| //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the Base ARM implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMFeatures.h" |
| #include "ARMHazardRecognizer.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "arm-instrinfo" |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "ARMGenInstrInfo.inc" |
| |
| static cl::opt<bool> |
| EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, |
| cl::desc("Enable ARM 2-addr to 3-addr conv")); |
| |
| static cl::opt<bool> |
| WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true), |
| cl::desc("Widen ARM vmovs to vmovd when possible")); |
| |
| static cl::opt<unsigned> |
| SwiftPartialUpdateClearance("swift-partial-update-clearance", |
| cl::Hidden, cl::init(12), |
| cl::desc("Clearance before partial register updates")); |
| |
| /// ARM_MLxEntry - Record information about MLA / MLS instructions. |
| struct ARM_MLxEntry { |
| uint16_t MLxOpc; // MLA / MLS opcode |
| uint16_t MulOpc; // Expanded multiplication opcode |
| uint16_t AddSubOpc; // Expanded add / sub opcode |
| bool NegAcc; // True if the acc is negated before the add / sub. |
| bool HasLane; // True if instruction has an extra "lane" operand. |
| }; |
| |
| static const ARM_MLxEntry ARM_MLxTable[] = { |
| // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane |
| // fp scalar ops |
| { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, |
| { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, |
| { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, |
| { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, |
| { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, |
| { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, |
| |
| // fp SIMD ops |
| { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, |
| { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, |
| { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, |
| { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, |
| { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, |
| { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, |
| { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, |
| { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, |
| }; |
| |
| ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) |
| : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), |
| Subtarget(STI) { |
| for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { |
| if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) |
| llvm_unreachable("Duplicated entries?"); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); |
| } |
| } |
| |
| // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl |
| // currently defaults to no prepass hazard recognizer. |
| ScheduleHazardRecognizer * |
| ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| const ScheduleDAG *DAG) const { |
| if (usePreRAHazardRecognizer()) { |
| const InstrItineraryData *II = |
| static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); |
| return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); |
| } |
| return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); |
| } |
| |
| ScheduleHazardRecognizer *ARMBaseInstrInfo:: |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| if (Subtarget.isThumb2() || Subtarget.hasVFP2()) |
| return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); |
| return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI, |
| LiveVariables *LV) const { |
| // FIXME: Thumb2 support. |
| |
| if (!EnableARM3Addr) |
| return nullptr; |
| |
| MachineInstr *MI = MBBI; |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| uint64_t TSFlags = MI->getDesc().TSFlags; |
| bool isPre = false; |
| switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { |
| default: return nullptr; |
| case ARMII::IndexModePre: |
| isPre = true; |
| break; |
| case ARMII::IndexModePost: |
| break; |
| } |
| |
| // Try splitting an indexed load/store to an un-indexed one plus an add/sub |
| // operation. |
| unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); |
| if (MemOpc == 0) |
| return nullptr; |
| |
| MachineInstr *UpdateMI = nullptr; |
| MachineInstr *MemMI = nullptr; |
| unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| bool isLoad = !MI->mayStore(); |
| const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); |
| const MachineOperand &Base = MI->getOperand(2); |
| const MachineOperand &Offset = MI->getOperand(NumOps-3); |
| unsigned WBReg = WB.getReg(); |
| unsigned BaseReg = Base.getReg(); |
| unsigned OffReg = Offset.getReg(); |
| unsigned OffImm = MI->getOperand(NumOps-2).getImm(); |
| ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); |
| switch (AddrMode) { |
| default: llvm_unreachable("Unknown indexed op!"); |
| case ARMII::AddrMode2: { |
| bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM2Offset(OffImm); |
| if (OffReg == 0) { |
| if (ARM_AM::getSOImmVal(Amt) == -1) |
| // Can't encode it in a so_imm operand. This transformation will |
| // add more than 1 instruction. Abandon! |
| return nullptr; |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg).addImm(Amt) |
| .addImm(Pred).addReg(0).addReg(0); |
| } else if (Amt != 0) { |
| ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); |
| unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) |
| .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) |
| .addImm(Pred).addReg(0).addReg(0); |
| } else |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg).addReg(OffReg) |
| .addImm(Pred).addReg(0).addReg(0); |
| break; |
| } |
| case ARMII::AddrMode3 : { |
| bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM3Offset(OffImm); |
| if (OffReg == 0) |
| // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg).addImm(Amt) |
| .addImm(Pred).addReg(0).addReg(0); |
| else |
| UpdateMI = BuildMI(MF, MI->getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg).addReg(OffReg) |
| .addImm(Pred).addReg(0).addReg(0); |
| break; |
| } |
| } |
| |
| std::vector<MachineInstr*> NewMIs; |
| if (isPre) { |
| if (isLoad) |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc), MI->getOperand(0).getReg()) |
| .addReg(WBReg).addImm(0).addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc)).addReg(MI->getOperand(1).getReg()) |
| .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); |
| NewMIs.push_back(MemMI); |
| NewMIs.push_back(UpdateMI); |
| } else { |
| if (isLoad) |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc), MI->getOperand(0).getReg()) |
| .addReg(BaseReg).addImm(0).addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI->getDebugLoc(), |
| get(MemOpc)).addReg(MI->getOperand(1).getReg()) |
| .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); |
| if (WB.isDead()) |
| UpdateMI->getOperand(0).setIsDead(); |
| NewMIs.push_back(UpdateMI); |
| NewMIs.push_back(MemMI); |
| } |
| |
| // Transfer LiveVariables states, kill / dead info. |
| if (LV) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { |
| unsigned Reg = MO.getReg(); |
| |
| LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); |
| if (MO.isDef()) { |
| MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; |
| if (MO.isDead()) |
| LV->addVirtualRegisterDead(Reg, NewMI); |
| } |
| if (MO.isUse() && MO.isKill()) { |
| for (unsigned j = 0; j < 2; ++j) { |
| // Look at the two new MI's in reverse order. |
| MachineInstr *NewMI = NewMIs[j]; |
| if (!NewMI->readsRegister(Reg)) |
| continue; |
| LV->addVirtualRegisterKilled(Reg, NewMI); |
| if (VI.removeKill(MI)) |
| VI.Kills.push_back(NewMI); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| MFI->insert(MBBI, NewMIs[1]); |
| MFI->insert(MBBI, NewMIs[0]); |
| return NewMIs[0]; |
| } |
| |
| // Branch analysis. |
| bool |
| ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| TBB = nullptr; |
| FBB = nullptr; |
| |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin()) |
| return false; // Empty blocks are easy. |
| --I; |
| |
| // Walk backwards from the end of the basic block until the branch is |
| // analyzed or we give up. |
| while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) { |
| |
| // Flag to be raised on unanalyzeable instructions. This is useful in cases |
| // where we want to clean up on the end of the basic block before we bail |
| // out. |
| bool CantAnalyze = false; |
| |
| // Skip over DEBUG values and predicated nonterminators. |
| while (I->isDebugValue() || !I->isTerminator()) { |
| if (I == MBB.begin()) |
| return false; |
| --I; |
| } |
| |
| if (isIndirectBranchOpcode(I->getOpcode()) || |
| isJumpTableBranchOpcode(I->getOpcode())) { |
| // Indirect branches and jump tables can't be analyzed, but we still want |
| // to clean up any instructions at the tail of the basic block. |
| CantAnalyze = true; |
| } else if (isUncondBranchOpcode(I->getOpcode())) { |
| TBB = I->getOperand(0).getMBB(); |
| } else if (isCondBranchOpcode(I->getOpcode())) { |
| // Bail out if we encounter multiple conditional branches. |
