspond to firstOp, the columns |
| // correspond to secondOp. In looking at the table below, keep in mind |
| // the following cast properties: |
| // |
| // Size Compare Source Destination |
| // Operator Src ? Size Type Sign Type Sign |
| // -------- ------------ ------------------- --------------------- |
| // TRUNC > Integer Any Integral Any |
| // ZEXT < Integral Unsigned Integer Any |
| // SEXT < Integral Signed Integer Any |
| // FPTOUI n/a FloatPt n/a Integral Unsigned |
| // FPTOSI n/a FloatPt n/a Integral Signed |
| // UITOFP n/a Integral Unsigned FloatPt n/a |
| // SITOFP n/a Integral Signed FloatPt n/a |
| // FPTRUNC > FloatPt n/a FloatPt n/a |
| // FPEXT < FloatPt n/a FloatPt n/a |
| // PTRTOINT n/a Pointer n/a Integral Unsigned |
| // INTTOPTR n/a Integral Unsigned Pointer n/a |
| // BITCAST = FirstClass n/a FirstClass n/a |
| // ADDRSPCST n/a Pointer n/a Pointer n/a |
| // |
| // NOTE: some transforms are safe, but we consider them to be non-profitable. |
| // For example, we could merge "fptoui double to i32" + "zext i32 to i64", |
| // into "fptoui double to i64", but this loses information about the range |
| // of the produced value (we no longer know the top-part is all zeros). |
| // Further this conversion is often much more expensive for typical hardware, |
| // and causes issues when building libgcc. We disallow fptosi+sext for the |
| // same reason. |
| const unsigned numCastOps = |
| Instruction::CastOpsEnd - Instruction::CastOpsBegin; |
| static const uint8_t CastResults[numCastOps][numCastOps] = { |
| // T F F U S F F P I B A -+ |
| // R Z S P P I I T P 2 N T S | |
| // U E E 2 2 2 2 R E I T C C +- secondOp |
| // N X X U S F F N X N 2 V V | |
| // C T T I I P P C T T P T T -+ |
| { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ |
| { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt | |
| { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | |
| { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | |
| { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | |
| { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp |
| { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | |
| { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc | |
| { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt | |
| { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | |
| { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | |
| { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ |
| }; |
| |
| // TODO: This logic could be encoded into the table above and handled in the |
| // switch below. |
| // If either of the casts are a bitcast from scalar to vector, disallow the |
| // merging. However, any pair of bitcasts are allowed. |
| bool IsFirstBitcast = (firstOp == Instruction::BitCast); |
| bool IsSecondBitcast = (secondOp == Instruction::BitCast); |
| bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; |
| |
| // Check if any of the casts convert scalars <-> vectors. |
| if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || |
| (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) |
| if (!AreBothBitcasts) |
| return 0; |
| |
| int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] |
| [secondOp-Instruction::CastOpsBegin]; |
| switch (ElimCase) { |
| case 0: |
| // Categorically disallowed. |
| return 0; |
| case 1: |
| // Allowed, use first cast's opcode. |
| return firstOp; |
| case 2: |
| // Allowed, use second cast's opcode. |
| return secondOp; |
| case 3: |
| // No-op cast in second op implies firstOp as long as the DestTy |
| // is integer and we are not converting between a vector and a |
| // non-vector type. |
| if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) |
| return firstOp; |
| return 0; |
| case 4: |
| // No-op cast in second op implies firstOp as long as the DestTy |
| // is floating point. |
| if (DstTy->isFloatingPointTy()) |
| return firstOp; |
| return 0; |
| case 5: |
| // No-op cast in first op implies secondOp as long as the SrcTy |
| // is an integer. |
| if (SrcTy->isIntegerTy()) |
| return secondOp; |
| return 0; |
| case 6: |
| // No-op cast in first op implies secondOp as long as the SrcTy |
| // is a floating point. |
| if (SrcTy->isFloatingPointTy()) |
| return secondOp; |
| return 0; |
| case 7: { |
| // Cannot simplify if address spaces are different! |
| if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) |