| if (!Cond.empty()) |
| return true; |
| |
| assert(!FBB && "FBB should have been null."); |
| FBB = TBB; |
| TBB = I->getOperand(0).getMBB(); |
| Cond.push_back(I->getOperand(1)); |
| Cond.push_back(I->getOperand(2)); |
| } else if (I->isReturn()) { |
| // Returns can't be analyzed, but we should run cleanup. |
| CantAnalyze = !isPredicated(I); |
| } else { |
| // We encountered other unrecognized terminator. Bail out immediately. |
| return true; |
| } |
| |
| // Cleanup code - to be run for unpredicated unconditional branches and |
| // returns. |
| if (!isPredicated(I) && |
| (isUncondBranchOpcode(I->getOpcode()) || |
| isIndirectBranchOpcode(I->getOpcode()) || |
| isJumpTableBranchOpcode(I->getOpcode()) || |
| I->isReturn())) { |
| // Forget any previous condition branch information - it no longer applies. |
| Cond.clear(); |
| FBB = nullptr; |
| |
| // If we can modify the function, delete everything below this |
| // unconditional branch. |
| if (AllowModify) { |
| MachineBasicBlock::iterator DI = std::next(I); |
| while (DI != MBB.end()) { |
| MachineInstr *InstToDelete = DI; |
| ++DI; |
| InstToDelete->eraseFromParent(); |
| } |
| } |
| } |
| |
| if (CantAnalyze) |
| return true; |
| |
| if (I == MBB.begin()) |
| return false; |
| |
| --I; |
| } |
| |
| // We made it past the terminators without bailing out - we must have |
| // analyzed this branch successfully. |
| return false; |
| } |
| |
| |
| unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return 0; |
| |
| if (!isUncondBranchOpcode(I->getOpcode()) && |
| !isCondBranchOpcode(I->getOpcode())) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (!isCondBranchOpcode(I->getOpcode())) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, |
| DebugLoc DL) const { |
| ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); |
| int BOpc = !AFI->isThumbFunction() |
| ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); |
| int BccOpc = !AFI->isThumbFunction() |
| ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); |
| bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); |
| |
| // Shouldn't be a fall through. |
| assert(TBB && "InsertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0) && |
| "ARM branch conditions have two components!"); |
| |
| // For conditional branches, we use addOperand to preserve CPSR flags. |
| |
| if (!FBB) { |
| if (Cond.empty()) { // Unconditional branch? |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); |
| } else |
| BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) |
| .addImm(Cond[0].getImm()).addOperand(Cond[1]); |
| return 1; |
| } |
| |
| // Two-way conditional branch. |
| BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) |
| .addImm(Cond[0].getImm()).addOperand(Cond[1]); |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); |
| return 2; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); |
| Cond[0].setImm(ARMCC::getOppositeCondition(CC)); |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const { |
| if (MI->isBundle()) { |
| MachineBasicBlock::const_instr_iterator I = MI->getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| int PIdx = I->findFirstPredOperandIdx(); |
| if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) |
| return true; |
| } |
| return false; |
| } |
| |
| int PIdx = MI->findFirstPredOperandIdx(); |
| return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const { |
| unsigned Opc = MI->getOpcode(); |
| if (isUncondBranchOpcode(Opc)) { |
| MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); |
| MachineInstrBuilder(*MI->getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .addReg(Pred[1].getReg()); |
| return true; |
| } |
| |
| int PIdx = MI->findFirstPredOperandIdx(); |
| if (PIdx != -1) { |
| MachineOperand &PMO = MI->getOperand(PIdx); |
| PMO.setImm(Pred[0].getImm()); |
| MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| ArrayRef<MachineOperand> Pred2) const { |
| if (Pred1.size() > 2 || Pred2.size() > 2) |
| return false; |
| |
| ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); |
| ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); |
| if (CC1 == CC2) |
| return true; |
| |
| switch (CC1) { |
| default: |
| return false; |
| case ARMCC::AL: |
| return true; |
| case ARMCC::HS: |
| return CC2 == ARMCC::HI; |
| case ARMCC::LS: |
| return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; |
| case ARMCC::GE: |
| return CC2 == ARMCC::GT; |
| case ARMCC::LE: |
| return CC2 == ARMCC::LT; |
| } |
| } |
| |
| bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, |
| std::vector<MachineOperand> &Pred) const { |
| bool Found = false; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || |
| (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } |
| |
| return Found; |
| } |
| |
| static bool isCPSRDefined(const MachineInstr *MI) { |
| for (const auto &MO : MI->operands()) |
| if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) |
| return true; |
| return false; |
| } |
| |
| static bool isEligibleForITBlock(const MachineInstr *MI) { |
| switch (MI->getOpcode()) { |
| default: return true; |
| case ARM::tADC: // ADC (register) T1 |
| case ARM::tADDi3: // ADD (immediate) T1 |
| case ARM::tADDi8: // ADD (immediate) T2 |
| case ARM::tADDrr: // ADD (register) T1 |
| case ARM::tAND: // AND (register) T1 |
| case ARM::tASRri: // ASR (immediate) T1 |
| case ARM::tASRrr: // ASR (register) T1 |
| case ARM::tBIC: // BIC (register) T1 |
| case ARM::tEOR: // EOR (register) T1 |
| case ARM::tLSLri: // LSL (immediate) T1 |
| case ARM::tLSLrr: // LSL (register) T1 |
| case ARM::tLSRri: // LSR (immediate) T1 |
| case ARM::tLSRrr: // LSR (register) T1 |
| case ARM::tMUL: // MUL T1 |
| case ARM::tMVN: // MVN (register) T1 |
| case ARM::tORR: // ORR (register) T1 |
| case ARM::tROR: // ROR (register) T1 |
| case ARM::tRSB: // RSB (immediate) T1 |
| case ARM::tSBC: // SBC (register) T1 |
| case ARM::tSUBi3: // SUB (immediate) T1 |
| case ARM::tSUBi8: // SUB (immediate) T2 |
| case ARM::tSUBrr: // SUB (register) T1 |
| return !isCPSRDefined(MI); |
| } |
| } |
| |
| /// isPredicable - Return true if the specified instruction can be predicated. |
| /// By default, this returns true for every instruction with a |
| /// PredicateOperand. |
| bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const { |
| if (!MI->isPredicable()) |
| return false; |
| |
| if (!isEligibleForITBlock(MI)) |
| return false; |
| |
| ARMFunctionInfo *AFI = |
| MI->getParent()->getParent()->getInfo<ARMFunctionInfo>(); |
| |
| if (AFI->isThumb2Function()) { |
| if (getSubtarget().restrictIT()) |
| return isV8EligibleForIT(MI); |
| } else { // non-Thumb |
| if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| namespace llvm { |
| template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || MO.isUndef() || MO.isUse()) |
| continue; |
| if (MO.getReg() != ARM::CPSR) |
| continue; |
| if (!MO.isDead()) |
| return false; |
| } |
| // all definitions of CPSR are dead |
| return true; |
| } |
| } |
| |
| /// GetInstSize - Return the size of the specified MachineInstr. |
| /// |
| unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { |
| const MachineBasicBlock &MBB = *MI->getParent(); |
| const MachineFunction *MF = MBB.getParent(); |
| const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (MCID.getSize()) |
| return MCID.getSize(); |
| |
| // If this machine instr is an inline asm, measure it. |
| if (MI->getOpcode() == ARM::INLINEASM) |
| return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| default: |
| // pseudo-instruction sizes are zero. |
| return 0; |
| case TargetOpcode::BUNDLE: |
| return getInstBundleLength(MI); |
| case ARM::MOVi16_ga_pcrel: |
| case ARM::MOVTi16_ga_pcrel: |
| case ARM::t2MOVi16_ga_pcrel: |
| case ARM::t2MOVTi16_ga_pcrel: |
| return 4; |
| case ARM::MOVi32imm: |
| case ARM::t2MOVi32imm: |
| return 8; |
| case ARM::CONSTPOOL_ENTRY: |
| case ARM::JUMPTABLE_INSTS: |
| case ARM::JUMPTABLE_ADDRS: |
| case ARM::JUMPTABLE_TBB: |
| case ARM::JUMPTABLE_TBH: |
| // If this machine instr is a constant pool entry, its size is recorded as |
| // operand #2. |
| return MI->getOperand(2).getImm(); |
| case ARM::Int_eh_sjlj_longjmp: |
| return 16; |
| case ARM::tInt_eh_sjlj_longjmp: |
| case ARM::tInt_WIN_eh_sjlj_longjmp: |
| return 10; |
| case ARM::Int_eh_sjlj_setjmp: |
| case ARM::Int_eh_sjlj_setjmp_nofp: |
| return 20; |
| case ARM::tInt_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp_nofp: |
| return 12; |
| case ARM::SPACE: |
| return MI->getOperand(1).getImm(); |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const { |
| unsigned Size = 0; |
| MachineBasicBlock::const_instr_iterator I = MI->getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| assert(!I->isBundle() && "No nested bundle!"); |
| Size += GetInstSizeInBytes(&*I); |
| } |
| return Size; |
| } |
| |
| void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, bool KillSrc, |
| const ARMSubtarget &Subtarget) const { |
| unsigned Opc = Subtarget.isThumb() |
| ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) |
| : ARM::MRS; |
| |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); |
| |
| // There is only 1 A/R class MRS instruction, and it always refers to |
| // APSR. However, there are lots of other possibilities on M-class cores. |
| if (Subtarget.isMClass()) |
| MIB.addImm(0x800); |
| |
| AddDefaultPred(MIB); |
| |
| MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); |
| } |
| |
| void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned SrcReg, bool KillSrc, |
| const ARMSubtarget &Subtarget) const { |
| unsigned Opc = Subtarget.isThumb() |
| ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) |
| : ARM::MSR; |
| |
| MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); |
| |
| if (Subtarget.isMClass()) |
| MIB.addImm(0x800); |
| else |
| MIB.addImm(8); |
| |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| |
| AddDefaultPred(MIB); |
| |
| MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define); |
| } |
| |
| void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, DebugLoc DL, |
| unsigned DestReg, unsigned SrcReg, |
| bool KillSrc) const { |
| bool GPRDest = ARM::GPRRegClass.contains(DestReg); |
| bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); |
| |
| if (GPRDest && GPRSrc) { |
| AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)))); |
| return; |
| } |
| |
| bool SPRDest = ARM::SPRRegClass.contains(DestReg); |
| bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); |
| |
| unsigned Opc = 0; |
| if (SPRDest && SPRSrc) |
| Opc = ARM::VMOVS; |
| else if (GPRDest && SPRSrc) |
| Opc = ARM::VMOVRS; |
| else if (SPRDest && GPRSrc) |
| Opc = ARM::VMOVSR; |
| else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP()) |
| Opc = ARM::VMOVD; |
| else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) |
| Opc = ARM::VORRq; |
| |
| if (Opc) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| if (Opc == ARM::VORRq) |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| AddDefaultPred(MIB); |
| return; |
| } |
| |
| // Handle register classes that require multiple instructions. |
| unsigned BeginIdx = 0; |
| unsigned SubRegs = 0; |
| int Spacing = 1; |
| |
| // Use VORRq when possible. |
| if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VORRq; |
| BeginIdx = ARM::qsub_0; |
| SubRegs = 2; |
| } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VORRq; |
| BeginIdx = ARM::qsub_0; |
| SubRegs = 4; |
| // Fall back to VMOVD. |
| } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 2; |
| } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 3; |
| } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 4; |
| } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { |
| Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; |
| BeginIdx = ARM::gsub_0; |
| SubRegs = 2; |
| } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 2; |
| Spacing = 2; |
| } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 3; |
| Spacing = 2; |
| } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 4; |
| Spacing = 2; |
| } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) { |
| Opc = ARM::VMOVS; |
| BeginIdx = ARM::ssub_0; |
| SubRegs = 2; |
| } else if (SrcReg == ARM::CPSR) { |
| copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); |
| return; |
| } else if (DestReg == ARM::CPSR) { |
| copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); |
| return; |
| } |
| |
| assert(Opc && "Impossible reg-to-reg copy"); |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineInstrBuilder Mov; |
| |
| // Copy register tuples backward when the first Dest reg overlaps with SrcReg. |
| if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { |
| BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); |
| Spacing = -Spacing; |
| } |
| #ifndef NDEBUG |
| SmallSet<unsigned, 4> DstRegs; |
| #endif |
| for (unsigned i = 0; i != SubRegs; ++i) { |
| unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); |
| unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); |
| assert(Dst && Src && "Bad sub-register"); |
| #ifndef NDEBUG |
| assert(!DstRegs.count(Src) && "destructive vector copy"); |
| DstRegs.insert(Dst); |
| #endif |
| Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); |
| // VORR takes two source operands. |
| if (Opc == ARM::VORRq) |
| Mov.addReg(Src); |
| Mov = AddDefaultPred(Mov); |
| // MOVr can set CC. |
| if (Opc == ARM::MOVr) |
| Mov = AddDefaultCC(Mov); |
| } |
| // Add implicit super-register defs and kills to the last instruction. |
| Mov->addRegisterDefined(DestReg, TRI); |
| if (KillSrc) |
| Mov->addRegisterKilled(SrcReg, TRI); |
| } |
| |
| const MachineInstrBuilder & |
| ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, |
| unsigned SubIdx, unsigned State, |
| const TargetRegisterInfo *TRI) const { |
| if (!SubIdx) |
| return MIB.addReg(Reg, State); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); |
| return MIB.addReg(Reg, State, SubIdx); |
| } |
| |
| void ARMBaseInstrInfo:: |
| storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| unsigned SrcReg, bool isKill, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL; |
| if (I != MBB.end()) DL = I->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, |
| MFI.getObjectSize(FI), Align); |
| |
| switch (RC->getSize()) { |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| if (Subtarget.hasV5TEOps()) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD)); |
| AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); |
| AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); |
| MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); |
| |
| AddDefaultPred(MIB); |
| } else { |
| // Fallback to STM instruction, which has existed since the dawn of |
| // time. |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA)) |
| .addFrameIndex(FI).addMemOperand(MMO)); |
| AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); |
| AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC)) { |
| // Use aligned spills if the stack can be realigned. |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64)) |
| .addFrameIndex(FI).addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO)); |
| } else { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO)); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| // Use aligned spills if the stack can be realigned. |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo)) |
| .addFrameIndex(FI).addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| // FIXME: It's possible to only store part of the QQ register if the |
| // spilled def has a sub-register index. |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) |
| .addFrameIndex(FI).addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown reg class!"); |
| } |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::STRrs: |
| case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isReg() && |
| MI->getOperand(3).isImm() && |
| MI->getOperand(2).getReg() == 0 && |
| MI->getOperand(3).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::STRi12: |
| case ARM::t2STRi12: |
| case ARM::tSTRspi: |
| case ARM::VSTRD: |
| case ARM::VSTRS: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isImm() && |
| MI->getOperand(2).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VST1q64: |
| case ARM::VST1d64TPseudo: |
| case ARM::VST1d64QPseudo: |
| if (MI->getOperand(0).isFI() && |
| MI->getOperand(2).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(0).getIndex(); |
| return MI->getOperand(2).getReg(); |
| } |
| break; |
| case ARM::VSTMQIA: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const { |
| const MachineMemOperand *Dummy; |
| return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex); |
| } |
| |
| void ARMBaseInstrInfo:: |
| loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| unsigned DestReg, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL; |
| if (I != MBB.end()) DL = I->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FI), Align); |
| |
| switch (RC->getSize()) { |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB; |
| |
| if (Subtarget.hasV5TEOps()) { |
| MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); |
| AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); |
| AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); |
| MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); |
| |
| AddDefaultPred(MIB); |
| } else { |
| // Fallback to LDM instruction, which has existed since the dawn of |
| // time. |
| MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA)) |
| .addFrameIndex(FI).addMemOperand(MMO)); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); |
| } |
| |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) |
| .addFrameIndex(FI).addImm(16) |
| .addMemOperand(MMO)); |