| return 0; |
| |
| unsigned MidSize = MidTy->getScalarSizeInBits(); |
| // We can still fold this without knowing the actual sizes as long we |
| // know that the intermediate pointer is the largest possible |
| // pointer size. |
| // FIXME: Is this always true? |
| if (MidSize == 64) |
| return Instruction::BitCast; |
| |
| // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. |
| if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) |
| return 0; |
| unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); |
| if (MidSize >= PtrSize) |
| return Instruction::BitCast; |
| return 0; |
| } |
| case 8: { |
| // ext, trunc -> bitcast, if the SrcTy and DstTy are same size |
| // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) |
| // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) |
| unsigned SrcSize = SrcTy->getScalarSizeInBits(); |
| unsigned DstSize = DstTy->getScalarSizeInBits(); |
| if (SrcSize == DstSize) |
| return Instruction::BitCast; |
| else if (SrcSize < DstSize) |
| return firstOp; |
| return secondOp; |
| } |
| case 9: |
| // zext, sext -> zext, because sext can't sign extend after zext |
| return Instruction::ZExt; |
| case 10: |
| // fpext followed by ftrunc is allowed if the bit size returned to is |
| // the same as the original, in which case its just a bitcast |
| if (SrcTy == DstTy) |
| return Instruction::BitCast; |
| return 0; // If the types are not the same we can't eliminate it. |
| case 11: { |
| // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize |
| if (!MidIntPtrTy) |
| return 0; |
| unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); |
| unsigned SrcSize = SrcTy->getScalarSizeInBits(); |
| unsigned DstSize = DstTy->getScalarSizeInBits(); |
| if (SrcSize <= PtrSize && SrcSize == DstSize) |
| return Instruction::BitCast; |
| return 0; |
| } |
| case 12: { |
| // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS |
| // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS |
| if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) |
| return Instruction::AddrSpaceCast; |
| return Instruction::BitCast; |
| } |
| case 13: |
| // FIXME: this state can be merged with (1), but the following assert |
| // is useful to check the correcteness of the sequence due to semantic |
| // change of bitcast. |
| assert( |
| SrcTy->isPtrOrPtrVectorTy() && |
| MidTy->isPtrOrPtrVectorTy() && |
| DstTy->isPtrOrPtrVectorTy() && |
| SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && |
| MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && |
| "Illegal addrspacecast, bitcast sequence!"); |
| // Allowed, use first cast's opcode |
| return firstOp; |
| case 14: |
| // bitcast, addrspacecast -> addrspacecast if the element type of |
| // bitcast's source is the same as that of addrspacecast's destination. |
| if (SrcTy->getPointerElementType() == DstTy->getPointerElementType()) |
| return Instruction::AddrSpaceCast; |
| return 0; |
| |
| case 15: |
| // FIXME: this state can be merged with (1), but the following assert |
| // is useful to check the correcteness of the sequence due to semantic |
| // change of bitcast. |
| assert( |
| SrcTy->isIntOrIntVectorTy() && |
| MidTy->isPtrOrPtrVectorTy() && |
| DstTy->isPtrOrPtrVectorTy() && |
| MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && |
| "Illegal inttoptr, bitcast sequence!"); |
| // Allowed, use first cast's opcode |
| return firstOp; |
| case 16: |
| // FIXME: this state can be merged with (2), but the following assert |
| // is useful to check the correcteness of the sequence due to semantic |
| // change of bitcast. |
| assert( |
| SrcTy->isPtrOrPtrVectorTy() && |
| MidTy->isPtrOrPtrVectorTy() && |
| DstTy->isIntOrIntVectorTy() && |
| SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && |
| "Illegal bitcast, ptrtoint sequence!"); |
| // Allowed, use second cast's opcode |
| return secondOp; |
| case 17: |
| // (sitofp (zext x)) -> (uitofp x) |
| return Instruction::UIToFP; |
| case 99: |
| // Cast combination can't happen (error in input). This is for all cases |
| // where the MidTy is not the same for the two cast instructions. |
| llvm_unreachable("Invalid Cast Combination"); |
| default: |
| llvm_unreachable("Error in CastResults table!!!"); |
| } |
| } |
| |
| CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, |
| const Twine &Name, Instruction *InsertBefore) |