| } else { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO)); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) |
| .addFrameIndex(FI).addImm(16) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO)); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) |
| .addFrameIndex(FI).addImm(16) |
| .addMemOperand(MMO)); |
| } else { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = |
| AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); |
| if (TargetRegisterInfo::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown regclass!"); |
| } |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isReg() && |
| MI->getOperand(3).isImm() && |
| MI->getOperand(2).getReg() == 0 && |
| MI->getOperand(3).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::LDRi12: |
| case ARM::t2LDRi12: |
| case ARM::tLDRspi: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(2).isImm() && |
| MI->getOperand(2).getImm() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLD1q64: |
| case ARM::VLD1d64TPseudo: |
| case ARM::VLD1d64QPseudo: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLDMQIA: |
| if (MI->getOperand(1).isFI() && |
| MI->getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI->getOperand(1).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, |
| int &FrameIndex) const { |
| const MachineMemOperand *Dummy; |
| return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex); |
| } |
| |
| /// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD |
| /// depending on whether the result is used. |
| void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MBBI) const { |
| bool isThumb1 = Subtarget.isThumb1Only(); |
| bool isThumb2 = Subtarget.isThumb2(); |
| const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| MachineInstr *MI = MBBI; |
| DebugLoc dl = MI->getDebugLoc(); |
| MachineBasicBlock *BB = MI->getParent(); |
| |
| MachineInstrBuilder LDM, STM; |
| if (isThumb1 || !MI->getOperand(1).isDead()) { |
| LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD |
| : isThumb1 ? ARM::tLDMIA_UPD |
| : ARM::LDMIA_UPD)) |
| .addOperand(MI->getOperand(1)); |
| } else { |
| LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); |
| } |
| |
| if (isThumb1 || !MI->getOperand(0).isDead()) { |
| STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD |
| : isThumb1 ? ARM::tSTMIA_UPD |
| : ARM::STMIA_UPD)) |
| .addOperand(MI->getOperand(0)); |
| } else { |
| STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); |
| } |
| |
| AddDefaultPred(LDM.addOperand(MI->getOperand(3))); |
| AddDefaultPred(STM.addOperand(MI->getOperand(2))); |
| |
| // Sort the scratch registers into ascending order. |
| const TargetRegisterInfo &TRI = getRegisterInfo(); |
| llvm::SmallVector<unsigned, 6> ScratchRegs; |
| for(unsigned I = 5; I < MI->getNumOperands(); ++I) |
| ScratchRegs.push_back(MI->getOperand(I).getReg()); |
| std::sort(ScratchRegs.begin(), ScratchRegs.end(), |
| [&TRI](const unsigned &Reg1, |
| const unsigned &Reg2) -> bool { |
| return TRI.getEncodingValue(Reg1) < |
| TRI.getEncodingValue(Reg2); |
| }); |
| |
| for (const auto &Reg : ScratchRegs) { |
| LDM.addReg(Reg, RegState::Define); |
| STM.addReg(Reg, RegState::Kill); |
| } |
| |
| BB->erase(MBBI); |
| } |
| |
| |
| bool |
| ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| Reloc::Model RM = MF.getTarget().getRelocationModel(); |
| |
| if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { |
| assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && |
| "LOAD_STACK_GUARD currently supported only for MachO."); |
| expandLoadStackGuard(MI, RM); |
| MI->getParent()->erase(MI); |
| return true; |
| } |
| |
| if (MI->getOpcode() == ARM::MEMCPY) { |
| expandMEMCPY(MI); |
| return true; |
| } |
| |
| // This hook gets to expand COPY instructions before they become |
| // copyPhysReg() calls. Look for VMOVS instructions that can legally be |
| // widened to VMOVD. We prefer the VMOVD when possible because it may be |
| // changed into a VORR that can go down the NEON pipeline. |
| if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15() || |
| Subtarget.isFPOnlySP()) |
| return false; |
| |
| // Look for a copy between even S-registers. That is where we keep floats |
| // when using NEON v2f32 instructions for f32 arithmetic. |
| unsigned DstRegS = MI->getOperand(0).getReg(); |
| unsigned SrcRegS = MI->getOperand(1).getReg(); |
| if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| if (!DstRegD || !SrcRegD) |
| return false; |
| |
| // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only |
| // legal if the COPY already defines the full DstRegD, and it isn't a |
| // sub-register insertion. |
| if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI)) |
| return false; |
| |
| // A dead copy shouldn't show up here, but reject it just in case. |
| if (MI->getOperand(0).isDead()) |
| return false; |
| |
| // All clear, widen the COPY. |
| DEBUG(dbgs() << "widening: " << *MI); |
| MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); |
| |
| // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg |
| // or some other super-register. |
| int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD); |
| if (ImpDefIdx != -1) |
| MI->RemoveOperand(ImpDefIdx); |
| |
| // Change the opcode and operands. |
| MI->setDesc(get(ARM::VMOVD)); |
| MI->getOperand(0).setReg(DstRegD); |
| MI->getOperand(1).setReg(SrcRegD); |
| AddDefaultPred(MIB); |
| |
| // We are now reading SrcRegD instead of SrcRegS. This may upset the |
| // register scavenger and machine verifier, so we need to indicate that we |
| // are reading an undefined value from SrcRegD, but a proper value from |
| // SrcRegS. |
| MI->getOperand(1).setIsUndef(); |
| MIB.addReg(SrcRegS, RegState::Implicit); |
| |
| // SrcRegD may actually contain an unrelated value in the ssub_1 |
| // sub-register. Don't kill it. Only kill the ssub_0 sub-register. |
| if (MI->getOperand(1).isKill()) { |
| MI->getOperand(1).setIsKill(false); |
| MI->addRegisterKilled(SrcRegS, TRI, true); |
| } |
| |
| DEBUG(dbgs() << "replaced by: " << *MI); |
| return true; |
| } |
| |
| /// Create a copy of a const pool value. Update CPI to the new index and return |
| /// the label UID. |
| static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { |
| MachineConstantPool *MCP = MF.getConstantPool(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; |
| assert(MCPE.isMachineConstantPoolEntry() && |
| "Expecting a machine constantpool entry!"); |
| ARMConstantPoolValue *ACPV = |
| static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); |
| |
| unsigned PCLabelId = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *NewCPV = nullptr; |
| |
| // FIXME: The below assumes PIC relocation model and that the function |
| // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and |
| // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR |
| // instructions, so that's probably OK, but is PIC always correct when |
| // we get here? |
| if (ACPV->isGlobalValue()) |
| NewCPV = ARMConstantPoolConstant::Create( |
| cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, |
| 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); |
| else if (ACPV->isExtSymbol()) |
| NewCPV = ARMConstantPoolSymbol:: |
| Create(MF.getFunction()->getContext(), |
| cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); |
| else if (ACPV->isBlockAddress()) |
| NewCPV = ARMConstantPoolConstant:: |
| Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, |
| ARMCP::CPBlockAddress, 4); |
| else if (ACPV->isLSDA()) |
| NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId, |
| ARMCP::CPLSDA, 4); |
| else if (ACPV->isMachineBasicBlock()) |
| NewCPV = ARMConstantPoolMBB:: |
| Create(MF.getFunction()->getContext(), |
| cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); |
| else |
| llvm_unreachable("Unexpected ARM constantpool value type!!"); |
| CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); |
| return PCLabelId; |
| } |
| |
| void ARMBaseInstrInfo:: |
| reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, unsigned SubIdx, |
| const MachineInstr *Orig, |
| const TargetRegisterInfo &TRI) const { |
| unsigned Opcode = Orig->getOpcode(); |
| switch (Opcode) { |
| default: { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); |
| MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| MBB.insert(I, MI); |
| break; |
| } |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned CPI = Orig->getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode), |
| DestReg) |
| .addConstantPoolIndex(CPI).addImm(PCLabelId); |
| MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end()); |
| break; |
| } |
| } |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const { |
| MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF); |
| switch(Orig->getOpcode()) { |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| unsigned CPI = Orig->getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| Orig->getOperand(1).setIndex(CPI); |
| Orig->getOperand(2).setImm(PCLabelId); |
| break; |
| } |
| } |
| return MI; |
| } |
| |
| bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0, |
| const MachineInstr *MI1, |
| const MachineRegisterInfo *MRI) const { |
| unsigned Opcode = MI0->getOpcode(); |
| if (Opcode == ARM::t2LDRpci || |
| Opcode == ARM::t2LDRpci_pic || |
| Opcode == ARM::tLDRpci || |
| Opcode == ARM::tLDRpci_pic || |
| Opcode == ARM::LDRLIT_ga_pcrel || |
| Opcode == ARM::LDRLIT_ga_pcrel_ldr || |
| Opcode == ARM::tLDRLIT_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_pcrel) { |
| if (MI1->getOpcode() != Opcode) |
| return false; |
| if (MI0->getNumOperands() != MI1->getNumOperands()) |
| return false; |
| |
| const MachineOperand &MO0 = MI0->getOperand(1); |
| const MachineOperand &MO1 = MI1->getOperand(1); |
| if (MO0.getOffset() != MO1.getOffset()) |
| return false; |
| |
| if (Opcode == ARM::LDRLIT_ga_pcrel || |
| Opcode == ARM::LDRLIT_ga_pcrel_ldr || |
| Opcode == ARM::tLDRLIT_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_pcrel) |
| // Ignore the PC labels. |
| return MO0.getGlobal() == MO1.getGlobal(); |
| |
| const MachineFunction *MF = MI0->getParent()->getParent(); |
| const MachineConstantPool *MCP = MF->getConstantPool(); |
| int CPI0 = MO0.getIndex(); |
| int CPI1 = MO1.getIndex(); |
| const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; |
| const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; |
| bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); |
| bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); |
| if (isARMCP0 && isARMCP1) { |
| ARMConstantPoolValue *ACPV0 = |
| static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); |
| ARMConstantPoolValue *ACPV1 = |
| static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); |
| return ACPV0->hasSameValue(ACPV1); |
| } else if (!isARMCP0 && !isARMCP1) { |
| return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; |
| } |
| return false; |
| } else if (Opcode == ARM::PICLDR) { |
| if (MI1->getOpcode() != Opcode) |
| return false; |
| if (MI0->getNumOperands() != MI1->getNumOperands()) |
| return false; |
| |
| unsigned Addr0 = MI0->getOperand(1).getReg(); |
| unsigned Addr1 = MI1->getOperand(1).getReg(); |
| if (Addr0 != Addr1) { |
| if (!MRI || |
| !TargetRegisterInfo::isVirtualRegister(Addr0) || |
| !TargetRegisterInfo::isVirtualRegister(Addr1)) |
| return false; |
| |
| // This assumes SSA form. |
| MachineInstr *Def0 = MRI->getVRegDef(Addr0); |
| MachineInstr *Def1 = MRI->getVRegDef(Addr1); |
| // Check if the loaded value, e.g. a constantpool of a global address, are |
| // the same. |
| if (!produceSameValue(Def0, Def1, MRI)) |
| return false; |
| } |
| |
| for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) { |
| // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg |
| const MachineOperand &MO0 = MI0->getOperand(i); |
| const MachineOperand &MO1 = MI1->getOperand(i); |
| if (!MO0.isIdenticalTo(MO1)) |
| return false; |
| } |
| return true; |
| } |
| |
| return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); |
| } |
| |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to |
| /// determine if two loads are loading from the same base address. It should |
| /// only return true if the base pointers are the same and the only differences |
| /// between the two addresses is the offset. It also returns the offsets by |
| /// reference. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| int64_t &Offset1, |
| int64_t &Offset2) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) |
| return false; |
| |
| switch (Load1->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRBi8: |
| case ARM::t2LDRDi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRBi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| switch (Load2->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRBi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRBi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| // Check if base addresses and chain operands match. |
| if (Load1->getOperand(0) != Load2->getOperand(0) || |
| Load1->getOperand(4) != Load2->getOperand(4)) |
| return false; |
| |
| // Index should be Reg0. |
| if (Load1->getOperand(3) != Load2->getOperand(3)) |
| return false; |
| |
| // Determine the offsets. |
| if (isa<ConstantSDNode>(Load1->getOperand(1)) && |
| isa<ConstantSDNode>(Load2->getOperand(1))) { |
| Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); |
| Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to |
| /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should |
| /// be scheduled togther. On some targets if two loads are loading from |
| /// addresses in the same cache line, it's better if they are scheduled |
| /// together. This function takes two integers that represent the load offsets |
| /// from the common base address. It returns true if it decides it's desirable |
| /// to schedule the two loads together. "NumLoads" is the number of loads that |
| /// have already been scheduled after Load1. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| int64_t Offset1, int64_t Offset2, |
| unsigned NumLoads) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| assert(Offset2 > Offset1); |
| |
| if ((Offset2 - Offset1) / 8 > 64) |
| return false; |
| |
| // Check if the machine opcodes are different. If they are different |
| // then we consider them to not be of the same base address, |
| // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. |
| // In this case, they are considered to be the same because they are different |
| // encoding forms of the same basic instruction. |
| if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && |
| !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && |
| Load2->getMachineOpcode() == ARM::t2LDRBi12) || |
| (Load1->getMachineOpcode() == ARM::t2LDRBi12 && |
| Load2->getMachineOpcode() == ARM::t2LDRBi8))) |
| return false; // FIXME: overly conservative? |
| |
| // Four loads in a row should be sufficient. |
| if (NumLoads >= 3) |
| return false; |
| |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Debug info is never a scheduling boundary. It's necessary to be explicit |
| // due to the special treatment of IT instructions below, otherwise a |
| // dbg_value followed by an IT will result in the IT instruction being |
| // considered a scheduling hazard, which is wrong. It should be the actual |
| // instruction preceding the dbg_value instruction(s), just like it is |
| // when debug info is not present. |
| if (MI->isDebugValue()) |
| return false; |
| |
| // Terminators and labels can't be scheduled around. |
| if (MI->isTerminator() || MI->isPosition()) |
| return true; |
| |
| // Treat the start of the IT block as a scheduling boundary, but schedule |
| // t2IT along with all instructions following it. |
| // FIXME: This is a big hammer. But the alternative is to add all potential |
| // true and anti dependencies to IT block instructions as implicit operands |
| // to the t2IT instruction. The added compile time and complexity does not |
| // seem worth it. |
| MachineBasicBlock::const_iterator I = MI; |
| // Make sure to skip any dbg_value instructions |
| while (++I != MBB->end() && I->isDebugValue()) |
| ; |
| if (I != MBB->end() && I->getOpcode() == ARM::t2IT) |
| return true; |
| |
| // Don't attempt to schedule around any instruction that defines |
| // a stack-oriented pointer, as it's unlikely to be profitable. This |
| // saves compile time, because it doesn't require every single |
| // stack slot reference to depend on the instruction that does the |
| // modification. |
| // Calls don't actually change the stack pointer, even if they have imp-defs. |
| // No ARM calling conventions change the stack pointer. (X86 calling |
| // conventions sometimes do). |
| if (!MI->isCall() && MI->definesRegister(ARM::SP)) |
| return true; |
| |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &MBB, |
| unsigned NumCycles, unsigned ExtraPredCycles, |
| BranchProbability Probability) const { |
| if (!NumCycles) |
| return false; |
| |
| // If we are optimizing for size, see if the branch in the predecessor can be |
| // lowered to cbn?z by the constant island lowering pass, and return false if |
| // so. This results in a shorter instruction sequence. |
| if (MBB.getParent()->getFunction()->optForSize()) { |
| MachineBasicBlock *Pred = *MBB.pred_begin(); |
| if (!Pred->empty()) { |
| MachineInstr *LastMI = &*Pred->rbegin(); |
| if (LastMI->getOpcode() == ARM::t2Bcc) { |
| MachineBasicBlock::iterator CmpMI = LastMI; |
| if (CmpMI != Pred->begin()) { |
| --CmpMI; |
| if (CmpMI->getOpcode() == ARM::tCMPi8 || |
| CmpMI->getOpcode() == ARM::t2CMPri) { |
| unsigned Reg = CmpMI->getOperand(0).getReg(); |
| unsigned PredReg = 0; |
| ARMCC::CondCodes P = getInstrPredicate(CmpMI, PredReg); |
| if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 && |
| isARMLowRegister(Reg)) |
| return false; |
| } |
| } |
| } |
| } |
| } |
| |
| // Attempt to estimate the relative costs of predication versus branching. |
| // Here we scale up each component of UnpredCost to avoid precision issue when |
| // scaling NumCycles by Probability. |
| const unsigned ScalingUpFactor = 1024; |
| unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor); |
| UnpredCost += ScalingUpFactor; // The branch itself |
| UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; |
| |
| return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| unsigned TCycles, unsigned TExtra, |
| MachineBasicBlock &FMBB, |
| unsigned FCycles, unsigned FExtra, |
| BranchProbability Probability) const { |
| if (!TCycles || !FCycles) |
| return false; |
| |
| // Attempt to estimate the relative costs of predication versus branching. |
| // Here we scale up each component of UnpredCost to avoid precision issue when |
| // scaling TCycles/FCycles by Probability. |
| const unsigned ScalingUpFactor = 1024; |
| unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); |
| unsigned FUnpredCost = |
| Probability.getCompl().scale(FCycles * ScalingUpFactor); |
| unsigned UnpredCost = TUnpredCost + FUnpredCost; |
| UnpredCost += 1 * ScalingUpFactor; // The branch itself |
| UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; |
| |
| return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost; |
| } |
| |
| bool |
| ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, |
| MachineBasicBlock &FMBB) const { |
| // Reduce false anti-dependencies to let Swift's out-of-order execution |
| // engine do its thing. |
| return Subtarget.isSwift(); |
| } |
| |
| /// getInstrPredicate - If instruction is predicated, returns its predicate |
| /// condition, otherwise returns AL. It also returns the condition code |
| /// register by reference. |
| ARMCC::CondCodes |
| llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { |
| int PIdx = MI->findFirstPredOperandIdx(); |
| if (PIdx == -1) { |
| PredReg = 0; |
| return ARMCC::AL; |
| } |
| |
| PredReg = MI->getOperand(PIdx+1).getReg(); |
| return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); |
| } |
| |
| |
| unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { |
| if (Opc == ARM::B) |
| return ARM::Bcc; |
| if (Opc == ARM::tB) |
| return ARM::tBcc; |
| if (Opc == ARM::t2B) |
| return ARM::t2Bcc; |
| |
| llvm_unreachable("Unknown unconditional branch opcode!"); |
| } |
| |
| MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr *MI, |
| bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| switch (MI->getOpcode()) { |
| case ARM::MOVCCr: |
| case ARM::t2MOVCCr: { |
| // MOVCC can be commuted by inverting the condition. |
| unsigned PredReg = 0; |
| ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); |
| // MOVCC AL can't be inverted. Shouldn't happen. |
| if (CC == ARMCC::AL || PredReg != ARM::CPSR) |
| return nullptr; |
| MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| if (!MI) |
| return nullptr; |
| // After swapping the MOVCC operands, also invert the condition. |
| MI->getOperand(MI->findFirstPredOperandIdx()) |
| .setImm(ARMCC::getOppositeCondition(CC)); |
| return MI; |
| } |
| } |
| return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| } |
| |
| /// Identify instructions that can be folded into a MOVCC instruction, and |
| /// return the defining instruction. |
| static MachineInstr *canFoldIntoMOVCC(unsigned Reg, |
| const MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII) { |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return nullptr; |
| if (!MRI.hasOneNonDBGUse(Reg)) |
| return nullptr; |
| MachineInstr *MI = MRI.getVRegDef(Reg); |
| if (!MI) |
| return nullptr; |
| // MI is folded into the MOVCC by predicating it. |
| if (!MI->isPredicable()) |
| return nullptr; |
| // Check if MI has any non-dead defs or physreg uses. This also detects |
| // predicated instructions which will be reading CPSR. |
| for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| // Reject frame index operands, PEI can't handle the predicated pseudos. |
| if (MO.isFI() || MO.isCPI() || MO.isJTI()) |
| return nullptr; |
| if (!MO.isReg()) |
| continue; |
| // MI can't have any tied operands, that would conflict with predication. |
| if (MO.isTied()) |
| return nullptr; |
| if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) |
| return nullptr; |
| if (MO.isDef() && !MO.isDead()) |
| return nullptr; |
| } |
| bool DontMoveAcrossStores = true; |
| if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) |
| return nullptr; |
| return MI; |
| } |
| |
| bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI, |
| SmallVectorImpl<MachineOperand> &Cond, |
| unsigned &TrueOp, unsigned &FalseOp, |
| bool &Optimizable) const { |
| assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| // MOVCC operands: |
| // 0: Def. |
| // 1: True use. |
| // 2: False use. |
| // 3: Condition code. |
| // 4: CPSR use. |
| TrueOp = 1; |
| FalseOp = 2; |
| Cond.push_back(MI->getOperand(3)); |
| Cond.push_back(MI->getOperand(4)); |
| // We can always fold a def. |
| Optimizable = true; |
| return false; |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI, |
| SmallPtrSetImpl<MachineInstr *> &SeenMIs, |
| bool PreferFalse) const { |
| assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); |
| MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this); |
| bool Invert = !DefMI; |
| if (!DefMI) |
| DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this); |
| if (!DefMI) |
| return nullptr; |
| |
| // Find new register class to use. |
| MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1); |
| unsigned DestReg = MI->getOperand(0).getReg(); |
| const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); |
| if (!MRI.constrainRegClass(DestReg, PreviousClass)) |
| return nullptr; |
| |
| // Create a new predicated version of DefMI. |
| // Rfalse is the first use. |
| MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), |
| DefMI->getDesc(), DestReg); |
| |
| // Copy all the DefMI operands, excluding its (null) predicate. |
| const MCInstrDesc &DefDesc = DefMI->getDesc(); |
| for (unsigned i = 1, e = DefDesc.getNumOperands(); |
| i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) |
| NewMI.addOperand(DefMI->getOperand(i)); |
| |
| unsigned CondCode = MI->getOperand(3).getImm(); |
| if (Invert) |
| NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); |
| else |
| NewMI.addImm(CondCode); |
| NewMI.addOperand(MI->getOperand(4)); |
| |
| // DefMI is not the -S version that sets CPSR, so add an optional %noreg. |
| if (NewMI->hasOptionalDef()) |
| AddDefaultCC(NewMI); |
| |
| // The output register value when the predicate is false is an implicit |
| // register operand tied to the first def. |
| // The tie makes the register allocator ensure the FalseReg is allocated the |
| // same register as operand 0. |
| FalseReg.setImplicit(); |
| NewMI.addOperand(FalseReg); |
| NewMI->tieOperands(0, NewMI->getNumOperands() - 1); |
| |
| // Update SeenMIs set: register newly created MI and erase removed DefMI. |
| SeenMIs.insert(NewMI); |
| SeenMIs.erase(DefMI); |
| |
| // If MI is inside a loop, and DefMI is outside the loop, then kill flags on |
| // DefMI would be invalid when tranferred inside the loop. Checking for a |
| // loop is expensive, but at least remove kill flags if they are in different |
| // BBs. |
| if (DefMI->getParent() != MI->getParent()) |
| NewMI->clearKillInfo(); |
| |
| // The caller will erase MI, but not DefMI. |
| DefMI->eraseFromParent(); |
| return NewMI; |
| } |
| |
| /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the |
| /// instruction is encoded with an 'S' bit is determined by the optional CPSR |
| /// def operand. |
| /// |
| /// This will go away once we can teach tblgen how to set the optional CPSR def |
| /// operand itself. |
| struct AddSubFlagsOpcodePair { |
| uint16_t PseudoOpc; |
| uint16_t MachineOpc; |
| }; |
| |
| static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { |
| {ARM::ADDSri, ARM::ADDri}, |
| {ARM::ADDSrr, ARM::ADDrr}, |
| {ARM::ADDSrsi, ARM::ADDrsi}, |
| {ARM::ADDSrsr, ARM::ADDrsr}, |
| |
| {ARM::SUBSri, ARM::SUBri}, |
| {ARM::SUBSrr, ARM::SUBrr}, |
| {ARM::SUBSrsi, ARM::SUBrsi}, |
| {ARM::SUBSrsr, ARM::SUBrsr}, |
| |
| {ARM::RSBSri, ARM::RSBri}, |
| {ARM::RSBSrsi, ARM::RSBrsi}, |
| {ARM::RSBSrsr, ARM::RSBrsr}, |
| |
| {ARM::t2ADDSri, ARM::t2ADDri}, |
| {ARM::t2ADDSrr, ARM::t2ADDrr}, |
| {ARM::t2ADDSrs, ARM::t2ADDrs}, |
| |
| {ARM::t2SUBSri, ARM::t2SUBri}, |
| {ARM::t2SUBSrr, ARM::t2SUBrr}, |
| {ARM::t2SUBSrs, ARM::t2SUBrs}, |
| |
| {ARM::t2RSBSri, ARM::t2RSBri}, |
| {ARM::t2RSBSrs, ARM::t2RSBrs}, |
| }; |
| |
| unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { |
| for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) |
| if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) |
| return AddSubFlagsOpcodeMap[i].MachineOpc; |
| return 0; |
| } |
| |
| void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &MBBI, DebugLoc dl, |
| unsigned DestReg, unsigned BaseReg, int NumBytes, |
| ARMCC::CondCodes Pred, unsigned PredReg, |
| const ARMBaseInstrInfo &TII, unsigned MIFlags) { |
| if (NumBytes == 0 && DestReg != BaseReg) { |
| BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) |
| .addReg(BaseReg, RegState::Kill) |
| .addImm((unsigned)Pred).addReg(PredReg).addReg(0) |
| .setMIFlags(MIFlags); |
| return; |
| } |
| |
| bool isSub = NumBytes < 0; |
| if (isSub) NumBytes = -NumBytes; |
| |
| while (NumBytes) { |
| unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); |
| unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); |
| assert(ThisVal && "Didn't extract field correctly"); |
| |
| // We will handle these bits from offset, clear them. |
| NumBytes &= ~ThisVal; |
| |
| assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); |
| |
| // Build the new ADD / SUB. |
| unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; |
| BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) |
| .addReg(BaseReg, RegState::Kill).addImm(ThisVal) |
| .addImm((unsigned)Pred).addReg(PredReg).addReg(0) |
| .setMIFlags(MIFlags); |
| BaseReg = DestReg; |
| } |
| } |
| |
| bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, |
| MachineFunction &MF, MachineInstr *MI, |
| unsigned NumBytes) { |
| // This optimisation potentially adds lots of load and store |
| // micro-operations, it's only really a great benefit to code-size. |
| if (!MF.getFunction()->optForMinSize()) |
| return false; |
| |
| // If only one register is pushed/popped, LLVM can use an LDR/STR |
| // instead. We can't modify those so make sure we're dealing with an |
| // instruction we understand. |
| bool IsPop = isPopOpcode(MI->getOpcode()); |
| bool IsPush = isPushOpcode(MI->getOpcode()); |
| if (!IsPush && !IsPop) |
| return false; |
| |
| bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || |
| MI->getOpcode() == ARM::VLDMDIA_UPD; |
| bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || |
| MI->getOpcode() == ARM::tPOP || |
| MI->getOpcode() == ARM::tPOP_RET; |
| |
| assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && |
| MI->getOperand(1).getReg() == ARM::SP)) && |
| "trying to fold sp update into non-sp-updating push/pop"); |
| |
| // The VFP push & pop act on D-registers, so we can only fold an adjustment |
| // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try |
| // if this is violated. |
| if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) |
| return false; |
| |
| // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ |
| // pred) so the list starts at 4. Thumb1 starts after the predicate. |
| int RegListIdx = IsT1PushPop ? 2 : 4; |
| |
| // Calculate the space we'll need in terms of registers. |
| unsigned FirstReg = MI->getOperand(RegListIdx).getReg(); |
| unsigned RD0Reg, RegsNeeded; |
| if (IsVFPPushPop) { |
| RD0Reg = ARM::D0; |
| RegsNeeded = NumBytes / 8; |
| } else { |
| RD0Reg = ARM::R0; |
| RegsNeeded = NumBytes / 4; |
| } |
| |
| // We're going to have to strip all list operands off before |
| // re-adding them since the order matters, so save the existing ones |
| // for later. |
| SmallVector<MachineOperand, 4> RegList; |
| for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) |
| RegList.push_back(MI->getOperand(i)); |
| |
| const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); |
| const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); |
| |
| // Now try to find enough space in the reglist to allocate NumBytes. |
| for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded; |
| --CurReg) { |
| if (!IsPop) { |
| // Pushing any register is completely harmless, mark the |
| // register involved as undef since we don't care about it in |
| // the slightest. |
| RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, |
| false, false, true)); |
| --RegsNeeded; |
| continue; |
| } |
| |
| // However, we can only pop an extra register if it's not live. For |
| // registers live within the function we might clobber a return value |
| // register; the other way a register can be live here is if it's |
| // callee-saved. |
| if (isCalleeSavedRegister(CurReg, CSRegs) || |
| MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != |
| MachineBasicBlock::LQR_Dead) { |
| // VFP pops don't allow holes in the register list, so any skip is fatal |
| // for our transformation. GPR pops do, so we should just keep looking. |
| if (IsVFPPushPop) |
| return false; |
| else |
| continue; |
| } |
| |
| // Mark the unimportant registers as <def,dead> in the POP. |
| RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, |
| true)); |
| --RegsNeeded; |
| } |
| |
| if (RegsNeeded > 0) |
| return false; |
| |
| // Finally we know we can profitably perform the optimisation so go |
| // ahead: strip all existing registers off and add them back again |
| // in the right order. |
| for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) |
| MI->RemoveOperand(i); |
| |
| // Add the complete list back in. |
| MachineInstrBuilder MIB(MF, &*MI); |
| for (int i = RegList.size() - 1; i >= 0; --i) |
| MIB.addOperand(RegList[i]); |
| |
| return true; |
| } |
| |
| bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, |
| unsigned FrameReg, int &Offset, |
| const ARMBaseInstrInfo &TII) { |
| unsigned Opcode = MI.getOpcode(); |
| const MCInstrDesc &Desc = MI.getDesc(); |
| unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); |
| bool isSub = false; |
| |
| // Memory operands in inline assembly always use AddrMode2. |
| if (Opcode == ARM::INLINEASM) |
| AddrMode = ARMII::AddrMode2; |
| |
| if (Opcode == ARM::ADDri) { |
| Offset += MI.getOperand(FrameRegIdx+1).getImm(); |
| if (Offset == 0) { |
| // Turn it into a move. |
| MI.setDesc(TII.get(ARM::MOVr)); |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| MI.RemoveOperand(FrameRegIdx+1); |
| Offset = 0; |
| return true; |
| } else if (Offset < 0) { |
| Offset = -Offset; |
| isSub = true; |
| MI.setDesc(TII.get(ARM::SUBri)); |
| } |
| |
| // Common case: small offset, fits into instruction. |
| if (ARM_AM::getSOImmVal(Offset) != -1) { |
| // Replace the FrameIndex with sp / fp |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); |
| Offset = 0; |
| return true; |
| } |
| |
| // Otherwise, pull as much of the immedidate into this ADDri/SUBri |
| // as possible. |
| unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); |
| unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); |
| |
| // We will handle these bits from offset, clear them. |
| Offset &= ~ThisImmVal; |
| |
| // Get the properly encoded SOImmVal field. |
| assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && |
| "Bit extraction didn't work?"); |
| MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); |
| } else { |
| unsigned ImmIdx = 0; |
| int InstrOffs = 0; |
| unsigned NumBits = 0; |
| unsigned Scale = 1; |
| switch (AddrMode) { |
| case ARMII::AddrMode_i12: { |
| ImmIdx = FrameRegIdx + 1; |
| InstrOffs = MI.getOperand(ImmIdx).getImm(); |
| NumBits = 12; |
| break; |
| } |
| case ARMII::AddrMode2: { |
| ImmIdx = FrameRegIdx+2; |
| InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 12; |
| break; |
| } |
| case ARMII::AddrMode3: { |
| ImmIdx = FrameRegIdx+2; |
| InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 8; |
| break; |
| } |
| case ARMII::AddrMode4: |
| case ARMII::AddrMode6: |
| // Can't fold any offset even if it's zero. |
| return false; |
| case ARMII::AddrMode5: { |
| ImmIdx = FrameRegIdx+1; |
| InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs *= -1; |
| NumBits = 8; |
| Scale = 4; |
| break; |
| } |
| default: |
| llvm_unreachable("Unsupported addressing mode!"); |
| } |
| |
| Offset += InstrOffs * Scale; |
| assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); |
| if (Offset < 0) { |
| Offset = -Offset; |
| isSub = true; |
| } |
| |
| // Attempt to fold address comp. if opcode has offset bits |
| if (NumBits > 0) { |
| // Common case: small offset, fits into instruction. |
| MachineOperand &ImmOp = MI.getOperand(ImmIdx); |
| int ImmedOffset = Offset / Scale; |
| unsigned Mask = (1 << NumBits) - 1; |
| if ((unsigned)Offset <= Mask * Scale) { |
| // Replace the FrameIndex with sp |
| MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); |
| // FIXME: When addrmode2 goes away, this will simplify (like the |
| // T2 version), as the LDR.i12 versions don't need the encoding |
| // tricks for the offset value. |
| if (isSub) { |
| if (AddrMode == ARMII::AddrMode_i12) |
| ImmedOffset = -ImmedOffset; |
| else |
| ImmedOffset |= 1 << NumBits; |
| } |
| ImmOp.ChangeToImmediate(ImmedOffset); |
| Offset = 0; |
| return true; |
| } |
| |
| // Otherwise, it didn't fit. Pull in what we can to simplify the immed. |
| ImmedOffset = ImmedOffset & Mask; |
| if (isSub) { |
| if (AddrMode == ARMII::AddrMode_i12) |
| ImmedOffset = -ImmedOffset; |
| else |
| ImmedOffset |= 1 << NumBits; |
| } |
| ImmOp.ChangeToImmediate(ImmedOffset); |
| Offset &= ~(Mask*Scale); |
| } |
| } |
| |
| Offset = (isSub) ? -Offset : Offset; |
| return Offset == 0; |
| } |
| |
| /// analyzeCompare - For a comparison instruction, return the source registers |
| /// in SrcReg and SrcReg2 if having two register operands, and the value it |
| /// compares against in CmpValue. Return true if the comparison instruction |
| /// can be analyzed. |
| bool ARMBaseInstrInfo:: |
| analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, |
| int &CmpMask, int &CmpValue) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::CMPri: |
| case ARM::t2CMPri: |
| SrcReg = MI->getOperand(0).getReg(); |
| SrcReg2 = 0; |
| CmpMask = ~0; |
| CmpValue = MI->getOperand(1).getImm(); |
| return true; |
| case ARM::CMPrr: |
| case ARM::t2CMPrr: |
| SrcReg = MI->getOperand(0).getReg(); |
| SrcReg2 = MI->getOperand(1).getReg(); |
| CmpMask = ~0; |
| CmpValue = 0; |
| return true; |
| case ARM::TSTri: |
| case ARM::t2TSTri: |
| SrcReg = MI->getOperand(0).getReg(); |
| SrcReg2 = 0; |
| CmpMask = MI->getOperand(1).getImm(); |
| CmpValue = 0; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// isSuitableForMask - Identify a suitable 'and' instruction that |
| /// operates on the given source register and applies the same mask |
| /// as a 'tst' instruction. Provide a limited look-through for copies. |
| /// When successful, MI will hold the found instruction. |
| static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, |
| int CmpMask, bool CommonUse) { |
| switch (MI->getOpcode()) { |
| case ARM::ANDri: |
| case ARM::t2ANDri: |
| if (CmpMask != MI->getOperand(2).getImm()) |
| return false; |
| if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) |
| return true; |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// getSwappedCondition - assume the flags are set by MI(a,b), return |
| /// the condition code if we modify the instructions such that flags are |
| /// set by MI(b,a). |
| inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { |
| switch (CC) { |
| default: return ARMCC::AL; |
| case ARMCC::EQ: return ARMCC::EQ; |
| case ARMCC::NE: return ARMCC::NE; |
| case ARMCC::HS: return ARMCC::LS; |
| case ARMCC::LO: return ARMCC::HI; |
| case ARMCC::HI: return ARMCC::LO; |
| case ARMCC::LS: return ARMCC::HS; |
| case ARMCC::GE: return ARMCC::LE; |
| case ARMCC::LT: return ARMCC::GT; |
| case ARMCC::GT: return ARMCC::LT; |
| case ARMCC::LE: return ARMCC::GE; |
| } |
| } |
| |
| /// isRedundantFlagInstr - check whether the first instruction, whose only |
| /// purpose is to update flags, can be made redundant. |
| /// CMPrr can be made redundant by SUBrr if the operands are the same. |
| /// CMPri can be made redundant by SUBri if the operands are the same. |
| /// This function can be extended later on. |
| inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg, |
| unsigned SrcReg2, int ImmValue, |
| MachineInstr *OI) { |
| if ((CmpI->getOpcode() == ARM::CMPrr || |
| CmpI->getOpcode() == ARM::t2CMPrr) && |
| (OI->getOpcode() == ARM::SUBrr || |
| OI->getOpcode() == ARM::t2SUBrr) && |
| ((OI->getOperand(1).getReg() == SrcReg && |
| OI->getOperand(2).getReg() == SrcReg2) || |
| (OI->getOperand(1).getReg() == SrcReg2 && |
| OI->getOperand(2).getReg() == SrcReg))) |
| return true; |
| |
| if ((CmpI->getOpcode() == ARM::CMPri || |
| CmpI->getOpcode() == ARM::t2CMPri) && |
| (OI->getOpcode() == ARM::SUBri || |
| OI->getOpcode() == ARM::t2SUBri) && |
| OI->getOperand(1).getReg() == SrcReg && |
| OI->getOperand(2).getImm() == ImmValue) |
| return true; |
| return false; |
| } |
| |
| /// optimizeCompareInstr - Convert the instruction supplying the argument to the |
| /// comparison into one that sets the zero bit in the flags register; |
| /// Remove a redundant Compare instruction if an earlier instruction can set the |
| /// flags in the same way as Compare. |
| /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two |
| /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the |
| /// condition code of instructions which use the flags. |
| bool ARMBaseInstrInfo:: |
| optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, |
| int CmpMask, int CmpValue, |
| const MachineRegisterInfo *MRI) const { |
| // Get the unique definition of SrcReg. |
| MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); |
| if (!MI) return false; |
| |
| // Masked compares sometimes use the same register as the corresponding 'and'. |
| if (CmpMask != ~0) { |
| if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) { |
| MI = nullptr; |
| for (MachineRegisterInfo::use_instr_iterator |
| UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); |
| UI != UE; ++UI) { |
| if (UI->getParent() != CmpInstr->getParent()) continue; |
| MachineInstr *PotentialAND = &*UI; |
| if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || |
| isPredicated(PotentialAND)) |
| continue; |
| MI = PotentialAND; |
| break; |
| } |
| if (!MI) return false; |
| } |
| } |
| |
| // Get ready to iterate backward from CmpInstr. |
| MachineBasicBlock::iterator I = CmpInstr, E = MI, |
| B = CmpInstr->getParent()->begin(); |
| |
| // Early exit if CmpInstr is at the beginning of the BB. |
| if (I == B) return false; |
| |
| // There are two possible candidates which can be changed to set CPSR: |
| // One is MI, the other is a SUB instruction. |
| // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). |
| // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). |
| MachineInstr *Sub = nullptr; |
| if (SrcReg2 != 0) |
| // MI is not a candidate for CMPrr. |
| MI = nullptr; |
| else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) { |
| // Conservatively refuse to convert an instruction which isn't in the same |
| // BB as the comparison. |
| // For CMPri w/ CmpValue != 0, a Sub may still be a candidate. |
| // Thus we cannot return here. |
| if (CmpInstr->getOpcode() == ARM::CMPri || |
| CmpInstr->getOpcode() == ARM::t2CMPri) |
| MI = nullptr; |
| else |
| return false; |
| } |
| |
| // Check that CPSR isn't set between the comparison instruction and the one we |
| // want to change. At the same time, search for Sub. |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| --I; |
| for (; I != E; --I) { |
| const MachineInstr &Instr = *I; |
| |
| if (Instr.modifiesRegister(ARM::CPSR, TRI) || |
| Instr.readsRegister(ARM::CPSR, TRI)) |
| // This instruction modifies or uses CPSR after the one we want to |
| // change. We can't do this transformation. |
| return false; |
| |
| // Check whether CmpInstr can be made redundant by the current instruction. |
| if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) { |
| Sub = &*I; |
| break; |
| } |
| |
| if (I == B) |
| // The 'and' is below the comparison instruction. |
| return false; |
| } |
| |
| // Return false if no candidates exist. |
| if (!MI && !Sub) |
| return false; |
| |
| // The single candidate is called MI. |
| if (!MI) MI = Sub; |
| |
| // We can't use a predicated instruction - it doesn't always write the flags. |
| if (isPredicated(MI)) |
| return false; |
| |
| switch (MI->getOpcode()) { |
| default: break; |
| case ARM::RSBrr: |
| case ARM::RSBri: |
| case ARM::RSCrr: |
| case ARM::RSCri: |
| case ARM::ADDrr: |
| case ARM::ADDri: |
| case ARM::ADCrr: |
| case ARM::ADCri: |
| case ARM::SUBrr: |
| case ARM::SUBri: |
| case ARM::SBCrr: |
| case ARM::SBCri: |
| case ARM::t2RSBri: |
| case ARM::t2ADDrr: |
| case ARM::t2ADDri: |
| case ARM::t2ADCrr: |
| case ARM::t2ADCri: |
| case ARM::t2SUBrr: |
| case ARM::t2SUBri: |
| case ARM::t2SBCrr: |
| case ARM::t2SBCri: |
| case ARM::ANDrr: |
| case ARM::ANDri: |
| case ARM::t2ANDrr: |
| case ARM::t2ANDri: |
| case ARM::ORRrr: |
| case ARM::ORRri: |
| case ARM::t2ORRrr: |
| case ARM::t2ORRri: |
| case ARM::EORrr: |
| case ARM::EORri: |
| case ARM::t2EORrr: |
| case ARM::t2EORri: { |
| // Scan forward for the use of CPSR |
| // When checking against MI: if it's a conditional code that requires |
| // checking of the V bit or C bit, then this is not safe to do. |
| // It is safe to remove CmpInstr if CPSR is redefined or killed. |
| // If we are done with the basic block, we need to check whether CPSR is |
| // live-out. |
| SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> |
| OperandsToUpdate; |
| bool isSafe = false; |
| I = CmpInstr; |
| E = CmpInstr->getParent()->end(); |
| while (!isSafe && ++I != E) { |
| const MachineInstr &Instr = *I; |
| for (unsigned IO = 0, EO = Instr.getNumOperands(); |
| !isSafe && IO != EO; ++IO) { |
| const MachineOperand &MO = Instr.getOperand(IO); |
| if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { |
| isSafe = true; |
| break; |
| } |
| if (!MO.isReg() || MO.getReg() != ARM::CPSR) |
| continue; |
|